organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,4R,6S,7R)-5,5-Di­bromo-1,4,8,8-tetra­methyl­tri­cyclo­[5.4.1.04,6]dodecan-12-one

aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie de Coordination, 205 Route de Narbone, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: zaki4692@gmail.com

(Received 1 April 2014; accepted 2 April 2014; online 9 April 2014)

The title compound, C16H24Br2O, was synthesized from the reaction of β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzo­cyclo­heptene), which was isolated from Atlas cedar (Cedrus atlantica). The asymmetric unit contains two independent mol­ecules with similar conformations. Each mol­ecule is built up from two fused seven-membered rings and an additional three-membered ring. In both mol­ecules, one of the seven-membered rings has a chair conformation, whereas the other displays a screw-boat conformation.

Related literature

For background to β-himachalene, see: El Haib et al. (2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]). For the reactivity of this sesquiterpene and its derivatives, see: El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Benharref et al. (2013[Benharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933-o934.]); Oukhrib et al. (2013[Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013). Acta Cryst. E69, o521-o522.]). For their potential anti­fungal activity against the phytopathogen Botrytis cinerea, see: Daoubi et al. (2004[Daoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927-932.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24Br2O

  • Mr = 392.17

  • Triclinic, P 1

  • a = 6.6550 (3) Å

  • b = 9.4142 (4) Å

  • c = 12.9389 (13) Å

  • α = 86.008 (6)°

  • β = 83.921 (6)°

  • γ = 89.511 (4)°

  • V = 804.13 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.03 mm−1

  • T = 173 K

  • 0.38 × 0.11 × 0.10 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO . Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.670, Tmax = 1.00

  • 11451 measured reflections

  • 6327 independent reflections

  • 5209 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.119

  • S = 1.01

  • 6327 reflections

  • 351 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.62 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 3035 Friedel pairs

  • Absolute structure parameter: −0.017 (15)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO . Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Our work lies within the framework of the valorization of the most abundant essential oils in Morocco, such as the one from Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpenes hydrocarbons, among which is found β-himachalene (El Haib et al., 2011). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological properties (El Jamili et al., 2002; Benharref et al., 2013; Oukhrib et al., 2013). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). In this work we present the crystal structure of the title compound. The asymmetric unit contains two independent molecules with almost identical conformations (Fig. 1). Each molecule is built up from two fused seven-membered rings, one having a chair conformation as indicated by the total puckering amplitude QT = 0.8469 (8) Å and spherical polar angle θ = 38.29 (6)° with ϕ2 = 126.14 (8)°, and ϕ3 = -139.18 (6)°, while the other shows a screw boat conformation, with QT = 1.0407 (8) Å, θ = 76.80 (4)°, ϕ2 = 153.32 (4)° and ϕ3 = 115.21 (2)° (Cremer & Pople, 1975). Owing to the presence of Br atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli, 2000) as C1(R), C4(R), C6(S) and C7(R).

Related literature top

For background to β-himachalene, see: El Haib et al. (2011). For the reactivity of this sesquiterpene and its derivatives, see: El Jamili et al. (2002); Benharref et al. (2013); Oukhrib et al. (2013). For their potential antifungal activity against the phytopathogen Botrytis cinerea, see: Daoubi et al. (2004). For puckering parameters, see: Cremer & Pople (1975)

Experimental top

To obtain the title compound, BF3—Et2O(1 mL) was added dropwise to a solution of (1S,2R,7R,8S,10R)-9,9-dibromo- 1α,2α-epoxy-2,6,6,10-tetramethyltricyclo[5.5.0.08,10]dodecane (1 g, 2.5 mmol) in 60 ml of dichloromethane at 195 K under nitrogen. The reaction mixture was stirred for two hours at a constant temperature of 195 K and left at ambient temperature for 24 h. Water (60 ml) was added in order to separate the two phases, and the organic phase was dried and concentrated. The residue obtained was chromatographed on silica-gel eluting with hexane-ethyl acetate (98/2), which allowed the isolation of pure(1S,6R,7S,9R)-12-acetyl-8,8-dibromo-5,5,9- trimethyltricyclo[4.4.0,17,9]decane in a yield of 20% (196 mg, 0.5 mmol). The title compound was recrystallized from its pentane solution.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl). The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.
(1R,4R,6S,7R)-5,5-Dibromo-1,4,8,8-tetramethyltricyclo[5.4.1.04,6]dodecan-12-one top
Crystal data top
C16H24Br2OZ = 2
Mr = 392.17F(000) = 396
Triclinic, P1Dx = 1.620 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6550 (3) ÅCell parameters from 2828 reflections
b = 9.4142 (4) Åθ = 3.7–26.6°
c = 12.9389 (13) ŵ = 5.03 mm1
α = 86.008 (6)°T = 173 K
β = 83.921 (6)°Needle, colourless
γ = 89.511 (4)°0.38 × 0.11 × 0.10 mm
V = 804.13 (9) Å3
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
6327 independent reflections
Radiation source: fine-focus sealed tube5209 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 16.1978 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1111
Tmin = 0.670, Tmax = 1.00l = 1616
11451 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0447P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
6327 reflectionsΔρmax = 0.77 e Å3
351 parametersΔρmin = 0.62 e Å3
3 restraintsAbsolute structure: Flack & Bernardinelli (2000), 3035 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.017 (15)
Crystal data top
C16H24Br2Oγ = 89.511 (4)°
Mr = 392.17V = 804.13 (9) Å3
Triclinic, P1Z = 2
a = 6.6550 (3) ÅMo Kα radiation
b = 9.4142 (4) ŵ = 5.03 mm1
c = 12.9389 (13) ÅT = 173 K
α = 86.008 (6)°0.38 × 0.11 × 0.10 mm
β = 83.921 (6)°
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
6327 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5209 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 1.00Rint = 0.057
11451 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.77 e Å3
S = 1.01Δρmin = 0.62 e Å3
6327 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 3035 Friedel pairs
351 parametersAbsolute structure parameter: 0.017 (15)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5880 (12)0.1550 (8)1.2375 (6)0.0276 (18)
C20.5505 (13)0.0914 (9)1.3464 (6)0.034 (2)
H2A0.44170.14711.38860.040*
H2B0.67480.10531.38180.040*
C30.4926 (12)0.0666 (9)1.3462 (7)0.028 (2)
H3A0.47170.09411.41910.034*
H3B0.60590.12411.30980.034*
C40.3007 (11)0.1013 (8)1.2934 (6)0.0252 (18)
C50.2942 (11)0.2374 (8)1.2238 (6)0.0225 (17)
C60.3148 (11)0.0978 (7)1.1734 (6)0.0191 (17)
H60.18730.06601.14750.023*
C70.5057 (11)0.0591 (8)1.1050 (6)0.0226 (17)
H70.57640.15101.08170.027*
C80.4504 (11)0.0078 (8)1.0021 (6)0.0275 (18)
C90.3174 (14)0.1435 (8)1.0270 (7)0.033 (2)
H9A0.18410.11371.05990.039*
H9B0.29480.18230.96000.039*
C100.3944 (13)0.2635 (8)1.0963 (7)0.032 (2)
H10A0.53360.28821.06830.039*
H10B0.30860.34841.09420.039*
C110.3955 (12)0.2268 (8)1.2106 (6)0.0281 (19)
H11A0.27940.16331.22800.034*
H11B0.37380.31581.25570.034*
C120.6585 (11)0.0347 (8)1.1572 (6)0.0221 (17)
C130.7592 (14)0.2668 (10)1.2418 (8)0.039 (2)
H13A0.77520.31491.17670.059*
H13B0.72490.33701.30040.059*
H13C0.88590.21931.25100.059*
C140.6448 (14)0.0429 (10)0.9350 (6)0.037 (2)
H14A0.61120.08060.87030.056*
H14B0.72200.11430.97320.056*
H14C0.72590.04370.91860.056*
C150.3312 (14)0.1068 (9)0.9411 (6)0.031 (2)
H15A0.30250.07100.87480.046*
H15B0.41210.19390.92740.046*
H15C0.20380.12770.98250.046*
C160.1080 (12)0.0472 (9)1.3566 (7)0.037 (2)
H16A0.05190.12131.40100.055*
H16B0.13820.03791.40040.055*
H16C0.00940.02331.30940.055*
O10.8370 (8)0.0058 (6)1.1385 (5)0.0370 (15)
Br10.51009 (11)0.37150 (8)1.21049 (7)0.0329 (3)
Br20.04085 (11)0.33708 (9)1.21682 (7)0.0376 (3)
C1A0.2236 (11)0.6190 (8)0.6230 (6)0.0250 (17)
C2A0.2439 (12)0.5548 (8)0.5146 (6)0.0284 (19)
H2C0.15840.61150.46900.034*
H2D0.38580.56640.48360.034*
C3A0.1869 (11)0.3985 (9)0.5135 (7)0.024 (2)
H3C0.28450.33980.55050.029*
H3D0.19940.37200.44030.029*
C4A0.0271 (11)0.3624 (8)0.5636 (6)0.0237 (17)
C5A0.0676 (11)0.2274 (8)0.6295 (6)0.0208 (17)
C6A0.0769 (11)0.3672 (7)0.6818 (6)0.0193 (16)
H6A10.21770.39980.70290.023*
C7A0.0724 (11)0.4048 (7)0.7548 (6)0.0208 (16)
H7A10.12920.31250.78190.025*
C8A0.0317 (11)0.4772 (7)0.8529 (5)0.0233 (17)
C9A0.1548 (13)0.6092 (8)0.8239 (6)0.027 (2)
H9A10.21200.64920.88950.032*
H9A20.26990.57760.78870.032*
C10A0.0473 (13)0.7314 (8)0.7539 (6)0.034 (2)
H10C0.13880.81480.75180.040*
H10D0.07450.75970.78520.040*
C11A0.0146 (11)0.6919 (8)0.6438 (6)0.0258 (18)
H11C0.01370.77960.59690.031*
H11D0.08960.62750.62400.031*
C12A0.2523 (11)0.4925 (7)0.7042 (6)0.0237 (17)
C13A0.3950 (13)0.7266 (9)0.6268 (7)0.035 (2)
H13D0.37530.80980.57910.053*
H13E0.52520.68180.60590.053*
H13F0.39390.75660.69790.053*
C14A0.1763 (13)0.3701 (8)0.9151 (7)0.032 (2)
H14D0.24330.41390.97610.049*
H14E0.10040.28610.93780.049*
H14F0.27820.34160.87110.049*
C15A0.1302 (13)0.5154 (8)0.9242 (6)0.0308 (19)
H15D0.22360.58590.88680.046*
H15E0.20530.42940.94370.046*
H15F0.06390.55500.98710.046*
C16A0.1904 (12)0.4126 (9)0.4946 (7)0.036 (2)
H16D0.18810.35250.43560.054*
H16E0.16460.51170.46870.054*
H16F0.32310.40560.53540.054*
O20.4216 (8)0.4614 (6)0.7244 (5)0.0338 (14)
Br30.14860 (10)0.09484 (7)0.65374 (6)0.0290 (2)
Br40.31319 (12)0.12276 (9)0.62628 (7)0.0378 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.029 (5)0.015 (4)0.039 (5)0.006 (3)0.006 (4)0.002 (3)
C20.032 (5)0.042 (5)0.027 (5)0.003 (4)0.011 (4)0.003 (4)
C30.028 (5)0.038 (6)0.021 (5)0.002 (4)0.012 (4)0.006 (4)
C40.020 (4)0.028 (4)0.027 (4)0.000 (3)0.003 (3)0.005 (3)
C50.014 (4)0.030 (4)0.022 (4)0.011 (3)0.002 (3)0.002 (3)
C60.018 (4)0.019 (4)0.022 (4)0.002 (3)0.008 (3)0.001 (3)
C70.020 (4)0.021 (4)0.025 (4)0.005 (3)0.004 (3)0.003 (3)
C80.030 (5)0.027 (4)0.025 (5)0.008 (3)0.002 (4)0.002 (3)
C90.029 (5)0.030 (5)0.042 (6)0.008 (4)0.015 (4)0.007 (4)
C100.036 (5)0.021 (4)0.041 (5)0.005 (3)0.013 (4)0.004 (4)
C110.030 (4)0.023 (5)0.031 (5)0.000 (3)0.004 (4)0.004 (4)
C120.019 (4)0.021 (4)0.027 (4)0.001 (3)0.003 (3)0.009 (3)
C130.040 (6)0.037 (5)0.043 (6)0.006 (4)0.018 (5)0.006 (4)
C140.048 (6)0.046 (6)0.018 (5)0.012 (4)0.003 (4)0.007 (4)
C150.044 (6)0.034 (5)0.017 (4)0.015 (4)0.012 (4)0.009 (4)
C160.024 (5)0.050 (6)0.034 (5)0.008 (4)0.007 (4)0.003 (4)
O10.017 (3)0.034 (3)0.059 (4)0.005 (2)0.001 (3)0.000 (3)
Br10.0291 (5)0.0234 (5)0.0468 (6)0.0026 (3)0.0041 (4)0.0068 (4)
Br20.0272 (5)0.0480 (6)0.0380 (6)0.0191 (4)0.0027 (4)0.0084 (5)
C1A0.017 (4)0.031 (4)0.024 (4)0.000 (3)0.005 (3)0.000 (3)
C2A0.028 (4)0.028 (4)0.026 (5)0.006 (3)0.010 (4)0.001 (3)
C3A0.020 (4)0.024 (5)0.027 (5)0.001 (3)0.005 (4)0.003 (4)
C4A0.015 (4)0.022 (4)0.035 (5)0.000 (3)0.004 (3)0.000 (3)
C5A0.018 (4)0.029 (4)0.016 (4)0.002 (3)0.001 (3)0.006 (3)
C6A0.018 (4)0.014 (4)0.024 (4)0.005 (3)0.004 (3)0.002 (3)
C7A0.024 (4)0.016 (4)0.023 (4)0.004 (3)0.003 (3)0.006 (3)
C8A0.034 (5)0.023 (4)0.013 (4)0.003 (3)0.003 (3)0.002 (3)
C9A0.021 (4)0.030 (4)0.027 (5)0.008 (3)0.011 (4)0.004 (4)
C10A0.038 (5)0.017 (4)0.043 (5)0.013 (3)0.009 (4)0.001 (4)
C11A0.024 (4)0.012 (4)0.039 (5)0.004 (3)0.002 (4)0.003 (3)
C12A0.021 (4)0.018 (4)0.031 (5)0.004 (3)0.002 (3)0.006 (3)
C13A0.034 (5)0.026 (5)0.045 (6)0.004 (4)0.003 (4)0.001 (4)
C14A0.029 (5)0.024 (4)0.041 (5)0.005 (4)0.006 (4)0.004 (4)
C15A0.045 (5)0.024 (4)0.025 (5)0.003 (4)0.010 (4)0.005 (3)
C16A0.027 (5)0.051 (6)0.030 (5)0.002 (4)0.006 (4)0.003 (4)
O20.016 (3)0.035 (3)0.050 (4)0.001 (2)0.003 (3)0.001 (3)
Br30.0281 (5)0.0210 (5)0.0387 (6)0.0047 (3)0.0057 (4)0.0052 (4)
Br40.0263 (5)0.0444 (6)0.0443 (6)0.0121 (4)0.0082 (4)0.0074 (5)
Geometric parameters (Å, º) top
C1—C121.525 (11)C1A—C13A1.539 (11)
C1—C111.537 (11)C1A—C11A1.552 (10)
C1—C131.547 (11)C1A—C12A1.557 (10)
C1—C21.564 (11)C1A—C2A1.557 (11)
C2—C31.534 (12)C2A—C3A1.524 (11)
C2—H2A0.9900C2A—H2C0.9900
C2—H2B0.9900C2A—H2D0.9900
C3—C41.534 (10)C3A—C4A1.532 (9)
C3—H3A0.9900C3A—H3C0.9900
C3—H3B0.9900C3A—H3D0.9900
C4—C51.517 (10)C4A—C5A1.490 (10)
C4—C161.519 (10)C4A—C16A1.529 (11)
C4—C61.548 (10)C4A—C6A1.534 (10)
C5—C61.506 (11)C5A—C6A1.518 (10)
C5—Br11.907 (8)C5A—Br41.921 (7)
C5—Br21.930 (7)C5A—Br31.933 (8)
C6—C71.527 (9)C6A—C7A1.503 (10)
C6—H61.0000C6A—H6A11.0000
C7—C121.522 (10)C7A—C12A1.523 (10)
C7—C81.591 (10)C7A—C8A1.575 (10)
C7—H71.0000C7A—H7A11.0000
C8—C141.526 (10)C8A—C14A1.526 (10)
C8—C151.555 (10)C8A—C9A1.530 (10)
C8—C91.556 (11)C8A—C15A1.551 (10)
C9—C101.513 (11)C9A—C10A1.545 (11)
C9—H9A0.9900C9A—H9A10.9900
C9—H9B0.9900C9A—H9A20.9900
C10—C111.542 (11)C10A—C11A1.512 (11)
C10—H10A0.9900C10A—H10C0.9900
C10—H10B0.9900C10A—H10D0.9900
C11—H11A0.9900C11A—H11C0.9900
C11—H11B0.9900C11A—H11D0.9900
C12—O11.217 (9)C12A—O21.212 (9)
C13—H13A0.9800C13A—H13D0.9800
C13—H13B0.9800C13A—H13E0.9800
C13—H13C0.9800C13A—H13F0.9800
C14—H14A0.9800C14A—H14D0.9800
C14—H14B0.9800C14A—H14E0.9800
C14—H14C0.9800C14A—H14F0.9800
C15—H15A0.9800C15A—H15D0.9800
C15—H15B0.9800C15A—H15E0.9800
C15—H15C0.9800C15A—H15F0.9800
C16—H16A0.9800C16A—H16D0.9800
C16—H16B0.9800C16A—H16E0.9800
C16—H16C0.9800C16A—H16F0.9800
C12—C1—C11111.9 (7)C13A—C1A—C11A110.5 (7)
C12—C1—C13108.5 (7)C13A—C1A—C12A108.2 (7)
C11—C1—C13109.4 (6)C11A—C1A—C12A112.0 (6)
C12—C1—C2108.1 (6)C13A—C1A—C2A109.6 (6)
C11—C1—C2110.6 (7)C11A—C1A—C2A110.4 (7)
C13—C1—C2108.3 (7)C12A—C1A—C2A106.0 (6)
C3—C2—C1116.4 (7)C3A—C2A—C1A116.6 (6)
C3—C2—H2A108.2C3A—C2A—H2C108.2
C1—C2—H2A108.2C1A—C2A—H2C108.2
C3—C2—H2B108.2C3A—C2A—H2D108.2
C1—C2—H2B108.2C1A—C2A—H2D108.2
H2A—C2—H2B107.3H2C—C2A—H2D107.3
C4—C3—C2113.0 (7)C2A—C3A—C4A114.3 (6)
C4—C3—H3A109.0C2A—C3A—H3C108.7
C2—C3—H3A109.0C4A—C3A—H3C108.7
C4—C3—H3B109.0C2A—C3A—H3D108.7
C2—C3—H3B109.0C4A—C3A—H3D108.7
H3A—C3—H3B107.8H3C—C3A—H3D107.6
C5—C4—C16119.2 (7)C5A—C4A—C16A116.7 (6)
C5—C4—C3118.8 (6)C5A—C4A—C3A120.5 (6)
C16—C4—C3113.7 (7)C16A—C4A—C3A112.8 (7)
C5—C4—C658.9 (5)C5A—C4A—C6A60.2 (5)
C16—C4—C6118.0 (7)C16A—C4A—C6A117.5 (7)
C3—C4—C6117.7 (7)C3A—C4A—C6A119.6 (6)
C6—C5—C461.6 (5)C4A—C5A—C6A61.3 (5)
C6—C5—Br1121.7 (5)C4A—C5A—Br4121.0 (5)
C4—C5—Br1121.1 (5)C6A—C5A—Br4118.9 (5)
C6—C5—Br2116.7 (6)C4A—C5A—Br3120.7 (5)
C4—C5—Br2119.3 (5)C6A—C5A—Br3119.2 (5)
Br1—C5—Br2109.6 (4)Br4—C5A—Br3109.0 (3)
C5—C6—C7121.8 (7)C7A—C6A—C5A122.4 (6)
C5—C6—C459.5 (5)C7A—C6A—C4A124.3 (6)
C7—C6—C4124.2 (6)C5A—C6A—C4A58.5 (5)
C5—C6—H6113.6C7A—C6A—H6A1113.6
C7—C6—H6113.6C5A—C6A—H6A1113.6
C4—C6—H6113.6C4A—C6A—H6A1113.6
C12—C7—C6116.5 (6)C6A—C7A—C12A114.9 (6)
C12—C7—C8110.2 (6)C6A—C7A—C8A112.2 (6)
C6—C7—C8110.8 (6)C12A—C7A—C8A110.7 (6)
C12—C7—H7106.2C6A—C7A—H7A1106.1
C6—C7—H7106.2C12A—C7A—H7A1106.1
C8—C7—H7106.2C8A—C7A—H7A1106.1
C14—C8—C15108.8 (7)C14A—C8A—C9A107.6 (6)
C14—C8—C9110.2 (7)C14A—C8A—C15A107.6 (6)
C15—C8—C9109.0 (7)C9A—C8A—C15A110.3 (6)
C14—C8—C7109.3 (6)C14A—C8A—C7A108.5 (6)
C15—C8—C7107.4 (6)C9A—C8A—C7A112.9 (6)
C9—C8—C7112.0 (6)C15A—C8A—C7A109.7 (6)
C10—C9—C8118.1 (7)C8A—C9A—C10A118.4 (7)
C10—C9—H9A107.8C8A—C9A—H9A1107.7
C8—C9—H9A107.8C10A—C9A—H9A1107.7
C10—C9—H9B107.8C8A—C9A—H9A2107.7
C8—C9—H9B107.8C10A—C9A—H9A2107.7
H9A—C9—H9B107.1H9A1—C9A—H9A2107.1
C9—C10—C11113.4 (7)C11A—C10A—C9A113.2 (7)
C9—C10—H10A108.9C11A—C10A—H10C108.9
C11—C10—H10A108.9C9A—C10A—H10C108.9
C9—C10—H10B108.9C11A—C10A—H10D108.9
C11—C10—H10B108.9C9A—C10A—H10D108.9
H10A—C10—H10B107.7H10C—C10A—H10D107.7
C1—C11—C10116.0 (7)C10A—C11A—C1A116.8 (7)
C1—C11—H11A108.3C10A—C11A—H11C108.1
C10—C11—H11A108.3C1A—C11A—H11C108.1
C1—C11—H11B108.3C10A—C11A—H11D108.1
C10—C11—H11B108.3C1A—C11A—H11D108.1
H11A—C11—H11B107.4H11C—C11A—H11D107.3
O1—C12—C7118.5 (7)O2—C12A—C7A120.0 (7)
O1—C12—C1120.7 (7)O2—C12A—C1A119.0 (7)
C7—C12—C1120.6 (6)C7A—C12A—C1A121.0 (6)
C1—C13—H13A109.5C1A—C13A—H13D109.5
C1—C13—H13B109.5C1A—C13A—H13E109.5
H13A—C13—H13B109.5H13D—C13A—H13E109.5
C1—C13—H13C109.5C1A—C13A—H13F109.5
H13A—C13—H13C109.5H13D—C13A—H13F109.5
H13B—C13—H13C109.5H13E—C13A—H13F109.5
C8—C14—H14A109.5C8A—C14A—H14D109.5
C8—C14—H14B109.5C8A—C14A—H14E109.5
H14A—C14—H14B109.5H14D—C14A—H14E109.5
C8—C14—H14C109.5C8A—C14A—H14F109.5
H14A—C14—H14C109.5H14D—C14A—H14F109.5
H14B—C14—H14C109.5H14E—C14A—H14F109.5
C8—C15—H15A109.5C8A—C15A—H15D109.5
C8—C15—H15B109.5C8A—C15A—H15E109.5
H15A—C15—H15B109.5H15D—C15A—H15E109.5
C8—C15—H15C109.5C8A—C15A—H15F109.5
H15A—C15—H15C109.5H15D—C15A—H15F109.5
H15B—C15—H15C109.5H15E—C15A—H15F109.5
C4—C16—H16A109.5C4A—C16A—H16D109.5
C4—C16—H16B109.5C4A—C16A—H16E109.5
H16A—C16—H16B109.5H16D—C16A—H16E109.5
C4—C16—H16C109.5C4A—C16A—H16F109.5
H16A—C16—H16C109.5H16D—C16A—H16F109.5
H16B—C16—H16C109.5H16E—C16A—H16F109.5

Experimental details

Crystal data
Chemical formulaC16H24Br2O
Mr392.17
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.6550 (3), 9.4142 (4), 12.9389 (13)
α, β, γ (°)86.008 (6), 83.921 (6), 89.511 (4)
V3)804.13 (9)
Z2
Radiation typeMo Kα
µ (mm1)5.03
Crystal size (mm)0.38 × 0.11 × 0.10
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.670, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
11451, 6327, 5209
Rint0.057
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.119, 1.01
No. of reflections6327
No. of parameters351
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.62
Absolute structureFlack & Bernardinelli (2000), 3035 Friedel pairs
Absolute structure parameter0.017 (15)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements

References

First citationAgilent (2012). CrysAlis PRO . Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBenharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933–o934.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDaoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013). Acta Cryst. E69, o521–o522.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds