metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ2-2-Meth­­oxy­ethanol-κ3O1:O1,O3)(2-meth­­oxy­ethanol-κO1)tris­­(μ2-3,4,5,6-tetra­fluoro-o-phenyl­ene-κ2C1:C2)trimercury(II)

aDepartment of Chemistry & Biology, New Mexico Highlands University, Diamond Ave, Las Vegas, NM 87701, USA, and bX-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Bldg 401 MS-16 Argonne, IL 60439, USA
*Correspondence e-mail: lcastaneda3@live.nmhu.edu

(Received 4 March 2014; accepted 27 March 2014; online 5 April 2014)

In the title compound, [Hg3(C6F4)3(C3H8O2)2], two O atoms from one 2-meth­oxy­ethanol ligand and one O atom from the second 2-meth­oxy­ethanol ligand coordinate three HgII atoms [Hg—O = 2.765 (7)–2.890 (8) Å] in the trimeric organomercurial Lewis acid (o-C6F4Hg)3. The hy­droxy groups are involved in formation of intra- and inter­molecular O—H⋯O hydrogen bonds; the latter link two mol­ecules into centrosymmetric dimers. An extensive net of weak inter­molecular C—H⋯F inter­actions further consolidates the crystal packing.

Related literature

For the synthesis of trimeric perfluoro-ortho-phenyl­ene mercury and its use as a catalyst, see: Sartori & Golloch (1968[Sartori, P. & Golloch, A. (1968). Chem. Ber. 101, 2004-2009.]) and Lee et al. (1999[Lee, H., Diaz, M. & Hawthorne, M. F. (1999). Tetrahedron Lett. 40, 7651-7655.]), respectively. For the properties of organomercurial anti­crowns, see: Taylor et al. (2007[Taylor, T. J., Burress, C. N. & Gabbaï, F. P. (2007). Organometallics, 26, 5252-5263.]). For related crystal structures, see: Tikhonova et al. (2002[Tikhonova, I. A., Dolgushin, F. M., Tugashov, K. I., Petrovskii, P. V., Furin, G. G. & Shur, V. B. (2002). J. Organomet. Chem. 654, 123-131.], 2013[Tikhonova, I. A., Yakovenko, A. A., Tugashov, K. I., Dolgushin, F. M., Petrovskii, P. V., Minacheva, M. K., Strunin, B. N. & Shur, V. B. (2013). Russ. Chem. Bull. 62, 710-715.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg3(C6F4)3(C3H8O2)2]

  • Mr = 1198.14

  • Triclinic, [P \overline 1]

  • a = 10.170 (4) Å

  • b = 12.623 (5) Å

  • c = 12.962 (5) Å

  • α = 113.450 (5)°

  • β = 110.411 (5)°

  • γ = 92.795 (5)°

  • V = 1396.3 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 16.56 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.984

  • 16463 measured reflections

  • 8430 independent reflections

  • 4880 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.101

  • S = 0.91

  • 8430 reflections

  • 386 parameters

  • H-atom parameters constrained

  • Δρmax = 3.70 e Å−3

  • Δρmin = −2.93 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.84 2.04 2.771 (11) 145
O3—H3⋯O4i 0.84 1.86 2.694 (10) 171
C21—H21B⋯F6ii 0.99 2.52 3.480 (14) 162
C23—H23A⋯F10iii 0.99 2.48 3.109 (12) 121
C23—H23B⋯F11iv 0.99 2.47 3.301 (12) 141
C24—H24B⋯F5ii 0.98 2.54 3.339 (14) 138
C24—H24C⋯F2v 0.98 2.46 3.352 (15) 152
C19—H19B⋯F2vi 0.98 2.53 3.207 (13) 126
Symmetry codes: (i) -x, -y+1, -z; (ii) x-1, y, z; (iii) x, y-1, z; (iv) -x, -y+2, -z+1; (v) -x, -y+1, -z+1; (vi) x, y, z-1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comments top

As an organomercurial compound trimeric perfluoro-o-phenyl­ene mercury (I) has numerous adducts with aldehydes, ketones, amides, nitriles, phospho­ramides, and sulfoxides (Taylor et al., 2007). Formation of complexes involving I with oxygenated Lewis bases similar to 2-meth­oxy­ethanol (II) had been observed before (Tikhonova et al., 2002). The studies of this type of coordination are important due the effect of I on the keto-enol tautomerism (Tikhonova et al., 2013) as well on the activation of carbonyl compounds (Tikhonova et al., 2002). Acting as Lewis acid I had proven catalyze the Diels-Alder reaction between thio­noester and cyclo­penta­diene (Lee et al., 1999). Besides II is not a strong Lewis base it exhibits shorter Hg···O contacts than the sum of the van der Walls radii (Hg = 1.7-2 Å, O = 1.52 Å).

In the title compound (Fig. 1), the coordinating Hg···O contacts range from 2.765 (7) to 2.890 (8) Å. These short contacts are in the same range as those described for carbonyl compounds (Tikhonova et al., 2002). The present complex [I·(II)2] has two II molecules per one I molecule. The hy­droxy groups are involved in formation of intra- and inter­molecular O—H···O hydrogen bonds (Table 1), and the latter ones link two complex molecules into centrosymmetric dimers. An extensive net of weak inter­molecular C—H···F inter­actions (Table 1) consolidate further the crystal packing. To the best of our knowledge this complex is the first coordination example of a non-cyclic ether with macrocycle I. That indicates a possibility of I to form complexes with non-cyclic ethers, like polyethyl­ene glycol derivatives.

Experimental top

Synthesis and crystallization top

Trimeric perfluoro-o-phenyl­ene mercury (I) was synthesized according to the known procedure (Sartori & Golloch, 1968). The title compound [I·(II)2] was obtained by dissolving pure I in II, followed by slow evaporation of the solvent until single crystals were obtained.

Refinement top

All hydrogen atoms were placed in the calculated positions with O—H = 0.84 Å, C—H = 0.98–0.99 Å and refined as riding, with Uiso(H) = 1.2–1.5 Ueq of the parent atom.

Related literature top

For the synthesis of trimeric perfluoro-ortho-phenylene mercury and its use as a catalyst, see Sartori & Golloch (1968) and Lee et al. (1999), respectively. For the properties of organomercurial anticrowns, see: Taylor et al. (2007). For related crystal structures, see: Tikhonova et al. (2002, 2013).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids. Dashed line denotes hydrogen bond.
[Figure 2] Fig. 2. The crystal packing.
2-2-Methoxyethanol-κ3O1:O1,O3)(2-methoxyethanol-κO1)tris(µ2-3,4,5,6-tetrafluoro-o-phenylene-κ2C1:C2)trimercury(II) top
Crystal data top
[Hg3(C6F4)3(C3H8O2)2]V = 1396.3 (9) Å3
Mr = 1198.14Z = 2
Triclinic, P1F(000) = 1080
a = 10.170 (4) ÅDx = 2.850 Mg m3
b = 12.623 (5) ÅMo Kα radiation, λ = 0.71073 Å
c = 12.962 (5) ŵ = 16.56 mm1
α = 113.450 (5)°T = 100 K
β = 110.411 (5)°Prism, colourless
γ = 92.795 (5)°0.30 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
8430 independent reflections
Radiation source: fine-focus sealed tube4880 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ϕ and ω scansθmax = 30.7°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1414
Tmin = 0.979, Tmax = 0.984k = 1718
16463 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0194P)2]
where P = (Fo2 + 2Fc2)/3
8430 reflections(Δ/σ)max = 0.001
386 parametersΔρmax = 3.70 e Å3
0 restraintsΔρmin = 2.93 e Å3
Crystal data top
[Hg3(C6F4)3(C3H8O2)2]γ = 92.795 (5)°
Mr = 1198.14V = 1396.3 (9) Å3
Triclinic, P1Z = 2
a = 10.170 (4) ÅMo Kα radiation
b = 12.623 (5) ŵ = 16.56 mm1
c = 12.962 (5) ÅT = 100 K
α = 113.450 (5)°0.30 × 0.25 × 0.20 mm
β = 110.411 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
8430 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4880 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.984Rint = 0.090
16463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 0.91Δρmax = 3.70 e Å3
8430 reflectionsΔρmin = 2.93 e Å3
386 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.34545 (4)1.01863 (4)0.29484 (4)0.01824 (11)
Hg20.22471 (4)0.98504 (4)0.51393 (4)0.01800 (11)
Hg30.41210 (4)0.77523 (4)0.36850 (4)0.01824 (11)
F10.1682 (7)0.9075 (6)0.7026 (6)0.0307 (16)
F20.2340 (9)0.7301 (7)0.7630 (7)0.048 (2)
F30.3741 (8)0.5752 (7)0.6553 (6)0.0408 (19)
F40.4452 (7)0.5942 (6)0.4792 (6)0.0303 (16)
F50.5756 (7)0.6279 (6)0.2121 (6)0.0310 (17)
F60.6681 (7)0.6575 (6)0.0508 (6)0.0323 (17)
F70.6287 (7)0.8460 (6)0.0030 (6)0.0331 (17)
F80.4924 (7)1.0048 (6)0.1120 (6)0.0316 (17)
F90.2731 (7)1.2533 (6)0.2847 (6)0.0279 (16)
F100.1551 (7)1.4209 (6)0.4062 (6)0.0328 (17)
F110.0669 (7)1.3997 (6)0.5718 (6)0.0336 (18)
F120.0954 (6)1.2102 (6)0.6197 (6)0.0274 (16)
O10.1057 (7)0.9283 (7)0.0754 (6)0.0220 (17)
O20.1230 (7)0.8390 (7)0.2563 (7)0.0221 (17)
H20.11250.76780.24340.033*
O30.1619 (8)0.6097 (7)0.1593 (7)0.0262 (18)
H30.14310.59530.08600.039*
O40.1110 (8)0.4592 (8)0.0789 (6)0.0261 (19)
C10.2690 (11)0.8440 (10)0.5548 (9)0.020 (2)
C20.2353 (11)0.8292 (11)0.6427 (10)0.025 (3)
C30.2689 (14)0.7414 (11)0.6758 (10)0.030 (3)
C40.3408 (14)0.6609 (11)0.6203 (11)0.030 (3)
C50.3735 (12)0.6747 (11)0.5329 (11)0.028 (3)
C60.3446 (11)0.7621 (10)0.4967 (9)0.018 (2)
C70.4814 (11)0.8017 (10)0.2454 (9)0.019 (2)
C80.5518 (11)0.7228 (11)0.1895 (11)0.026 (3)
C90.6030 (11)0.7385 (10)0.1068 (10)0.020 (2)
C100.5808 (12)0.8336 (11)0.0835 (10)0.025 (3)
C110.5103 (11)0.9119 (10)0.1372 (11)0.023 (3)
C120.4586 (10)0.8986 (9)0.2192 (10)0.018 (2)
C130.2464 (10)1.1399 (9)0.3867 (9)0.016 (2)
C140.2302 (11)1.2401 (10)0.3691 (9)0.0193 (17)
C150.1701 (11)1.3265 (10)0.4274 (9)0.0193 (17)
C160.1251 (12)1.3143 (11)0.5125 (10)0.024 (3)
C170.1416 (11)1.2187 (11)0.5344 (9)0.020 (2)
C180.1981 (12)1.1268 (11)0.4728 (10)0.024 (3)
C190.1318 (14)0.9019 (13)0.0342 (11)0.036 (3)
H19A0.04440.89930.09960.055*
H19B0.15870.82500.06060.055*
H19C0.21000.96340.01650.055*
C200.0035 (11)0.8364 (10)0.0569 (10)0.024 (3)
H20A0.03080.75990.02200.028*
H20B0.09170.83280.00250.028*
C210.0059 (12)0.8555 (12)0.1742 (11)0.030 (3)
H21A0.01900.93680.21490.036*
H21B0.09070.79930.15730.036*
C220.1456 (12)0.4994 (11)0.1684 (11)0.029 (3)
H22A0.22940.50290.23860.034*
H22B0.14160.43330.09260.034*
C230.0117 (11)0.4786 (11)0.1859 (9)0.024 (3)
H23A0.00710.40870.20250.029*
H23B0.01200.54800.25760.029*
C240.2418 (12)0.4380 (13)0.0905 (12)0.036 (3)
H24A0.32260.42580.01520.055*
H24B0.24440.50630.16030.055*
H24C0.24900.36730.10400.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0181 (2)0.0224 (3)0.0180 (2)0.00763 (18)0.00949 (17)0.0103 (2)
Hg20.0193 (2)0.0209 (3)0.0173 (2)0.00739 (18)0.00843 (17)0.01047 (19)
Hg30.0176 (2)0.0230 (3)0.0186 (2)0.00700 (18)0.00915 (17)0.0115 (2)
F10.047 (4)0.031 (4)0.024 (4)0.019 (4)0.025 (3)0.012 (3)
F20.087 (6)0.050 (5)0.037 (5)0.032 (5)0.043 (4)0.031 (4)
F30.071 (5)0.041 (5)0.037 (4)0.029 (4)0.036 (4)0.029 (4)
F40.034 (4)0.026 (4)0.035 (4)0.015 (3)0.017 (3)0.014 (3)
F50.036 (4)0.028 (4)0.046 (5)0.017 (3)0.025 (3)0.024 (4)
F60.039 (4)0.028 (4)0.053 (5)0.019 (3)0.037 (4)0.022 (4)
F70.042 (4)0.043 (5)0.042 (4)0.022 (4)0.034 (4)0.030 (4)
F80.042 (4)0.037 (5)0.036 (4)0.018 (4)0.026 (3)0.026 (4)
F90.040 (4)0.026 (4)0.026 (4)0.013 (3)0.016 (3)0.016 (3)
F100.052 (4)0.030 (4)0.032 (4)0.023 (4)0.023 (3)0.021 (4)
F110.051 (4)0.039 (5)0.029 (4)0.029 (4)0.024 (3)0.023 (4)
F120.034 (4)0.035 (4)0.025 (4)0.012 (3)0.020 (3)0.017 (3)
O10.021 (4)0.023 (5)0.017 (4)0.004 (3)0.006 (3)0.005 (4)
O20.019 (4)0.022 (5)0.023 (4)0.006 (3)0.007 (3)0.009 (4)
O30.034 (4)0.028 (5)0.018 (4)0.004 (4)0.012 (4)0.011 (4)
O40.023 (4)0.043 (6)0.016 (4)0.008 (4)0.010 (3)0.015 (4)
C10.021 (5)0.016 (6)0.014 (6)0.001 (5)0.003 (5)0.002 (5)
C20.021 (6)0.028 (7)0.025 (6)0.007 (5)0.008 (5)0.014 (6)
C30.057 (8)0.023 (7)0.020 (6)0.016 (6)0.022 (6)0.013 (6)
C40.054 (8)0.030 (8)0.032 (7)0.020 (7)0.030 (6)0.024 (6)
C50.029 (6)0.037 (8)0.033 (7)0.019 (6)0.019 (6)0.023 (7)
C60.022 (5)0.025 (7)0.014 (5)0.010 (5)0.015 (5)0.007 (5)
C70.022 (6)0.023 (7)0.016 (6)0.006 (5)0.014 (5)0.006 (5)
C80.021 (6)0.024 (7)0.030 (7)0.000 (5)0.011 (5)0.009 (6)
C90.018 (5)0.026 (7)0.021 (6)0.010 (5)0.014 (5)0.007 (5)
C100.026 (6)0.036 (8)0.022 (6)0.007 (5)0.019 (5)0.015 (6)
C110.024 (6)0.018 (7)0.033 (7)0.004 (5)0.012 (5)0.016 (6)
C120.010 (5)0.011 (6)0.025 (6)0.000 (4)0.007 (4)0.000 (5)
C130.017 (5)0.009 (6)0.011 (5)0.002 (4)0.002 (4)0.001 (4)
C140.028 (4)0.021 (5)0.014 (4)0.009 (4)0.009 (3)0.011 (4)
C150.028 (4)0.021 (5)0.014 (4)0.009 (4)0.009 (3)0.011 (4)
C160.029 (6)0.028 (7)0.018 (6)0.016 (6)0.013 (5)0.008 (5)
C170.024 (6)0.025 (7)0.004 (5)0.005 (5)0.003 (4)0.001 (5)
C180.033 (6)0.029 (7)0.023 (6)0.018 (6)0.014 (5)0.019 (6)
C190.053 (8)0.049 (9)0.022 (7)0.026 (7)0.020 (6)0.023 (7)
C200.020 (6)0.021 (7)0.020 (6)0.004 (5)0.003 (5)0.003 (5)
C210.023 (6)0.048 (9)0.033 (7)0.013 (6)0.006 (5)0.034 (7)
C220.033 (6)0.026 (7)0.025 (7)0.010 (6)0.012 (5)0.008 (6)
C230.037 (7)0.020 (7)0.007 (5)0.000 (5)0.003 (5)0.004 (5)
C240.030 (7)0.042 (9)0.043 (8)0.005 (6)0.016 (6)0.024 (7)
Geometric parameters (Å, º) top
Hg1—C132.076 (10)O2—C211.457 (12)
Hg1—C122.087 (10)O3—C221.450 (14)
Hg1—O12.765 (7)O4—C241.415 (13)
Hg1—O22.844 (9)O4—C231.427 (12)
Hg2—C182.065 (11)C1—C21.374 (15)
Hg2—C12.078 (11)C1—C61.446 (14)
Hg2—O22.850 (8)C2—C31.357 (15)
Hg3—C62.064 (10)C3—C41.395 (15)
Hg3—C72.083 (10)C4—C51.356 (15)
Hg3—O32.890 (8)C5—C61.368 (15)
F1—C21.366 (12)C7—C81.374 (14)
F2—C31.352 (13)C7—C121.404 (15)
F3—C41.345 (13)C8—C91.418 (15)
F4—C51.383 (12)C9—C101.360 (16)
F5—C81.355 (13)C10—C111.358 (15)
F6—C91.350 (11)C11—C121.399 (15)
F7—C101.353 (11)C13—C141.379 (14)
F8—C111.341 (12)C13—C181.427 (14)
F9—C141.373 (11)C14—C151.366 (14)
F10—C151.330 (12)C15—C161.389 (15)
F11—C161.350 (12)C16—C171.351 (16)
F12—C171.380 (12)C17—C181.400 (14)
O1—C201.404 (13)C20—C211.480 (15)
O1—C191.447 (12)C22—C231.484 (15)
C13—Hg1—C12174.4 (4)C11—C10—F7121.1 (11)
C18—Hg2—C1175.0 (4)C11—C10—C9121.2 (10)
C6—Hg3—C7175.8 (4)F7—C10—C9117.6 (10)
C20—O1—C19111.1 (9)F8—C11—C10118.9 (10)
C24—O4—C23112.5 (8)F8—C11—C12119.7 (9)
C2—C1—C6117.7 (10)C10—C11—C12121.4 (10)
C2—C1—Hg2121.4 (8)C7—C12—C11118.4 (9)
C6—C1—Hg2120.8 (8)C7—C12—Hg1121.8 (8)
C3—C2—F1117.8 (10)C11—C12—Hg1119.8 (8)
C3—C2—C1122.9 (11)C14—C13—C18117.4 (9)
F1—C2—C1119.3 (10)C14—C13—Hg1120.0 (8)
C2—C3—F2121.0 (10)C18—C13—Hg1122.5 (8)
C2—C3—C4120.4 (11)C15—C14—F9117.1 (9)
F2—C3—C4118.6 (10)C15—C14—C13124.5 (10)
F3—C4—C5123.8 (10)F9—C14—C13118.4 (9)
F3—C4—C3119.3 (10)F10—C15—C14122.3 (10)
C5—C4—C3116.9 (11)F10—C15—C16119.7 (9)
C4—C5—C6125.6 (11)C14—C15—C16118.0 (10)
C4—C5—F4116.0 (10)C17—C16—F11122.0 (10)
C6—C5—F4118.4 (10)C17—C16—C15119.5 (10)
C5—C6—C1116.5 (10)F11—C16—C15118.5 (10)
C5—C6—Hg3120.4 (8)C16—C17—F12117.5 (9)
C1—C6—Hg3123.1 (8)C16—C17—C18123.7 (10)
C8—C7—C12119.4 (10)F12—C17—C18118.7 (10)
C8—C7—Hg3119.1 (9)C17—C18—C13116.9 (10)
C12—C7—Hg3121.5 (7)C17—C18—Hg2121.6 (8)
F5—C8—C7121.3 (10)C13—C18—Hg2121.3 (8)
F5—C8—C9117.7 (10)O1—C20—C21110.6 (10)
C7—C8—C9121.0 (11)O2—C21—C20111.5 (9)
F6—C9—C10122.0 (10)O3—C22—C23109.9 (9)
F6—C9—C8119.4 (10)O4—C23—C22110.2 (8)
C10—C9—C8118.6 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.842.042.771 (11)145
O3—H3···O4i0.841.862.694 (10)171
C21—H21B···F6ii0.992.523.480 (14)162
C23—H23A···F10iii0.992.483.109 (12)121
C23—H23B···F11iv0.992.473.301 (12)141
C24—H24B···F5ii0.982.543.339 (14)138
C24—H24C···F2v0.982.463.352 (15)152
C19—H19B···F2vi0.982.533.207 (13)126
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x, y1, z; (iv) x, y+2, z+1; (v) x, y+1, z+1; (vi) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.842.042.771 (11)144.6
O3—H3···O4i0.841.862.694 (10)170.8
C21—H21B···F6ii0.992.523.480 (14)162.2
C23—H23A···F10iii0.992.483.109 (12)121.2
C23—H23B···F11iv0.992.473.301 (12)141.3
C24—H24B···F5ii0.982.543.339 (14)138.2
C24—H24C···F2v0.982.463.352 (15)152.0
C19—H19B···F2vi0.982.533.207 (13)126.4
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x, y1, z; (iv) x, y+2, z+1; (v) x, y+1, z+1; (vi) x, y, z1.
 

Acknowledgements

The authors are grateful for NSF support via DMR-0934212 (PREM).

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, H., Diaz, M. & Hawthorne, M. F. (1999). Tetrahedron Lett. 40, 7651–7655.  Web of Science CrossRef CAS Google Scholar
First citationSartori, P. & Golloch, A. (1968). Chem. Ber. 101, 2004–2009.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, T. J., Burress, C. N. & Gabbaï, F. P. (2007). Organometallics, 26, 5252–5263.  Web of Science CrossRef CAS Google Scholar
First citationTikhonova, I. A., Dolgushin, F. M., Tugashov, K. I., Petrovskii, P. V., Furin, G. G. & Shur, V. B. (2002). J. Organomet. Chem. 654, 123–131.  Web of Science CSD CrossRef CAS Google Scholar
First citationTikhonova, I. A., Yakovenko, A. A., Tugashov, K. I., Dolgushin, F. M., Petrovskii, P. V., Minacheva, M. K., Strunin, B. N. & Shur, V. B. (2013). Russ. Chem. Bull. 62, 710–715.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds