organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl trans-12-(pyridin-4-yl)-9,10-ethano­anthracene-11-carboxyl­ate

aCentre for Bioinformatics, Pondicherry University, Pondicherry 605 014, India, and bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India
*Correspondence e-mail: suresh.bic@pondiuni.edu.in

(Received 5 September 2013; accepted 25 March 2014; online 2 April 2014)

In the title compound, C24H21NO2, the residues at the central ethyl­ene bridge are trans to each other. The dihedral angles between the pyridine and benzene rings are 67.09 (6) and 61.41 (5)°. In the crystal, centrosymmetrically related mol­ecules are linked into dimers by pairs of C—H⋯O hydrogen bonds.

Related literature

For the biological activity of ester derivatives, see: Bi et al. (2012[Bi, Y., Xu, J., Sun, F., Wu, X., Ye, W., Sun, Y. & Huang, W. (2012). Molecules, 17, 8832-8841.]); Bartzatt et al. (2004[Bartzatt, R., Cirillo, S. L. & Cirillo, J. D. (2004). Physiol. Chem. Phys. Med. NMR, 36, 85-94.]); Anadu et al. (2006[Anadu, N. O., Davisson, V. J. & Cushman, M. (2006). J. Med. Chem. 49, 3897-3905.]). For conformation studies, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For a related structure, see: Gnanamani & Ramanathan (2009[Gnanamani, E. & Ramanathan, C. R. (2009). Tetrahedron Asymmetry, 20, 2211-2215.]).

[Scheme 1]

Experimental

Crystal data
  • C24H21NO2

  • Mr = 355.42

  • Monoclinic, P 21 /c

  • a = 10.1733 (19) Å

  • b = 11.156 (2) Å

  • c = 16.361 (3) Å

  • β = 90.877 (3)°

  • V = 1856.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.40 × 0.38 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis RED and CrysAlis CCD . Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.969, Tmax = 0.984

  • 18677 measured reflections

  • 3664 independent reflections

  • 3105 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.118

  • S = 1.05

  • 3664 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.93 2.55 3.2612 (18) 134
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis RED and CrysAlis CCD . Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis RED and CrysAlis CCD . Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Ester derivatives of many compounds exhibit a variety of pharmacological properties, for example anticancer, antitumor and antimicrobial activities (Anadu et al., 2006; Bi et al., 2012; Bartzatt et al., 2004). In view of their importance, the title compound was synthesized and we report herein on its crystal structure. In the title molecule (Fig. 1) the fused tricyclic rings [DS (C7) = 0.0051 (1) Å and D2 (C7—C6) = 0.2248 (1) Å], [DS (C7) = 0.0135 (8) Å and D2 (C7—C6) = 0.2358 (6) Å] and [DS (C7) = 0.0126 (9) Å and D2 (C7—C6) = 0.2543 (7) Å] adopt a boat conformation which can be defined by the above asymmetry parameters (Nardelli, 1983). The torsion angles H7—C7—C8—H8 = -65.81 (15)° and H8—C8—C9—H9 = 129.38 (12)°, define the ring fusions involving the fused tricyclic ring system of the ethanoanthracene moeity. The C22—O1 distance [1.326 (2) Å] shows a partial double-bond character and so the C23 maintains planarity with C22, O2 and C9. In the crystal, pairs of centrosymmetrically related molecules are linked into dimers by C18—H18···O1 hydrogen bonds (Fig. 2).

Related literature top

For the biological activity of ester derivatives, see: Bi et al. (2012); Bartzatt et al. (2004); Anadu et al. (2006). For conformation studies, see: Nardelli (1983). For a related structure, see: Gnanamani & Ramanathan (2009).

Experimental top

Anthracene (5.34 g, 30 mmol) and 3-(pyridine-4-yl)-acrylic acid ethyl ester (4.4g, 25 mmol) were taken in round bottom flask containing distilled dichloromethane (100 ml). To this mixture anhydrous AlCl3 (6.6 g, 50 mmol) was added and stirred at 0 °C for 48 h followed by stirring the reaction mixture at room temperature for 10 h. The obtained dark black solution was poured into water, the organic layer was separated and the aqueous layer was extracted with ether. The crude material was purified through column chromatography using hexane and ethyl acetate in the ratio of 9:1 as eluent. Yield: 5.7 g, (65%).

Refinement top

All H atoms were positioned geometrically, with C–H = 0.93–0.97 Å and constrained to ride on their parent atom,with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, Displacement ellipsoids are drawn at the 30% probability level, H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound, Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.
(I) top
Crystal data top
C24H21NO2F(000) = 752
Mr = 355.42Dx = 1.272 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9754 reflections
a = 10.1733 (19) Åθ = 2.2–26.0°
b = 11.156 (2) ŵ = 0.08 mm1
c = 16.361 (3) ÅT = 298 K
β = 90.877 (3)°Block, colourless
V = 1856.6 (6) Å30.40 × 0.38 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3664 independent reflections
Radiation source: fine-focus sealed tube3105 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 15.9821 pixels mm-1θmax = 26.1°, θmin = 2.0°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.969, Tmax = 0.984l = 2020
18677 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.4341P]
where P = (Fo2 + 2Fc2)/3
3664 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C24H21NO2V = 1856.6 (6) Å3
Mr = 355.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1733 (19) ŵ = 0.08 mm1
b = 11.156 (2) ÅT = 298 K
c = 16.361 (3) Å0.40 × 0.38 × 0.20 mm
β = 90.877 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3664 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3105 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.984Rint = 0.027
18677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.05Δρmax = 0.17 e Å3
3664 reflectionsΔρmin = 0.25 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59145 (13)0.92171 (12)0.85231 (8)0.0392 (3)
C20.46282 (15)0.90612 (15)0.82600 (10)0.0502 (4)
H20.40910.85000.85100.060*
C30.41498 (17)0.97553 (18)0.76167 (12)0.0649 (5)
H30.32890.96520.74300.078*
C40.49392 (19)1.05918 (18)0.72543 (11)0.0685 (5)
H40.46101.10500.68230.082*
C50.62142 (17)1.07578 (16)0.75239 (10)0.0565 (4)
H50.67391.13340.72800.068*
C60.67128 (14)1.00685 (13)0.81564 (8)0.0407 (3)
C70.80801 (13)1.01204 (13)0.85311 (9)0.0406 (3)
H70.86391.06970.82480.049*
C80.79534 (12)1.04310 (11)0.94622 (8)0.0354 (3)
H80.88261.03300.97150.042*
C90.70331 (12)0.95000 (12)0.98565 (8)0.0341 (3)
H90.62440.99191.00390.041*
C100.66015 (13)0.85398 (12)0.92048 (8)0.0381 (3)
H100.60350.79230.94400.046*
C110.78412 (14)0.80130 (13)0.88616 (9)0.0425 (3)
C120.86419 (14)0.88680 (14)0.85040 (9)0.0442 (3)
C130.98283 (16)0.85354 (18)0.81716 (11)0.0623 (5)
H131.03840.91060.79470.075*
C141.0172 (2)0.7333 (2)0.81801 (14)0.0812 (7)
H141.09620.70960.79510.097*
C150.9370 (2)0.6489 (2)0.85202 (14)0.0788 (7)
H150.96150.56860.85110.095*
C160.82018 (18)0.68175 (15)0.88763 (11)0.0582 (5)
H160.76690.62470.91210.070*
C170.75608 (13)1.17233 (12)0.95790 (8)0.0381 (3)
C180.62967 (14)1.21560 (13)0.94575 (10)0.0475 (4)
H180.56191.16330.93160.057*
C190.60451 (16)1.33606 (14)0.95456 (11)0.0568 (4)
H190.51861.36230.94610.068*
C200.81530 (19)1.37470 (16)0.98575 (15)0.0766 (6)
H200.88121.42930.99930.092*
C210.85033 (16)1.25592 (14)0.97912 (12)0.0578 (4)
H210.93681.23230.98890.069*
C220.76667 (13)0.88949 (12)1.05943 (8)0.0371 (3)
C230.73365 (16)0.73634 (15)1.15837 (9)0.0513 (4)
H23A0.66050.70911.19090.062*
H23B0.79180.78331.19330.062*
C240.8059 (2)0.63115 (16)1.12588 (11)0.0657 (5)
H24A0.75020.58821.08810.099*
H24B0.83100.57921.17020.099*
H24C0.88310.65811.09830.099*
N10.69472 (15)1.41714 (12)0.97428 (11)0.0713 (5)
O10.68494 (10)0.81027 (9)1.09130 (6)0.0474 (3)
O20.87508 (11)0.90811 (11)1.08561 (7)0.0628 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0418 (7)0.0369 (7)0.0388 (7)0.0032 (6)0.0034 (6)0.0068 (6)
C20.0442 (8)0.0539 (9)0.0522 (9)0.0000 (7)0.0074 (7)0.0095 (7)
C30.0498 (9)0.0783 (13)0.0659 (11)0.0112 (9)0.0219 (8)0.0064 (10)
C40.0721 (12)0.0729 (12)0.0598 (11)0.0150 (10)0.0192 (9)0.0128 (9)
C50.0622 (10)0.0562 (10)0.0511 (9)0.0068 (8)0.0028 (8)0.0117 (8)
C60.0442 (8)0.0404 (7)0.0374 (7)0.0065 (6)0.0001 (6)0.0016 (6)
C70.0388 (7)0.0416 (8)0.0416 (7)0.0001 (6)0.0052 (6)0.0039 (6)
C80.0302 (6)0.0331 (7)0.0428 (7)0.0015 (5)0.0013 (5)0.0013 (6)
C90.0318 (6)0.0324 (7)0.0381 (7)0.0005 (5)0.0001 (5)0.0011 (5)
C100.0406 (7)0.0328 (7)0.0408 (7)0.0045 (5)0.0042 (6)0.0010 (6)
C110.0484 (8)0.0386 (8)0.0403 (7)0.0069 (6)0.0105 (6)0.0065 (6)
C120.0421 (8)0.0510 (9)0.0393 (7)0.0092 (6)0.0030 (6)0.0072 (6)
C130.0464 (9)0.0837 (13)0.0567 (10)0.0132 (9)0.0010 (7)0.0188 (9)
C140.0606 (11)0.1010 (17)0.0817 (14)0.0389 (12)0.0100 (10)0.0405 (13)
C150.0844 (14)0.0631 (12)0.0880 (14)0.0378 (11)0.0288 (12)0.0299 (11)
C160.0730 (11)0.0420 (9)0.0589 (10)0.0140 (8)0.0235 (8)0.0121 (7)
C170.0380 (7)0.0338 (7)0.0426 (7)0.0026 (6)0.0003 (6)0.0013 (6)
C180.0387 (7)0.0370 (8)0.0668 (10)0.0028 (6)0.0044 (7)0.0008 (7)
C190.0484 (9)0.0404 (8)0.0813 (12)0.0056 (7)0.0079 (8)0.0006 (8)
C200.0603 (11)0.0398 (9)0.1291 (19)0.0094 (8)0.0204 (11)0.0138 (10)
C210.0433 (8)0.0423 (9)0.0873 (13)0.0028 (7)0.0129 (8)0.0065 (8)
C220.0372 (7)0.0355 (7)0.0385 (7)0.0018 (5)0.0013 (5)0.0025 (6)
C230.0600 (9)0.0524 (9)0.0414 (8)0.0006 (7)0.0028 (7)0.0126 (7)
C240.0885 (13)0.0532 (10)0.0555 (10)0.0116 (9)0.0022 (9)0.0108 (8)
N10.0656 (10)0.0358 (7)0.1119 (14)0.0022 (7)0.0146 (9)0.0070 (8)
O10.0444 (6)0.0500 (6)0.0476 (6)0.0064 (5)0.0044 (4)0.0145 (5)
O20.0502 (7)0.0725 (8)0.0651 (7)0.0186 (6)0.0210 (5)0.0209 (6)
Geometric parameters (Å, º) top
C1—C21.382 (2)C13—C141.386 (3)
C1—C61.392 (2)C13—H130.9300
C1—C101.5097 (19)C14—C151.370 (3)
C2—C31.389 (2)C14—H140.9300
C2—H20.9300C15—C161.381 (3)
C3—C41.372 (3)C15—H150.9300
C3—H30.9300C16—H160.9300
C4—C51.376 (3)C17—C211.378 (2)
C4—H40.9300C17—C181.385 (2)
C5—C61.380 (2)C18—C191.376 (2)
C5—H50.9300C18—H180.9300
C6—C71.513 (2)C19—N11.325 (2)
C7—C121.510 (2)C19—H190.9300
C7—C81.5695 (19)C20—N11.326 (2)
C7—H70.9800C20—C211.377 (2)
C8—C171.5089 (19)C20—H200.9300
C8—C91.5460 (17)C21—H210.9300
C8—H80.9800C22—O21.1952 (17)
C9—C221.5180 (18)C22—O11.3258 (16)
C9—C101.5693 (18)C23—O11.4538 (17)
C9—H90.9800C23—C241.487 (2)
C10—C111.508 (2)C23—H23A0.9700
C10—H100.9800C23—H23B0.9700
C11—C161.383 (2)C24—H24A0.9600
C11—C121.389 (2)C24—H24B0.9600
C12—C131.382 (2)C24—H24C0.9600
C2—C1—C6120.50 (14)C13—C12—C7126.37 (16)
C2—C1—C10126.33 (13)C11—C12—C7113.46 (12)
C6—C1—C10113.17 (12)C12—C13—C14118.5 (2)
C1—C2—C3119.01 (16)C12—C13—H13120.7
C1—C2—H2120.5C14—C13—H13120.7
C3—C2—H2120.5C15—C14—C13121.14 (18)
C4—C3—C2120.41 (16)C15—C14—H14119.4
C4—C3—H3119.8C13—C14—H14119.4
C2—C3—H3119.8C14—C15—C16120.74 (18)
C3—C4—C5120.54 (16)C14—C15—H15119.6
C3—C4—H4119.7C16—C15—H15119.6
C5—C4—H4119.7C15—C16—C11118.55 (19)
C4—C5—C6119.96 (17)C15—C16—H16120.7
C4—C5—H5120.0C11—C16—H16120.7
C6—C5—H5120.0C21—C17—C18116.18 (13)
C5—C6—C1119.57 (14)C21—C17—C8119.60 (13)
C5—C6—C7127.44 (14)C18—C17—C8124.18 (12)
C1—C6—C7112.98 (12)C19—C18—C17119.94 (14)
C12—C7—C6107.38 (12)C19—C18—H18120.0
C12—C7—C8105.63 (11)C17—C18—H18120.0
C6—C7—C8108.25 (11)N1—C19—C18124.26 (15)
C12—C7—H7111.8N1—C19—H19117.9
C6—C7—H7111.8C18—C19—H19117.9
C8—C7—H7111.8N1—C20—C21124.93 (16)
C17—C8—C9115.20 (11)N1—C20—H20117.5
C17—C8—C7111.08 (11)C21—C20—H20117.5
C9—C8—C7108.42 (10)C20—C21—C17119.42 (15)
C17—C8—H8107.3C20—C21—H21120.3
C9—C8—H8107.3C17—C21—H21120.3
C7—C8—H8107.3O2—C22—O1123.76 (13)
C22—C9—C8112.21 (10)O2—C22—C9125.88 (13)
C22—C9—C10110.35 (11)O1—C22—C9110.36 (11)
C8—C9—C10109.87 (11)O1—C23—C24110.02 (13)
C22—C9—H9108.1O1—C23—H23A109.7
C8—C9—H9108.1C24—C23—H23A109.7
C10—C9—H9108.1O1—C23—H23B109.7
C11—C10—C1107.48 (11)C24—C23—H23B109.7
C11—C10—C9106.99 (11)H23A—C23—H23B108.2
C1—C10—C9106.37 (11)C23—C24—H24A109.5
C11—C10—H10111.9C23—C24—H24B109.5
C1—C10—H10111.9H24A—C24—H24B109.5
C9—C10—H10111.9C23—C24—H24C109.5
C16—C11—C12120.81 (15)H24A—C24—H24C109.5
C16—C11—C10126.33 (15)H24B—C24—H24C109.5
C12—C11—C10112.86 (12)C19—N1—C20115.26 (14)
C13—C12—C11120.17 (15)C22—O1—C23117.80 (11)
C6—C1—C2—C30.9 (2)C16—C11—C12—C131.3 (2)
C10—C1—C2—C3179.47 (14)C10—C11—C12—C13178.93 (13)
C1—C2—C3—C40.7 (3)C16—C11—C12—C7178.95 (13)
C2—C3—C4—C50.2 (3)C10—C11—C12—C70.77 (17)
C3—C4—C5—C60.9 (3)C6—C7—C12—C13126.43 (16)
C4—C5—C6—C10.7 (2)C8—C7—C12—C13118.21 (16)
C4—C5—C6—C7179.87 (16)C6—C7—C12—C1153.89 (15)
C2—C1—C6—C50.2 (2)C8—C7—C12—C1161.47 (14)
C10—C1—C6—C5179.89 (13)C11—C12—C13—C142.1 (2)
C2—C1—C6—C7179.33 (13)C7—C12—C13—C14178.20 (15)
C10—C1—C6—C70.36 (17)C12—C13—C14—C151.0 (3)
C5—C6—C7—C12126.13 (16)C13—C14—C15—C161.0 (3)
C1—C6—C7—C1254.38 (15)C14—C15—C16—C111.8 (3)
C5—C6—C7—C8120.26 (16)C12—C11—C16—C150.6 (2)
C1—C6—C7—C859.23 (15)C10—C11—C16—C15179.04 (15)
C12—C7—C8—C17172.86 (11)C9—C8—C17—C21135.65 (15)
C6—C7—C8—C1772.38 (14)C7—C8—C17—C21100.59 (16)
C12—C7—C8—C959.59 (13)C9—C8—C17—C1846.84 (19)
C6—C7—C8—C955.17 (14)C7—C8—C17—C1876.93 (17)
C17—C8—C9—C22109.03 (13)C21—C17—C18—C190.4 (2)
C7—C8—C9—C22125.81 (12)C8—C17—C18—C19177.20 (15)
C17—C8—C9—C10127.81 (12)C17—C18—C19—N10.2 (3)
C7—C8—C9—C102.65 (14)N1—C20—C21—C171.0 (4)
C2—C1—C10—C11125.88 (15)C18—C17—C21—C200.9 (3)
C6—C1—C10—C1154.46 (15)C8—C17—C21—C20176.79 (17)
C2—C1—C10—C9119.80 (15)C8—C9—C22—O20.6 (2)
C6—C1—C10—C959.86 (14)C10—C9—C22—O2122.24 (16)
C22—C9—C10—C1168.66 (14)C8—C9—C22—O1179.85 (11)
C8—C9—C10—C1155.59 (14)C10—C9—C22—O156.96 (14)
C22—C9—C10—C1176.69 (11)C18—C19—N1—C200.1 (3)
C8—C9—C10—C159.07 (13)C21—C20—N1—C190.4 (3)
C1—C10—C11—C16124.66 (15)O2—C22—O1—C234.4 (2)
C9—C10—C11—C16121.43 (15)C9—C22—O1—C23174.85 (12)
C1—C10—C11—C1255.04 (15)C24—C23—O1—C2283.74 (17)
C9—C10—C11—C1258.87 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.932.553.2612 (18)134
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.932.553.2612 (18)133.5
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

CRR thanks DST–FIST for the single-crystal X-ray facility at the Department of Chemistry, Pondicherry University, Pondicherry.

References

First citationAnadu, N. O., Davisson, V. J. & Cushman, M. (2006). J. Med. Chem. 49, 3897–3905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBartzatt, R., Cirillo, S. L. & Cirillo, J. D. (2004). Physiol. Chem. Phys. Med. NMR, 36, 85–94.  PubMed CAS Google Scholar
First citationBi, Y., Xu, J., Sun, F., Wu, X., Ye, W., Sun, Y. & Huang, W. (2012). Molecules, 17, 8832–8841.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGnanamani, E. & Ramanathan, C. R. (2009). Tetrahedron Asymmetry, 20, 2211–2215.  Web of Science CSD CrossRef CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO, CrysAlis RED and CrysAlis CCD . Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds