organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[Eth­yl(2-hy­dr­oxy­eth­yl)carbamo­thio­yl]-3-fluoro­benzamide

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, and bLow Carbon Research Group, School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: sitifairus@ukm.edu.my

(Received 2 April 2014; accepted 11 April 2014; online 18 April 2014)

In the title compound, C12H15FN2O2S, the mol­ecule adopts a cis configuration of the fluoro­benzoyl group with respect to the thiono group about their C—N bond. The dihedral angle between the fluoro­benzoyl group and the thio­urea N2CS fragment is 69.60 (11)°. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, mol­ecules form chains along the b-axis direction via O—H⋯S and C—H⋯O hydrogen bonds.

Related literature

For bond length data see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Yamin et al. (2014[Yamin, B. M., Sapari, S. & Hasbullah, S. A. (2014). Acta Cryst. E70, o33.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15FN2O2S

  • Mr = 270.32

  • Orthorhombic, P 21 21 21

  • a = 6.0205 (3) Å

  • b = 12.9441 (6) Å

  • c = 17.1071 (9) Å

  • V = 1333.16 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.50 × 0.50 × 0.29 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.885, Tmax = 0.931

  • 21708 measured reflections

  • 3290 independent reflections

  • 2864 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.086

  • S = 1.07

  • 3290 reflections

  • 168 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1378 Friedel pairs

  • Absolute structure parameter: −0.05 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 2.03 2.805 (2) 150
O2—H2A⋯S1i 0.82 (3) 2.49 (3) 3.2805 (19) 166 (3)
C11—H11B⋯O1ii 0.97 2.44 3.259 (3) 142
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The expected cis configuration of the carbonoyl with respect to the thione group was observed when one terminal of the thiourea moiety is a secondary amine as in the case of 2,4-dichloro-N-[ethyl(2-hydroxyethyl)- carbamothioyl]benzamide (Yamin et al., 2014). Such configuration will enhance its property as bidentate ligand in a complexation reaction with metals. The title compound is similar but having a monosubstituted flourine atom at position-3 of the benzene ring (Fig 1). The fluorobenzoyl group is also cis to the thiono group, C8—S1 about the N1—C8 bond. The thiourea moiety S1/N1/N2/C8 and fluorobenzene ring F1/(C1—C6) are planar with maximum deviation of 0.022 (2) Å for C8 atom from the least square plane of the thiourea moiety fragment. The two planes make dihedral angle of 69.60 (11)°, slightly less than that of the analog (75.41 (8)°). The bond lengths and angles are in normal ranges (Allen et al., 1987). There is intramolecular hydrogen bond between hydroxyl oxygen atom, (O2) and the hydrogen of the amide group. In the crystal structure, molecules are linked by O2—H2A···S1 and C11—H11B···O1 intermolecular hydrogen bonds (see Table 1 for symmetry codes) to form one-dimensional chain along the b axis (Fig.2).

Related literature top

For bond length data see: Allen et al., (1987). For related structures, see: Yamin et al., 2014.

Experimental top

A mixture of acetone (30 ml) solution and 2-(ethylamino)ethanol (0.18 g, 2 mmol) was added into round-bottom flask containing 4-fluorobenzoyl isothiocyanate (0.36 g, 2 mmol). The mixture was refluxed for 3 h. The mixture then cooled and filtered off. The filtrate was left to evaporate at room temperature. The solid formed was washed with water and cold ethanol. Crystals suitable for X-ray study were obtained by recrystallization from ethanol.

Refinement top

After their location in the difference map, the H-atoms attached to the C and N atoms were fixed geometrically at ideal positions and allowed to ride on the parent atoms with C—H = 0.93 Å, with Uiso(H)=1.2Ueq(C). The hydrogen atom attached to oxygen atom was located from Fourier map and refined isotropically with O—H restraint to 0.82 with an e.s.d. of 0.01. The rotating model was applied for the refinement of methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL2013 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular structure of (I) with 50% probability displacement ellipsoids. The dashed line indicates intramolecular hydrogen bonds.
[Figure 2] Fig. 2. : Molecular packing (I) viewed down a axis. The dashed lines indicate intramolecular hydrogen bonds.
N-[Ethyl(2-hydroxyethyl)carbamothioyl]-3-fluorobenzamide top
Crystal data top
C12H15FN2O2SF(000) = 568
Mr = 270.32Dx = 1.347 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 11689 reflections
a = 6.0205 (3) Åθ = 3.1–28.2°
b = 12.9441 (6) ŵ = 0.25 mm1
c = 17.1071 (9) ÅT = 296 K
V = 1333.16 (11) Å3Block, colorless
Z = 40.50 × 0.50 × 0.29 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3290 independent reflections
Radiation source: fine-focus sealed tube2864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 28.2°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 87
Tmin = 0.885, Tmax = 0.931k = 1716
21708 measured reflectionsl = 2122
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.3143P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3290 reflectionsΔρmax = 0.22 e Å3
168 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack (1983), 1378 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (8)
Crystal data top
C12H15FN2O2SV = 1333.16 (11) Å3
Mr = 270.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0205 (3) ŵ = 0.25 mm1
b = 12.9441 (6) ÅT = 296 K
c = 17.1071 (9) Å0.50 × 0.50 × 0.29 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3290 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2864 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.931Rint = 0.031
21708 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086Δρmax = 0.22 e Å3
S = 1.07Δρmin = 0.18 e Å3
3290 reflectionsAbsolute structure: Flack (1983), 1378 Friedel pairs
168 parametersAbsolute structure parameter: 0.05 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.5492 (2)0.22048 (12)0.06124 (8)0.0690 (4)
S10.25957 (10)0.08756 (4)0.35274 (3)0.05288 (15)
O10.2778 (3)0.02641 (9)0.17285 (8)0.0537 (4)
O20.0320 (2)0.39036 (10)0.21034 (9)0.0501 (3)
H2A0.053 (3)0.4382 (14)0.2024 (14)0.067 (7)*
N10.1564 (2)0.18174 (10)0.21762 (8)0.0369 (3)
H1A0.08360.23590.20390.044*
N20.3727 (2)0.27479 (10)0.30261 (8)0.0360 (3)
C10.2089 (3)0.16654 (13)0.11163 (9)0.0382 (4)
H10.22280.21340.15260.046*
C20.3693 (3)0.15905 (16)0.05543 (10)0.0438 (4)
C30.3574 (4)0.09202 (19)0.00610 (11)0.0556 (5)
H30.46980.08900.04330.067*
C40.1751 (4)0.02952 (18)0.01123 (13)0.0625 (6)
H40.16330.01670.05260.075*
C50.0084 (4)0.03385 (15)0.04385 (11)0.0497 (5)
H50.11480.00910.03940.060*
C60.0245 (3)0.10242 (12)0.10612 (10)0.0341 (3)
C70.1516 (3)0.09866 (12)0.16784 (10)0.0349 (3)
C80.2701 (3)0.18551 (11)0.28899 (10)0.0348 (3)
C90.4712 (4)0.29815 (16)0.37932 (11)0.0546 (5)
H9A0.38840.26210.41960.066*
H9B0.45870.37170.38930.066*
C100.7126 (4)0.26688 (19)0.38404 (16)0.0765 (8)
H10A0.72590.19410.37430.115*
H10B0.76900.28230.43520.115*
H10C0.79640.30440.34560.115*
C110.4091 (3)0.35433 (13)0.24232 (10)0.0366 (4)
H11A0.41760.32110.19160.044*
H11B0.55050.38790.25200.044*
C120.2301 (4)0.43491 (12)0.24008 (11)0.0447 (4)
H12A0.20410.46150.29230.054*
H12B0.27600.49190.20700.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0511 (7)0.0961 (10)0.0598 (7)0.0225 (7)0.0128 (6)0.0004 (7)
S10.0634 (3)0.0408 (2)0.0544 (3)0.0138 (2)0.0199 (3)0.0157 (2)
O10.0596 (9)0.0393 (6)0.0622 (8)0.0182 (7)0.0127 (7)0.0037 (6)
O20.0487 (8)0.0337 (7)0.0677 (9)0.0113 (6)0.0071 (7)0.0017 (6)
N10.0404 (8)0.0252 (6)0.0451 (8)0.0027 (6)0.0149 (6)0.0016 (6)
N20.0388 (8)0.0307 (7)0.0385 (7)0.0034 (6)0.0073 (6)0.0005 (6)
C10.0421 (10)0.0422 (8)0.0301 (7)0.0018 (8)0.0015 (7)0.0009 (6)
C20.0367 (9)0.0559 (11)0.0389 (9)0.0023 (8)0.0004 (8)0.0067 (8)
C30.0562 (12)0.0745 (14)0.0360 (9)0.0134 (12)0.0118 (9)0.0010 (10)
C40.0816 (17)0.0612 (13)0.0446 (11)0.0042 (13)0.0055 (11)0.0176 (10)
C50.0578 (12)0.0452 (10)0.0460 (11)0.0046 (9)0.0001 (9)0.0088 (9)
C60.0377 (8)0.0304 (8)0.0343 (8)0.0033 (7)0.0008 (7)0.0019 (6)
C70.0355 (8)0.0278 (7)0.0413 (9)0.0010 (7)0.0014 (7)0.0033 (6)
C80.0304 (8)0.0315 (7)0.0427 (8)0.0003 (7)0.0065 (7)0.0005 (6)
C90.0727 (14)0.0475 (11)0.0437 (10)0.0147 (10)0.0170 (10)0.0025 (9)
C100.0724 (17)0.0650 (14)0.0920 (17)0.0156 (13)0.0453 (15)0.0178 (13)
C110.0368 (9)0.0304 (8)0.0425 (9)0.0040 (7)0.0002 (7)0.0001 (7)
C120.0554 (12)0.0275 (7)0.0512 (10)0.0047 (9)0.0025 (10)0.0039 (7)
Geometric parameters (Å, º) top
F1—C21.347 (2)C4—C51.377 (3)
S1—C81.6736 (16)C4—H40.9300
O1—C71.208 (2)C5—C61.390 (2)
O2—C121.419 (2)C5—H50.9300
O2—H2A0.816 (10)C6—C71.497 (2)
N1—C71.372 (2)C9—C101.511 (3)
N1—C81.401 (2)C9—H9A0.9700
N1—H1A0.8600C9—H9B0.9700
N2—C81.331 (2)C10—H10A0.9600
N2—C91.471 (2)C10—H10B0.9600
N2—C111.474 (2)C10—H10C0.9600
C1—C21.366 (2)C11—C121.500 (3)
C1—C61.389 (2)C11—H11A0.9700
C1—H10.9300C11—H11B0.9700
C2—C31.366 (3)C12—H12A0.9700
C3—C41.366 (3)C12—H12B0.9700
C3—H30.9300
C12—O2—H2A106.3 (18)N2—C8—N1114.19 (13)
C7—N1—C8125.36 (13)N2—C8—S1124.15 (13)
C7—N1—H1A117.3N1—C8—S1121.54 (12)
C8—N1—H1A117.3N2—C9—C10112.35 (19)
C8—N2—C9121.44 (15)N2—C9—H9A109.1
C8—N2—C11123.58 (14)C10—C9—H9A109.1
C9—N2—C11114.88 (14)N2—C9—H9B109.1
C2—C1—C6118.34 (16)C10—C9—H9B109.1
C2—C1—H1120.8H9A—C9—H9B107.9
C6—C1—H1120.8C9—C10—H10A109.5
F1—C2—C3118.29 (17)C9—C10—H10B109.5
F1—C2—C1118.32 (16)H10A—C10—H10B109.5
C3—C2—C1123.38 (18)C9—C10—H10C109.5
C2—C3—C4117.89 (18)H10A—C10—H10C109.5
C2—C3—H3121.1H10B—C10—H10C109.5
C4—C3—H3121.1N2—C11—C12113.38 (15)
C3—C4—C5121.14 (19)N2—C11—H11A108.9
C3—C4—H4119.4C12—C11—H11A108.9
C5—C4—H4119.4N2—C11—H11B108.9
C4—C5—C6120.0 (2)C12—C11—H11B108.9
C4—C5—H5120.0H11A—C11—H11B107.7
C6—C5—H5120.0O2—C12—C11109.28 (13)
C1—C6—C5119.29 (16)O2—C12—H12A109.8
C1—C6—C7122.51 (15)C11—C12—H12A109.8
C5—C6—C7118.06 (16)O2—C12—H12B109.8
O1—C7—N1123.33 (15)C11—C12—H12B109.8
O1—C7—C6121.38 (15)H12A—C12—H12B108.3
N1—C7—C6115.29 (14)
C6—C1—C2—F1179.31 (16)C1—C6—C7—N118.5 (2)
C6—C1—C2—C30.2 (3)C5—C6—C7—N1165.87 (16)
F1—C2—C3—C4179.56 (19)C9—N2—C8—N1170.60 (17)
C1—C2—C3—C40.0 (3)C11—N2—C8—N113.3 (2)
C2—C3—C4—C50.0 (3)C9—N2—C8—S15.4 (3)
C3—C4—C5—C60.2 (3)C11—N2—C8—S1170.74 (13)
C2—C1—C6—C50.5 (2)C7—N1—C8—N2139.06 (17)
C2—C1—C6—C7175.11 (16)C7—N1—C8—S144.8 (2)
C4—C5—C6—C10.5 (3)C8—N2—C9—C1091.8 (2)
C4—C5—C6—C7175.31 (19)C11—N2—C9—C1084.6 (2)
C8—N1—C7—O114.3 (3)C8—N2—C11—C1293.48 (19)
C8—N1—C7—C6165.10 (16)C9—N2—C11—C1290.17 (19)
C1—C6—C7—O1160.93 (17)N2—C11—C12—O270.51 (19)
C5—C6—C7—O114.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.032.805 (2)150
C9—H9A···S10.972.653.043 (3)105
O2—H2A···S1i0.82 (3)2.49 (3)3.2805 (19)166 (3)
C11—H11B···O1ii0.972.443.259 (3)142
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.032.805 (2)150
O2—H2A···S1i0.82 (3)2.49 (3)3.2805 (19)166 (3)
C11—H11B···O1ii0.972.443.259 (3)142
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors would like to thank Universiti Kebangsaan Malaysia for research grants DLP-2013–009 and DIP-2012–11. Research facilities provided by the Centre of Research and Instrumentation (CRIM) is very much appreciated.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M., Sapari, S. & Hasbullah, S. A. (2014). Acta Cryst. E70, o33.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds