organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,2R,3S,6S,7R)-3,7,11,11-Tetra­methyl-6,7-epoxybi­cyclo­[5.4.0]undecane-2-ol

aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, BP 1014, Avenue Ibn Battouta, Rabat, Morocco
*Correspondence e-mail: loubidim@gmail.com

(Received 14 April 2014; accepted 16 April 2014; online 26 April 2014)

The title compound, C15H26O2, was synthesized from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzo­cyclo­heptene), which was isolated from the Atlas cedar (cedrus atlantica). The mol­ecule is built up from a seven-membered ring to which a six- and a three-membered ring are fused. The seven- and six-membered rings each have a twist-boat conformation. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into zigzag chains running along the b-axis direction.

Related literature

For background to β-himachalene, see: El Haib et al.;(2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]). For the reactivity of this sesquiterpene and its derivatives, see: El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Benharref et al. (2013[Benharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933-o934.]); Ourhriss et al. (2013[Ourhriss, N., Benharref, A., Saadi, M., El Ammari, L. & Berraho, M. (2013). Acta Cryst. E69, o275.]). For their potential anti­fungal activity against the phytopathogen Botrytis cinerea, see: Daoubi et al. (2004[Daoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927-932.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H26O2

  • Mr = 238.36

  • Monoclinic, P 21

  • a = 5.9617 (10) Å

  • b = 12.068 (2) Å

  • c = 9.5909 (15) Å

  • β = 95.789 (8)°

  • V = 686.48 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.38 × 0.11 × 0.10 mm

Data collection
  • Bruker X8 APEX diffractometer

  • 11541 measured reflections

  • 3036 independent reflections

  • 2698 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.131

  • S = 1.06

  • 3036 reflections

  • 162 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯O2i 0.72 (3) 2.11 (3) 2.820 (2) 171 (3)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

This work is a part of our ongoing program concerning the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpene hydrocarbons, among which is found the compound β-himachalene (El Haib et al., 2011). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological properties (El Jamili et al., 2002; Benharref et al., 2013; Ourhriss et al., 2013). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). The molecule of the title compound (Fig.1) is built up from two fused six- and seven-membered rings, both rings have a twist-boat conformation as indicated by the total puckering amplitude QT = 0.7821 (19) Å and spherical polar angle θ = 92.53 (15)° with ϕ = 272.91 (14)°, for the six-membered ring, and QT = 1.1479 (21), θ = 87.76 (10), ϕ2 = -148.25 (21), ϕ3 = 27.36 (3) for the seven-membered ring (Cremer & Pople, 1975). In the crystal, O—H···O hydrogen bonds links the molecules into zigzag chains running along the b axis (Table 1, Fig. 1).

Related literature top

For background to β-himachalene, see: El Haib et al.;(2011). For the reactivity of this sesquiterpene and its derivatives, see: El Jamili et al. (2002); Benharref et al. (2013); Ourhriss et al. (2013). For their potential antifungal activity against the phytopathogen Botrytis cinerea, see: Daoubi et al. (2004). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Diborane is prepared by addition at 0 °C of 2.5 g (17 mmol) of boron trifluoride etherate in 0.5 g (12.6 mmol) of sodium borohydride in 30 ml of diglyme. Diborane formed is driven by a stream of dry nitrogen in 2 g (10 mmol) of β-himachalene dissolved in 20 ml of tetrahydrofuran at 273K. This takes about 4 h. 2 ml of sodium hydroxide 3 N is then added carefully between 263K and 273K in 15 minutes and then 2 ml of 30% hydrogen peroxide in the vicinity of 298K. The reaction mixture was then extracted with diethyl ether, the organic phase is washed to neutrality and the solvent was evaporated under vacuum. The residue obtained is chromatographed on a column of silica gel with hexane-ethyl acetate (95:5), which allowed the isolation of pure (1S, 2R, 3S, 6S, 7R)-6,7-epoxy-3,7,11,11- tetramethylbicyclo[5.4.0] undecane-2-ol with a yield of 25% (600 mg 2.5 mmol). The title compound was recrystallized from its cyclohexane solution.

Refinement top

Except H11, which was freely refined, all H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl). The methyl groups were allowed to rotate, but not to tip. In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and any references to the Flack parameter were removed. The absolute configuration of the chiral centres was arbitrarily set.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Packing view showing the O–H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
(1S,2R,3S,6S,7R)-3,7,11,11-Tetramethyl-6,7-epoxybicyclo[5.4.0]undecane-2-ol top
Crystal data top
C15H26O2F(000) = 264
Mr = 238.36Dx = 1.153 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3036 reflections
a = 5.9617 (10) Åθ = 2.7–27.1°
b = 12.068 (2) ŵ = 0.07 mm1
c = 9.5909 (15) ÅT = 298 K
β = 95.789 (8)°Needle, colourless
V = 686.48 (19) Å30.38 × 0.11 × 0.10 mm
Z = 2
Data collection top
Bruker X8 APEX
diffractometer
2698 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.1°, θmin = 2.7°
ϕ and ω scansh = 77
11541 measured reflectionsk = 1515
3036 independent reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0862P)2 + 0.0329P]
where P = (Fo2 + 2Fc2)/3
3036 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C15H26O2V = 686.48 (19) Å3
Mr = 238.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.9617 (10) ŵ = 0.07 mm1
b = 12.068 (2) ÅT = 298 K
c = 9.5909 (15) Å0.38 × 0.11 × 0.10 mm
β = 95.789 (8)°
Data collection top
Bruker X8 APEX
diffractometer
2698 reflections with I > 2σ(I)
11541 measured reflectionsRint = 0.031
3036 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.34 e Å3
3036 reflectionsΔρmin = 0.16 e Å3
162 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.0588 (3)0.50820 (14)0.02419 (18)0.0314 (4)
H20.17340.56110.00000.038*
C40.2591 (3)0.37310 (19)0.11371 (19)0.0453 (5)
H4A0.32790.42100.17860.054*
H4B0.23990.30050.15670.054*
C90.3831 (5)0.3909 (3)0.4739 (2)0.0657 (7)
H9A0.52010.36060.52260.079*
H9B0.29420.42160.54390.079*
H110.153 (4)0.608 (2)0.012 (3)0.051 (8)*
C10.1382 (3)0.45493 (13)0.16735 (17)0.0289 (3)
H10.00190.42720.20470.035*
C30.0279 (3)0.41938 (15)0.09006 (19)0.0372 (4)
H30.06300.35920.05650.045*
C50.4180 (3)0.36301 (17)0.02114 (19)0.0395 (4)
H5A0.51320.29820.01620.047*
H5B0.51430.42790.03230.047*
C60.2821 (3)0.35300 (14)0.14433 (17)0.0304 (3)
C70.3361 (3)0.27224 (16)0.2586 (2)0.0412 (4)
C80.2506 (4)0.2968 (2)0.3985 (2)0.0545 (6)
H8A0.26370.23080.45640.065*
H8B0.09250.31700.38400.065*
C100.4472 (4)0.4851 (2)0.3774 (2)0.0531 (6)
H10A0.55720.45670.31860.064*
H10B0.52040.54310.43550.064*
C110.2506 (3)0.53852 (15)0.28073 (19)0.0372 (4)
C120.5456 (4)0.2016 (2)0.2643 (3)0.0612 (6)
H12A0.52040.13340.31190.092*
H12B0.66940.24050.31400.092*
H12C0.58030.18590.17080.092*
C130.0927 (4)0.4641 (2)0.2266 (2)0.0575 (6)
H13A0.01410.52810.25580.086*
H13B0.24430.48420.21200.086*
H13C0.09540.40800.29770.086*
C140.3584 (4)0.64005 (19)0.2140 (3)0.0574 (6)
H14A0.24290.68240.16110.086*
H14B0.46610.61500.15290.086*
H14C0.43290.68560.28650.086*
C150.0719 (4)0.5824 (2)0.3696 (3)0.0636 (7)
H15A0.14160.63000.44160.095*
H15B0.00050.52140.41180.095*
H15C0.03910.62350.31130.095*
O10.1435 (2)0.56718 (13)0.04280 (17)0.0465 (4)
O20.1605 (2)0.24617 (10)0.14695 (15)0.0414 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0338 (8)0.0274 (8)0.0338 (9)0.0005 (7)0.0068 (6)0.0023 (7)
C40.0540 (11)0.0512 (12)0.0321 (9)0.0069 (9)0.0119 (8)0.0066 (8)
C90.0770 (16)0.0825 (18)0.0347 (11)0.0019 (14)0.0090 (10)0.0007 (12)
C10.0297 (7)0.0277 (7)0.0300 (8)0.0025 (6)0.0062 (6)0.0001 (6)
C30.0429 (10)0.0379 (9)0.0304 (9)0.0010 (7)0.0020 (7)0.0009 (7)
C50.0379 (9)0.0398 (9)0.0419 (10)0.0050 (8)0.0100 (7)0.0051 (8)
C60.0321 (7)0.0265 (7)0.0317 (8)0.0036 (6)0.0003 (6)0.0027 (7)
C70.0462 (10)0.0351 (10)0.0403 (10)0.0033 (8)0.0060 (8)0.0039 (8)
C80.0599 (13)0.0623 (14)0.0407 (11)0.0036 (11)0.0022 (9)0.0197 (10)
C100.0487 (11)0.0572 (14)0.0514 (13)0.0088 (9)0.0045 (9)0.0138 (10)
C110.0398 (9)0.0374 (9)0.0347 (9)0.0056 (7)0.0052 (7)0.0098 (7)
C120.0595 (14)0.0520 (13)0.0681 (15)0.0150 (11)0.0130 (11)0.0080 (11)
C130.0698 (14)0.0646 (14)0.0352 (11)0.0089 (12)0.0088 (9)0.0009 (10)
C140.0689 (14)0.0398 (11)0.0640 (14)0.0125 (11)0.0086 (11)0.0075 (10)
C150.0596 (13)0.0766 (17)0.0561 (14)0.0007 (12)0.0141 (11)0.0262 (13)
O10.0504 (8)0.0417 (8)0.0490 (9)0.0166 (6)0.0121 (6)0.0105 (7)
O20.0490 (8)0.0270 (6)0.0459 (7)0.0068 (5)0.0067 (6)0.0019 (6)
Geometric parameters (Å, º) top
C2—O11.427 (2)C7—C121.508 (3)
C2—C31.531 (2)C7—C81.512 (3)
C2—C11.546 (2)C8—H8A0.9700
C2—H20.9800C8—H8B0.9700
C4—C31.526 (3)C10—C111.558 (3)
C4—C51.529 (3)C10—H10A0.9700
C4—H4A0.9700C10—H10B0.9700
C4—H4B0.9700C11—C151.525 (3)
C9—C81.523 (4)C11—C141.552 (3)
C9—C101.539 (4)C12—H12A0.9600
C9—H9A0.9700C12—H12B0.9600
C9—H9B0.9700C12—H12C0.9600
C1—C61.528 (2)C13—H13A0.9600
C1—C111.582 (2)C13—H13B0.9600
C1—H10.9800C13—H13C0.9600
C3—C131.527 (3)C14—H14A0.9600
C3—H30.9800C14—H14B0.9600
C5—C61.503 (2)C14—H14C0.9600
C5—H5A0.9700C15—H15A0.9600
C5—H5B0.9700C15—H15B0.9600
C6—C71.478 (3)C15—H15C0.9600
C6—O21.481 (2)O1—H110.72 (3)
C7—O21.455 (2)
O1—C2—C3113.36 (15)C6—C7—C8117.44 (17)
O1—C2—C1106.45 (14)C12—C7—C8115.52 (19)
C3—C2—C1110.40 (13)C7—C8—C9111.26 (19)
O1—C2—H2108.8C7—C8—H8A109.4
C3—C2—H2108.8C9—C8—H8A109.4
C1—C2—H2108.8C7—C8—H8B109.4
C3—C4—C5113.30 (14)C9—C8—H8B109.4
C3—C4—H4A108.9H8A—C8—H8B108.0
C5—C4—H4A108.9C9—C10—C11116.50 (19)
C3—C4—H4B108.9C9—C10—H10A108.2
C5—C4—H4B108.9C11—C10—H10A108.2
H4A—C4—H4B107.7C9—C10—H10B108.2
C8—C9—C10114.41 (18)C11—C10—H10B108.2
C8—C9—H9A108.7H10A—C10—H10B107.3
C10—C9—H9A108.7C15—C11—C14107.35 (18)
C8—C9—H9B108.7C15—C11—C10109.69 (18)
C10—C9—H9B108.7C14—C11—C10104.72 (17)
H9A—C9—H9B107.6C15—C11—C1109.53 (15)
C6—C1—C2109.41 (13)C14—C11—C1112.59 (15)
C6—C1—C11114.05 (14)C10—C11—C1112.74 (15)
C2—C1—C11114.57 (14)C7—C12—H12A109.5
C6—C1—H1106.0C7—C12—H12B109.5
C2—C1—H1106.0H12A—C12—H12B109.5
C11—C1—H1106.0C7—C12—H12C109.5
C4—C3—C13110.86 (16)H12A—C12—H12C109.5
C4—C3—C2108.51 (15)H12B—C12—H12C109.5
C13—C3—C2112.26 (17)C3—C13—H13A109.5
C4—C3—H3108.4C3—C13—H13B109.5
C13—C3—H3108.4H13A—C13—H13B109.5
C2—C3—H3108.4C3—C13—H13C109.5
C6—C5—C4109.51 (14)H13A—C13—H13C109.5
C6—C5—H5A109.8H13B—C13—H13C109.5
C4—C5—H5A109.8C11—C14—H14A109.5
C6—C5—H5B109.8C11—C14—H14B109.5
C4—C5—H5B109.8H14A—C14—H14B109.5
H5A—C5—H5B108.2C11—C14—H14C109.5
C7—C6—O258.92 (11)H14A—C14—H14C109.5
C7—C6—C5122.77 (16)H14B—C14—H14C109.5
O2—C6—C5112.77 (14)C11—C15—H15A109.5
C7—C6—C1120.48 (15)C11—C15—H15B109.5
O2—C6—C1114.54 (12)H15A—C15—H15B109.5
C5—C6—C1113.81 (14)C11—C15—H15C109.5
O2—C7—C660.64 (11)H15A—C15—H15C109.5
O2—C7—C12115.87 (18)H15B—C15—H15C109.5
C6—C7—C12121.17 (19)C2—O1—H11105 (2)
O2—C7—C8114.42 (17)C7—O2—C660.45 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O2i0.72 (3)2.11 (3)2.820 (2)171 (3)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O2i0.72 (3)2.11 (3)2.820 (2)171 (3)
Symmetry code: (i) x, y+1/2, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements

References

First citationBenharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933–o934.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDaoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOurhriss, N., Benharref, A., Saadi, M., El Ammari, L. & Berraho, M. (2013). Acta Cryst. E69, o275.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds