organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(1-Benzyl-1H-1,2,3-triazol-4-yl)meth­yl]indoline-2,3-dione

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batouta, Rabat , Morocco, cX-Ray Structure Analysis, University of Regensburg, D-93053 Regensburg, Germany, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: fatimazahrae_qachchachi@yahoo.fr

(Received 7 April 2014; accepted 14 April 2014; online 18 April 2014)

In the title compound, C18H14N4O2, the triazole ring makes dihedral angles of 77.32 (8) and 75.56 (9)°, respectively, with the indoline residue and the terminal phenyl group. In the crystal, mol­ecules are linked by C—H⋯N hydrogen bonds into tapes parallel to the b axis. The tapes are linked together by ππ inter­actions between triazole rings [inter-­centroid distance = 3.4945 (9) Å].

Related literature

For the biological activity of indoline derivatives, see: Bhrigu et al. (2010[Bhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug Res. 2, 229-235.]); Da Silva et al. (2001[Da Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]); Ramachandran (2011[Ramachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289-294.]); Smitha et al. (2008[Smitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621-636.]). For structures of indoline-2,3-dione derivatives, see: Qachchachi et al. (2013[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.], 2014[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014). Acta Cryst. E70, o361-o362.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N4O2

  • Mr = 318.33

  • Monoclinic, P 21 /c

  • a = 11.53860 (18) Å

  • b = 5.38700 (9) Å

  • c = 23.2433 (4) Å

  • β = 92.1048 (16)°

  • V = 1443.79 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 123 K

  • 0.20 × 0.04 × 0.02 mm

Data collection
  • Agilent SuperNova, Single source at offset, Atlas diffractometer

  • Absorption correction: multi-scan [CrysAlis PRO (Agilent, 2013[Agilent, (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]), using expressions derived from Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.722, Tmax = 1.000

  • 11043 measured reflections

  • 2882 independent reflections

  • 2480 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 1.04

  • 2882 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N2i 0.93 2.50 3.383 (2) 158
C11—H11⋯N3i 0.93 2.40 3.313 (2) 167
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent, (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Isatin, 1H-indole-2,3-dione, is a heterocyclic compound of significant importance in medicinal chemistry. It is a synthetically versatile molecule, a precursor for a large number of pharmacologically active compounds. Isatin and its derivatives have aroused great attention in recent years due to their wide variety of biological activities, relevant to application as insecticides and fungicides and in a broad range of drug therapies, including anticancer drugs, antibiotics and antidepressants (Bhrigu et al., 2010; Da Silva et al., 2001; Ramachandran, 2011; Smitha et al., 2008). As a continuation of our research work devoted to the development of isatin derivatives (Qachchachi et al., 2013, 2014), we report in this paper the synthesis of a new indoline-2,3-dione derivative.

The molecule of title compound is build up from a fused five- and six-membered rings linked to a triazole ring which is connected to a benzyl ring as shown in Fig. 1. The indoline ring and the two carbonyl oxygen atoms are nearly coplanar, with the largest deviation from the mean plane being -0.059 (2) A° at O2 atom. The triazole plane is nearly perpendicular to the mean plane passing through the fused ring system (N1, C1 to C8) and to the terminal phenyl ring (C13 to C18) as indicated by the dihedral angles between them of 77.32 (8)° and 75.56 (9)°, respectively. The indazole system makes a dihedral angle of 77.02 (8)° with the phenyl ring.

In the crystal, the molecules are linked by C11–H11···N2 and C11–H11···N3 hydrogen bonds in the way to build bands parallel to the b axis direction. Two bands are linked together by ππ interactions between triazole rings [intercentroid distance = 3.494 Å] as shown in Fig. 2 and Table 1.

Related literature top

For the biological activity of indoline derivatives, see: Bhrigu et al. (2010); Da Silva et al. (2001); Ramachandran (2011); Smitha et al. (2008). For structures of indoline-2,3-dione derivatives, see: Qachchachi et al. (2013, 2014).

Experimental top

To a solution of 1-(prop-2-ynyl)indoline-2,3-dione (0.2 g, 2.4 mmol) dissolved in EtOH/H2O (1,1) was added 1-(azidomethyl)benzene (0.4 g, 4.1 mmol), in presence of CuSO4. The mixture was stirred for 24 h; the reaction was monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as yellow crystals in 81% yield.

Refinement top

All H atoms could be located in a difference Fourier map. Nevertheless, they were placed in calculated positions with C—H = 0.93 Å (aromatic), and C—H = 0.97 Å (methylene) and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq (aromatic and methylene).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular plot the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Intermolecular ππ (red dashed line) and hydrogen interactions (dashed blue lines) in the title compound.
1-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]indoline-2,3-dione top
Crystal data top
C18H14N4O2F(000) = 664
Mr = 318.33Dx = 1.464 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 4927 reflections
a = 11.53860 (18) Åθ = 3.8–73.3°
b = 5.38700 (9) ŵ = 0.81 mm1
c = 23.2433 (4) ÅT = 123 K
β = 92.1048 (16)°Rod, clear intense yellow
V = 1443.79 (4) Å30.20 × 0.04 × 0.02 mm
Z = 4
Data collection top
Agilent SuperNova, Single source at offset, Atlas
diffractometer
2882 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2480 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.3546 pixels mm-1θmax = 73.5°, θmin = 3.8°
ω scansh = 1411
Absorption correction: multi-scan
[CrysAlis PRO (Agilent, 2013), using expressions derived from Clark & Reid (1995)]
k = 66
Tmin = 0.722, Tmax = 1.000l = 2827
11043 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.6175P]
where P = (Fo2 + 2Fc2)/3
2882 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H14N4O2V = 1443.79 (4) Å3
Mr = 318.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.53860 (18) ŵ = 0.81 mm1
b = 5.38700 (9) ÅT = 123 K
c = 23.2433 (4) Å0.20 × 0.04 × 0.02 mm
β = 92.1048 (16)°
Data collection top
Agilent SuperNova, Single source at offset, Atlas
diffractometer
2882 independent reflections
Absorption correction: multi-scan
[CrysAlis PRO (Agilent, 2013), using expressions derived from Clark & Reid (1995)]
2480 reflections with I > 2σ(I)
Tmin = 0.722, Tmax = 1.000Rint = 0.032
11043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
2882 reflectionsΔρmin = 0.22 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65655 (11)0.1406 (2)1.29231 (5)0.0327 (3)
O20.48639 (10)0.1470 (2)1.19284 (6)0.0333 (3)
N10.59263 (12)0.1979 (3)1.16704 (6)0.0258 (3)
N30.66397 (12)0.0542 (2)0.99818 (6)0.0267 (3)
N40.67538 (12)0.1811 (3)0.98001 (6)0.0255 (3)
N20.61294 (12)0.0461 (3)1.04795 (6)0.0264 (3)
C90.52982 (14)0.2675 (3)1.11417 (7)0.0269 (4)
H9A0.51790.44571.11400.032*
H9B0.45410.18881.11330.032*
C10.69237 (13)0.3209 (3)1.18873 (7)0.0235 (3)
C20.74712 (14)0.5253 (3)1.16601 (7)0.0253 (3)
H20.71920.60161.13240.030*
C40.88894 (14)0.5000 (3)1.24613 (7)0.0287 (4)
H40.95520.56251.26490.034*
C100.59134 (13)0.1956 (3)1.06114 (7)0.0242 (3)
C180.94153 (15)0.2600 (3)0.94699 (7)0.0287 (4)
H180.92840.40720.96660.034*
C60.73451 (14)0.2077 (3)1.23951 (7)0.0250 (3)
C50.83290 (14)0.2949 (3)1.26844 (7)0.0276 (4)
H50.86100.21841.30200.033*
C130.84837 (15)0.1331 (3)0.92142 (7)0.0267 (4)
C30.84634 (14)0.6118 (3)1.19591 (7)0.0274 (4)
H30.88510.74881.18170.033*
C70.65586 (14)0.0030 (3)1.25238 (7)0.0264 (4)
C120.72714 (15)0.2352 (3)0.92448 (7)0.0293 (4)
H12A0.72910.41350.91880.035*
H12B0.67890.16390.89370.035*
C171.05397 (15)0.1708 (4)0.94380 (8)0.0332 (4)
H171.11550.25780.96110.040*
C161.07402 (17)0.0482 (4)0.91471 (8)0.0356 (4)
H161.14910.10940.91250.043*
C110.63147 (13)0.3411 (3)1.01791 (7)0.0258 (3)
H110.62890.51331.01530.031*
C140.86952 (17)0.0866 (3)0.89222 (7)0.0327 (4)
H140.80820.17400.87480.039*
C150.98220 (18)0.1757 (4)0.88899 (8)0.0376 (4)
H150.99580.32250.86930.045*
C80.56440 (14)0.0017 (3)1.20128 (7)0.0268 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0334 (6)0.0294 (6)0.0359 (7)0.0032 (5)0.0104 (5)0.0061 (5)
O20.0274 (6)0.0285 (6)0.0444 (7)0.0058 (5)0.0064 (5)0.0018 (5)
N10.0235 (6)0.0253 (7)0.0286 (7)0.0017 (5)0.0023 (5)0.0016 (5)
N30.0303 (7)0.0193 (7)0.0307 (7)0.0013 (5)0.0024 (6)0.0006 (5)
N40.0250 (7)0.0215 (7)0.0300 (7)0.0017 (5)0.0001 (5)0.0026 (5)
N20.0275 (7)0.0220 (7)0.0299 (7)0.0005 (5)0.0026 (5)0.0003 (5)
C90.0239 (7)0.0259 (8)0.0307 (8)0.0012 (6)0.0000 (6)0.0031 (6)
C10.0223 (7)0.0236 (8)0.0250 (7)0.0021 (6)0.0054 (6)0.0039 (6)
C20.0269 (8)0.0234 (8)0.0259 (8)0.0001 (6)0.0040 (6)0.0015 (6)
C40.0254 (8)0.0318 (9)0.0288 (8)0.0024 (7)0.0018 (6)0.0049 (7)
C100.0201 (7)0.0225 (8)0.0298 (8)0.0008 (6)0.0027 (6)0.0019 (6)
C180.0337 (9)0.0257 (8)0.0267 (8)0.0003 (7)0.0032 (7)0.0006 (6)
C60.0256 (7)0.0242 (8)0.0256 (8)0.0027 (6)0.0076 (6)0.0017 (6)
C50.0270 (8)0.0306 (8)0.0255 (8)0.0032 (6)0.0039 (6)0.0014 (6)
C130.0323 (8)0.0242 (8)0.0238 (7)0.0008 (6)0.0033 (6)0.0061 (6)
C30.0267 (8)0.0256 (8)0.0303 (8)0.0030 (6)0.0075 (6)0.0025 (6)
C70.0267 (8)0.0219 (8)0.0310 (8)0.0030 (6)0.0090 (6)0.0011 (6)
C120.0320 (8)0.0292 (9)0.0268 (8)0.0017 (7)0.0010 (6)0.0056 (7)
C170.0304 (9)0.0377 (10)0.0315 (9)0.0009 (7)0.0032 (7)0.0051 (7)
C160.0377 (9)0.0379 (10)0.0318 (9)0.0098 (8)0.0108 (7)0.0092 (8)
C110.0239 (8)0.0190 (7)0.0343 (9)0.0004 (6)0.0029 (6)0.0008 (6)
C140.0430 (10)0.0266 (9)0.0284 (8)0.0052 (7)0.0022 (7)0.0005 (7)
C150.0555 (12)0.0277 (9)0.0305 (9)0.0063 (8)0.0130 (8)0.0023 (7)
C80.0238 (8)0.0227 (8)0.0343 (9)0.0001 (6)0.0081 (6)0.0024 (6)
Geometric parameters (Å, º) top
O1—C71.208 (2)C18—C171.388 (3)
O2—C81.216 (2)C18—C131.389 (2)
N1—C81.370 (2)C18—H180.9300
N1—C11.406 (2)C6—C51.380 (2)
N1—C91.453 (2)C6—C71.466 (2)
N3—N21.318 (2)C5—H50.9300
N3—N41.3436 (19)C13—C141.390 (2)
N4—C111.345 (2)C13—C121.507 (2)
N4—C121.471 (2)C3—H30.9300
N2—C101.362 (2)C7—C81.560 (2)
C9—C101.496 (2)C12—H12A0.9700
C9—H9A0.9700C12—H12B0.9700
C9—H9B0.9700C17—C161.383 (3)
C1—C21.384 (2)C17—H170.9300
C1—C61.400 (2)C16—C151.380 (3)
C2—C31.397 (2)C16—H160.9300
C2—H20.9300C11—H110.9300
C4—C31.387 (2)C14—C151.391 (3)
C4—C51.390 (2)C14—H140.9300
C4—H40.9300C15—H150.9300
C10—C111.369 (2)
C8—N1—C1111.37 (14)C4—C5—H5120.8
C8—N1—C9124.67 (14)C18—C13—C14118.74 (16)
C1—N1—C9123.94 (14)C18—C13—C12120.34 (16)
N2—N3—N4107.26 (13)C14—C13—C12120.91 (16)
N3—N4—C11110.80 (13)C4—C3—C2122.16 (16)
N3—N4—C12120.69 (14)C4—C3—H3118.9
C11—N4—C12128.48 (14)C2—C3—H3118.9
N3—N2—C10108.69 (13)O1—C7—C6130.68 (17)
N1—C9—C10113.14 (13)O1—C7—C8124.58 (15)
N1—C9—H9A109.0C6—C7—C8104.74 (13)
C10—C9—H9A109.0N4—C12—C13112.11 (13)
N1—C9—H9B109.0N4—C12—H12A109.2
C10—C9—H9B109.0C13—C12—H12A109.2
H9A—C9—H9B107.8N4—C12—H12B109.2
C2—C1—C6121.28 (15)C13—C12—H12B109.2
C2—C1—N1128.14 (15)H12A—C12—H12B107.9
C6—C1—N1110.58 (14)C16—C17—C18119.66 (18)
C1—C2—C3116.92 (15)C16—C17—H17120.2
C1—C2—H2121.5C18—C17—H17120.2
C3—C2—H2121.5C15—C16—C17119.75 (17)
C3—C4—C5120.24 (16)C15—C16—H16120.1
C3—C4—H4119.9C17—C16—H16120.1
C5—C4—H4119.9N4—C11—C10105.03 (14)
N2—C10—C11108.21 (14)N4—C11—H11127.5
N2—C10—C9121.95 (15)C10—C11—H11127.5
C11—C10—C9129.80 (15)C13—C14—C15120.10 (17)
C17—C18—C13121.12 (17)C13—C14—H14120.0
C17—C18—H18119.4C15—C14—H14120.0
C13—C18—H18119.4C16—C15—C14120.62 (17)
C5—C6—C1121.09 (16)C16—C15—H15119.7
C5—C6—C7131.36 (16)C14—C15—H15119.7
C1—C6—C7107.54 (15)O2—C8—N1127.25 (16)
C6—C5—C4118.32 (16)O2—C8—C7127.03 (16)
C6—C5—H5120.8N1—C8—C7105.70 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N2i0.932.503.383 (2)158
C11—H11···N3i0.932.403.313 (2)167
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N2i0.932.503.383 (2)158.4
C11—H11···N3i0.932.403.313 (2)166.9
Symmetry code: (i) x, y+1, z.
 

References

First citationAgilent, (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationBhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug Res. 2, 229–235.  CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDa Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014). Acta Cryst. E70, o361–o362.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.  CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289–294.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621–636.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds