organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Cyclo­pentyl-2-methyl-3-(4-methyl­phenyl­sulfon­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 16 April 2014; accepted 16 April 2014; online 26 April 2014)

In the title compound, C21H22O3S, the cyclo­pentyl ring adopts a twist conformation. The dihedral angle between the mean planes of the benzo­furan and 4-methyl­phenyl rings is 72.38 (6)°. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional supra­molecular network.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2012[Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o1624.], 2014[Choi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o481.]); Seo et al. (2011[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o2223.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22O3S

  • Mr = 354.45

  • Monoclinic, P n

  • a = 10.5452 (7) Å

  • b = 6.3093 (4) Å

  • c = 13.7813 (9) Å

  • β = 91.626 (4)°

  • V = 916.54 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.42 × 0.25 × 0.23 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.636, Tmax = 0.746

  • 13479 measured reflections

  • 4144 independent reflections

  • 3276 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.106

  • S = 1.02

  • 4144 reflections

  • 228 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2111 Friedel pairs

  • Absolute structure parameter: 0.02 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.95 2.44 3.279 (3) 148
C20—H20⋯O2ii 0.95 2.54 3.244 (3) 131
C9—H9⋯Cg1iii 1.0 2.89 3.680 (3) 136
C12—H12BCg1iv 0.99 2.88 3.591 (3) 129
C14—H14CCg2ii 0.98 2.94 3.826 (3) 151
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) x, y-1, z; (iv) [x-{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 5-cylcopentyl-2-methyl-1-benzofuran derivatives containing phenylsulfonyl (Seo et al., 2011), 4-bromophenylsulfonyl (Choi et al., 2012) and 3-methylphenylsulfonyl (Choi et al., 2014) substituents in the 3-position, we report here on the crystal structure of the title compound.

The title compound crystallizes in the non-centrosymmetric space group Pn.

In the title molecule (Fig. 1), the benzofuran ring is essentially planar, with a mean deviation of 0.011 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-methylphenyl ring is essentially planar, with a mean deviation of 0.004 (2) Å from the least-squares plane defined by the six constituent atoms. The cyclopentyl ring has a twist conformation. The dihedral angle formed by the benzofuran ring system and the 4-methylphenyl ring is 72.38 (6)°. In the crystal structure (Fig. 2), molecules are linked by C—H···O and C—H···π interactions (Table 1, Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively), resulting in a three-dimensional supramolecular network.

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2012, 2014); Seo et al. (2011).

Experimental top

3-Chloroperoxybenzoic acid (77%, 448 mg, 2.0 mmol) was added in small portions to a stirred solution of 5-cyclopentyl-2-methyl-3-(4-methylphenylsulfanyl)-1-benzofuran (290 mg, 0.9 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 10h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 70%, m.p. 398–399 K; Rf = 0.51 (hexane–ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow vaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso (H) = 1.2Ueq (C) for aryl, methine and methylene, and 1.5Ueq (C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL command AFIX 137 (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering scheme The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x + 1/2, - y + 1, z - 1/2; (ii) x, y + 1, z; (iii) x, y - 1, z; (iv) x - 1/2, - y, z - 1/2; (v) x - 1/2, - y + 1, z + 1/2; (vi) x + 1/2, - y, z + 1/2.]
5-Cyclopentyl-2-methyl-3-(4-methylphenylsulfonyl)-1-benzofuran top
Crystal data top
C21H22O3SF(000) = 376
Mr = 354.45Dx = 1.284 Mg m3
Monoclinic, PnMelting point = 399–398 K
Hall symbol: P -2yacMo Kα radiation, λ = 0.71073 Å
a = 10.5452 (7) ÅCell parameters from 4626 reflections
b = 6.3093 (4) Åθ = 2.4–22.7°
c = 13.7813 (9) ŵ = 0.19 mm1
β = 91.626 (4)°T = 173 K
V = 916.54 (10) Å3Block, colourless
Z = 20.42 × 0.25 × 0.23 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4144 independent reflections
Radiation source: rotating anode3276 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.4°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 88
Tmin = 0.636, Tmax = 0.746l = 1717
13479 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.0503P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4144 reflectionsΔρmax = 0.27 e Å3
228 parametersΔρmin = 0.19 e Å3
2 restraintsAbsolute structure: Flack (1983), 2111 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (6)
Crystal data top
C21H22O3SV = 916.54 (10) Å3
Mr = 354.45Z = 2
Monoclinic, PnMo Kα radiation
a = 10.5452 (7) ŵ = 0.19 mm1
b = 6.3093 (4) ÅT = 173 K
c = 13.7813 (9) Å0.42 × 0.25 × 0.23 mm
β = 91.626 (4)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4144 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3276 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.746Rint = 0.031
13479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.27 e Å3
S = 1.02Δρmin = 0.19 e Å3
4144 reflectionsAbsolute structure: Flack (1983), 2111 Friedel pairs
228 parametersAbsolute structure parameter: 0.02 (6)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50057 (4)0.43392 (9)0.52665 (4)0.04206 (17)
O10.81242 (17)0.5370 (3)0.38708 (14)0.0529 (5)
O20.46721 (17)0.2152 (3)0.53932 (12)0.0487 (5)
O30.52795 (18)0.5621 (3)0.61028 (12)0.0545 (5)
C10.6301 (2)0.4397 (4)0.45279 (16)0.0398 (6)
C20.6569 (2)0.2858 (4)0.37834 (16)0.0376 (5)
C30.5997 (2)0.1062 (4)0.34016 (15)0.0384 (5)
H30.52200.05710.36520.046*
C40.6558 (2)0.0023 (4)0.26530 (16)0.0413 (5)
C50.7737 (2)0.0714 (5)0.23120 (18)0.0509 (7)
H50.81340.00440.18090.061*
C60.8315 (3)0.2481 (5)0.2687 (2)0.0549 (7)
H60.91040.29610.24540.066*
C70.7714 (2)0.3539 (4)0.34139 (17)0.0454 (6)
C80.7251 (2)0.5865 (4)0.45435 (18)0.0461 (6)
C90.5876 (3)0.1898 (4)0.22067 (17)0.0484 (7)
H90.56920.29100.27430.058*
C100.6516 (3)0.3141 (5)0.1417 (2)0.0678 (9)
H10A0.68800.21810.09300.081*
H10B0.71980.40560.16930.081*
C110.5457 (3)0.4451 (5)0.0973 (3)0.0762 (10)
H11A0.56240.47740.02860.091*
H11B0.53660.58010.13310.091*
C120.4278 (4)0.3131 (6)0.1049 (3)0.0920 (12)
H12A0.35810.39810.13190.110*
H12B0.40010.25960.04010.110*
C130.4621 (3)0.1308 (6)0.1718 (3)0.0729 (9)
H13A0.39620.11090.22070.087*
H13B0.47040.00220.13450.087*
C140.7537 (3)0.7785 (5)0.5121 (2)0.0636 (8)
H14A0.82480.74970.55750.095*
H14B0.67890.81870.54850.095*
H14C0.77640.89450.46860.095*
C150.3770 (2)0.5572 (4)0.45880 (16)0.0404 (6)
C160.3159 (2)0.4485 (4)0.38343 (19)0.0461 (6)
H160.34060.30770.36840.055*
C170.2205 (3)0.5442 (4)0.3310 (2)0.0539 (7)
H170.17860.46870.27980.065*
C180.1836 (2)0.7506 (4)0.3514 (2)0.0500 (6)
C190.2460 (3)0.8554 (4)0.4268 (2)0.0526 (7)
H190.22120.99580.44240.063*
C200.3435 (3)0.7610 (4)0.47994 (19)0.0478 (6)
H200.38680.83650.53050.057*
C210.0784 (3)0.8560 (6)0.2938 (3)0.0746 (9)
H21A0.11390.93350.23930.112*
H21B0.03370.95520.33560.112*
H21C0.01880.74830.26910.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0520 (4)0.0414 (3)0.0326 (3)0.0023 (3)0.0020 (2)0.0036 (3)
O10.0435 (9)0.0531 (12)0.0617 (12)0.0095 (9)0.0069 (8)0.0157 (9)
O20.0648 (13)0.0421 (10)0.0398 (9)0.0044 (8)0.0089 (8)0.0024 (8)
O30.0726 (13)0.0552 (12)0.0354 (9)0.0042 (10)0.0064 (9)0.0070 (8)
C10.0431 (13)0.0395 (15)0.0361 (12)0.0023 (11)0.0075 (10)0.0059 (10)
C20.0370 (12)0.0443 (14)0.0312 (11)0.0039 (11)0.0035 (9)0.0098 (10)
C30.0384 (12)0.0453 (15)0.0315 (11)0.0076 (11)0.0007 (9)0.0075 (10)
C40.0455 (13)0.0443 (13)0.0339 (12)0.0141 (11)0.0009 (10)0.0077 (10)
C50.0457 (15)0.065 (2)0.0422 (14)0.0167 (14)0.0082 (11)0.0120 (13)
C60.0406 (14)0.0626 (18)0.0619 (17)0.0033 (14)0.0077 (12)0.0175 (14)
C70.0388 (13)0.0531 (16)0.0440 (14)0.0042 (12)0.0034 (11)0.0144 (11)
C80.0482 (14)0.0455 (15)0.0437 (14)0.0018 (12)0.0158 (12)0.0130 (11)
C90.0685 (17)0.0446 (16)0.0321 (12)0.0170 (14)0.0002 (12)0.0029 (10)
C100.082 (2)0.068 (2)0.0535 (17)0.0207 (17)0.0019 (15)0.0204 (15)
C110.098 (3)0.061 (2)0.070 (2)0.0043 (19)0.0099 (19)0.0236 (16)
C120.097 (3)0.085 (3)0.094 (3)0.001 (2)0.019 (2)0.039 (2)
C130.0604 (19)0.067 (2)0.090 (2)0.0147 (16)0.0119 (17)0.0254 (18)
C140.0721 (19)0.0486 (17)0.0683 (19)0.0122 (14)0.0286 (16)0.0078 (14)
C150.0444 (14)0.0401 (14)0.0367 (12)0.0002 (11)0.0039 (11)0.0027 (10)
C160.0471 (14)0.0407 (15)0.0503 (14)0.0025 (12)0.0025 (11)0.0137 (12)
C170.0518 (16)0.0543 (18)0.0551 (16)0.0000 (13)0.0071 (13)0.0132 (13)
C180.0458 (15)0.0493 (16)0.0549 (16)0.0001 (12)0.0008 (12)0.0004 (13)
C190.0617 (17)0.0404 (15)0.0559 (16)0.0057 (13)0.0052 (13)0.0074 (13)
C200.0610 (17)0.0391 (15)0.0433 (14)0.0032 (12)0.0030 (12)0.0074 (11)
C210.0671 (19)0.070 (2)0.086 (2)0.0110 (16)0.0177 (17)0.0013 (18)
Geometric parameters (Å, º) top
S1—O31.4307 (17)C11—C121.502 (5)
S1—O21.4358 (18)C11—H11A0.9900
S1—C11.727 (2)C11—H11B0.9900
S1—C151.763 (2)C12—C131.512 (4)
O1—C81.362 (3)C12—H12A0.9900
O1—C71.379 (3)C12—H12B0.9900
C1—C81.364 (3)C13—H13A0.9900
C1—C21.446 (3)C13—H13B0.9900
C2—C31.381 (3)C14—H14A0.9800
C2—C71.392 (3)C14—H14B0.9800
C3—C41.385 (3)C14—H14C0.9800
C3—H30.9500C15—C201.367 (3)
C4—C51.419 (4)C15—C161.388 (3)
C4—C91.507 (4)C16—C171.363 (4)
C5—C61.365 (4)C16—H160.9500
C5—H50.9500C17—C181.390 (4)
C6—C71.373 (4)C17—H170.9500
C6—H60.9500C18—C191.383 (4)
C8—C141.476 (4)C18—C211.501 (4)
C9—C131.514 (4)C19—C201.381 (4)
C9—C101.515 (4)C19—H190.9500
C9—H91.0000C20—H200.9500
C10—C111.505 (5)C21—H21A0.9800
C10—H10A0.9900C21—H21B0.9800
C10—H10B0.9900C21—H21C0.9800
O3—S1—O2119.33 (11)C12—C11—H11B110.6
O3—S1—C1108.55 (11)C10—C11—H11B110.6
O2—S1—C1107.01 (11)H11A—C11—H11B108.7
O3—S1—C15107.88 (11)C11—C12—C13106.2 (3)
O2—S1—C15107.98 (11)C11—C12—H12A110.5
C1—S1—C15105.24 (11)C13—C12—H12A110.5
C8—O1—C7107.06 (19)C11—C12—H12B110.5
C8—C1—C2108.0 (2)C13—C12—H12B110.5
C8—C1—S1126.7 (2)H12A—C12—H12B108.7
C2—C1—S1125.30 (17)C12—C13—C9106.0 (3)
C3—C2—C7119.2 (2)C12—C13—H13A110.5
C3—C2—C1136.8 (2)C9—C13—H13A110.5
C7—C2—C1104.0 (2)C12—C13—H13B110.5
C2—C3—C4119.9 (2)C9—C13—H13B110.5
C2—C3—H3120.1H13A—C13—H13B108.7
C4—C3—H3120.1C8—C14—H14A109.5
C3—C4—C5118.8 (3)C8—C14—H14B109.5
C3—C4—C9118.9 (2)H14A—C14—H14B109.5
C5—C4—C9122.3 (2)C8—C14—H14C109.5
C6—C5—C4121.9 (3)H14A—C14—H14C109.5
C6—C5—H5119.1H14B—C14—H14C109.5
C4—C5—H5119.1C20—C15—C16120.5 (2)
C5—C6—C7117.6 (3)C20—C15—S1119.57 (18)
C5—C6—H6121.2C16—C15—S1119.94 (19)
C7—C6—H6121.2C17—C16—C15119.8 (2)
C6—C7—O1126.5 (2)C17—C16—H16120.1
C6—C7—C2122.6 (3)C15—C16—H16120.1
O1—C7—C2110.8 (2)C16—C17—C18121.0 (2)
O1—C8—C1110.2 (2)C16—C17—H17119.5
O1—C8—C14115.0 (2)C18—C17—H17119.5
C1—C8—C14134.8 (3)C19—C18—C17118.0 (2)
C4—C9—C13112.9 (2)C19—C18—C21120.9 (3)
C4—C9—C10118.9 (3)C17—C18—C21121.0 (3)
C13—C9—C10102.1 (2)C20—C19—C18121.6 (3)
C4—C9—H9107.5C20—C19—H19119.2
C13—C9—H9107.5C18—C19—H19119.2
C10—C9—H9107.5C15—C20—C19119.1 (2)
C11—C10—C9103.6 (3)C15—C20—H20120.5
C11—C10—H10A111.0C19—C20—H20120.5
C9—C10—H10A111.0C18—C21—H21A109.5
C11—C10—H10B111.0C18—C21—H21B109.5
C9—C10—H10B111.0H21A—C21—H21B109.5
H10A—C10—H10B109.0C18—C21—H21C109.5
C12—C11—C10105.9 (3)H21A—C21—H21C109.5
C12—C11—H11A110.6H21B—C21—H21C109.5
C10—C11—H11A110.6
O3—S1—C1—C819.1 (2)C2—C1—C8—C14179.7 (3)
O2—S1—C1—C8149.1 (2)S1—C1—C8—C140.3 (4)
C15—S1—C1—C896.2 (2)C3—C4—C9—C1363.1 (3)
O3—S1—C1—C2160.22 (18)C5—C4—C9—C13114.8 (3)
O2—S1—C1—C230.2 (2)C3—C4—C9—C10177.4 (2)
C15—S1—C1—C284.5 (2)C5—C4—C9—C104.7 (3)
C8—C1—C2—C3178.8 (2)C4—C9—C10—C11165.3 (2)
S1—C1—C2—C31.8 (4)C13—C9—C10—C1140.4 (3)
C8—C1—C2—C71.1 (2)C9—C10—C11—C1232.6 (4)
S1—C1—C2—C7178.34 (17)C10—C11—C12—C1311.8 (4)
C7—C2—C3—C40.7 (3)C11—C12—C13—C913.6 (4)
C1—C2—C3—C4179.2 (2)C4—C9—C13—C12162.1 (3)
C2—C3—C4—C51.7 (3)C10—C9—C13—C1233.3 (4)
C2—C3—C4—C9176.2 (2)O3—S1—C15—C2012.7 (2)
C3—C4—C5—C61.4 (3)O2—S1—C15—C20142.91 (19)
C9—C4—C5—C6176.5 (2)C1—S1—C15—C20103.1 (2)
C4—C5—C6—C70.0 (4)O3—S1—C15—C16168.37 (19)
C5—C6—C7—O1178.5 (2)O2—S1—C15—C1638.1 (2)
C5—C6—C7—C21.1 (4)C1—S1—C15—C1675.9 (2)
C8—O1—C7—C6179.8 (2)C20—C15—C16—C171.0 (4)
C8—O1—C7—C20.6 (2)S1—C15—C16—C17180.0 (2)
C3—C2—C7—C60.8 (3)C15—C16—C17—C180.5 (4)
C1—C2—C7—C6179.3 (2)C16—C17—C18—C190.4 (4)
C3—C2—C7—O1178.86 (19)C16—C17—C18—C21179.9 (3)
C1—C2—C7—O11.0 (2)C17—C18—C19—C201.0 (4)
C7—O1—C8—C10.2 (2)C21—C18—C19—C20179.6 (3)
C7—O1—C8—C14179.3 (2)C16—C15—C20—C191.5 (4)
C2—C1—C8—O10.8 (3)S1—C15—C20—C19179.5 (2)
S1—C1—C8—O1178.63 (16)C18—C19—C20—C151.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.443.279 (3)148
C20—H20···O2ii0.952.543.244 (3)131
C9—H9···Cg1iii1.02.893.680 (3)136
C12—H12B···Cg1iv0.992.883.591 (3)129
C14—H14C···Cg2ii0.982.943.826 (3)151
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.443.279 (3)147.7
C20—H20···O2ii0.952.543.244 (3)131.3
C9—H9···Cg1iii1.02.893.680 (3)135.5
C12—H12B···Cg1iv0.992.883.591 (3)129.0
C14—H14C···Cg2ii0.982.943.826 (3)150.6
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x1/2, y, z1/2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o1624.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o481.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o2223.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds