organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-N-[1-(Aziridin-1-yl)-2,2,2-tri­fluoro­ethyl­­idene]-4-bromo­aniline

aDepartment of Chemistry and Chemical Technology, Togliatti State University, 14 Belorusskaya St, Togliatti 445667, Russian Federation, bNMR Laboratory, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, B-334, Moscow 119991, Russian Federation, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: a.s.bunev@gmail.com

(Received 2 April 2014; accepted 9 April 2014; online 12 April 2014)

The title compound, C10H8BrF3N2, crystallizes with two independent mol­ecules in the asymmetric unit, which can be considered as being related by a pseudo-inversion center, so their conformations are different; the corresponding N=C—N—C torsion angles are 54.6 (5) and −50.5 (5)°. In the crystal, mol­ecules related by translation in [001] inter­act through short inter­molecular Br⋯F contacts [3.276 (2) and 3.284 (2) Å], thus forming two types of crystallographically independent chains.

Related literature

For applications of aziridines, see: Tanner (1994[Tanner, D. (1994). Angew. Chem. Int. Ed. 33, 599-619.]); Remers & Iyengar (1995[Remers, W. A. & Iyengar, B. C. (1995). Cancer Chemother. Agents, pp. 584-592.]); Armstrong et al. (1996[Armstrong, R. W., Tellew, J. E. & Moran, E. J. (1996). Tetrahedron Lett. 37, 447-450.]); Katoh et al. (1996[Katoh, T., Itoh, E., Yoshino, T. & Terashima, S. (1996). Tetrahedron Lett. 37, 3471-3474.]); Schirmeister (1999a[Schirmeister, T. (1999a). Biopolym. Pept. Sci. 51, 87-97.],b[Schirmeister, T. (1999b). J. Med. Chem. 42, 560-572.]); McCoull & Davis (2000[McCoull, W. & Davis, F. A. (2000). Synthesis, pp. 1347-1365.]). For the crystal structures of related compounds, see: Chinnakali et al. (1998[Chinnakali, K., Fun, H.-K., Sriraghavan, K., Ramakrishnan, V. T. & Razak, I. A. (1998). Acta Cryst. C54, 1299-1301.]); McLaren & Sweeney (1999[McLaren, A. B. & Sweeney, J. B. (1999). Org. Lett. 1, 1339-1341.]); Zhu et al. (2006[Zhu, J., Zhang, M.-J., Liu, Q.-W. & Pan, Z.-H. (2006). Acta Cryst. E62, o1507-o1508.]); Moragas Solà et al. (2010[Moragas Solà, T., Lewis, W., Bettigeri, S. V., Stockman, R. A. & Forbes, D. C. (2010). Acta Cryst. E66, o3335.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8BrF3N2

  • Mr = 293.09

  • Monoclinic, P 21

  • a = 11.642 (2) Å

  • b = 8.5455 (16) Å

  • c = 11.846 (2) Å

  • β = 116.106 (3)°

  • V = 1058.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.90 mm−1

  • T = 120 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.388, Tmax = 0.442

  • 13846 measured reflections

  • 6146 independent reflections

  • 5186 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.118

  • S = 1.01

  • 6146 reflections

  • 289 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.97 e Å−3

  • Δρmin = −0.86 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2866 Friedel pairs

  • Absolute structure parameter: 0.025 (11)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Aziridines are important heterocyclic compounds present in unusual natural products that display strong biological activity (Tanner, 1994; McCoull & Davis, 2000). For instance, azinomycines A and B isolated from the fermentation broth of Streptomyces griseofuscus and (+)-FR900482 isolated from the culture broth of Streptomyces sandaensis are potent antitumor antibiotics that exhibit exceptional activity against various types of mammalian solid tumors. Mitomycin C is an aziridine-containing antibiotic produced by Streptomyces caespitosus, whose antineoplastic activity is associated with the high reactivity of the strained aziridine ring (Remers & Iyengar, 1995; Armstrong et al., 1996; Katoh et al., 1996). Recently novel types of peptidic cysteine protease inhibitors containing aziridine-2,3-dicarboxylic acid have been designed and synthesized (Schirmeister, 1999a,b).

In this work, a new substituted aziridine, C10H8BrF3N2 (I), was prepared by the reaction N-(4-bromophenyl)-2,2,2-trifluoroethenecarbonimidoyl chloride with aziridine at room temperature (Figure 1), and its structure was unambiguously established by the X-ray diffraction study (Figure 2).

The title compound I crystallizes in chiral monoclinic space group P21 with two crystallographically independent molecules in the unit cell. The two crystallographically independent molecules represent different conformers distinguishing by rotation of the aziridine substituent around the ordinary (CF3)C—N bond (the corresponding N1—C1—N2—C3 and N3—C11—N4—C13 totsion angles are 54.6 (5) and –50.5 (5)o, respectively). The bond lengths and angles in I are in a good agreement with those found in the related compounds (Chinnakali et al., 1998; McLaren & Sweeney, 1999; Zhu et al., 2006; Moragas Solà et al., 2010). The molecule of I is the Z-isomer relative to the double CN bond. The p-bromo-phenyl substituent is twisted by 38.42 (12) and 39.61 (10)% (for the two crystallographically independent molecules, respectively) relative to the double bond plane. Tha absolute structure of I was objectively determined by the refinement of Flack parameter, which has become equal to 0.025 (11).

In the crystal, the molecules of I form infinite chains along [001] by the intermolecular secondary Br1···F1i (2.276 (2) Å) and Br2···F5ii (3.284 (2) Å) interactions (Figure 3) [symmetry codes: (i) x, y, 1 + z; (ii) x, y, –1 + z]. The chains consist of the conformationally similar molecules and arranged at van der Waals distances.

Related literature top

For applications of aziridines, see: Tanner (1994); Remers & Iyengar (1995); Armstrong et al. (1996); Katoh et al. (1996); Schirmeister (1999a,b); McCoull & Davis (2000). For the crystal structures of related compounds, see: Chinnakali et al. (1998); McLaren & Sweeney (1999); Zhu et al. (2006); Moragas Solà et al. (2010).

Experimental top

To a mixture of aziridine (1.29 mL, 1.075 g, 25 mmol), triethylamine (3.48 mL, 2.525 g, 25 mmol), and benzene (35 mL) was added slowly (20 min) a solution of N-(4-bromophenyl)-2,2,2-trifluoroethenecarbonimidoyl chloride in benzene (50 mL). The mixture was stirred for 5 h. The triethylamine hydrochloride was filtered, and the solvent was evaporated to give of crude product. Yield is 75%. The single-crystal of the product I was obtained by slow crystallization from EtOAc/Hexane (1:9). M.p. = 324–325 K. IR (KBr), ν/cm-1: 3408, 1715, 1629, 1492, 1295, 1200, 1155, 996, 828, 531. 1H NMR (600 MHz, DMSO-d6, 304 K): 7.56 (d, 2H, J = 8.2), 6.99 (d, 2H, J = 8.7), 2.21 (br. s, 4H). Anal. Calcd for C10H8BrF3N2: C, 33.54; H, 1.41. Found: C, 33.61; H, 1.52.

Refinement top

All hydrogen atoms were placed in the calculated positions with C—H = 0.95 (aryl-H) and 0.99 (methylene-H) Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.2Ueq(C)]. There are high positive residual densities of 1.44–1.97 eÅ–3 near the Br1 and Br2 centers (0.79–0.90 Å) due to considerable absorption effects which could not be completely corrected.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The synthesis of (Z)-N-[1-(aziridin-1-yl)-2,2,2-trifluoroethylidene]-4-bromoaniline.
[Figure 2] Fig. 2. Molecular structure of I (two crystallographically independent molecules representing the different conformers are shown). Displacement ellipsoids are presented at the 50% probability level. H atoms are depicted as small spheres of arbitrary radius.
[Figure 3] Fig. 3. A portion of the crystal structure of I demonstrating the chains of the molecules extended along [001]. The intermolecular secondary Br···F interactions are depicted by dashed lines.
(Z)-N-[1-(Aziridin-1-yl)-2,2,2-trifluoroethylidene]-4-bromoaniline top
Crystal data top
C10H8BrF3N2F(000) = 576
Mr = 293.09Dx = 1.840 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4691 reflections
a = 11.642 (2) Åθ = 3.1–29.9°
b = 8.5455 (16) ŵ = 3.90 mm1
c = 11.846 (2) ÅT = 120 K
β = 116.106 (3)°Prism, colourless
V = 1058.3 (3) Å30.30 × 0.25 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6146 independent reflections
Radiation source: fine-focus sealed tube5186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1616
Tmin = 0.388, Tmax = 0.442k = 1211
13846 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0665P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
6146 reflectionsΔρmax = 1.97 e Å3
289 parametersΔρmin = 0.86 e Å3
1 restraintAbsolute structure: Flack (1983), 2866 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.025 (11)
Crystal data top
C10H8BrF3N2V = 1058.3 (3) Å3
Mr = 293.09Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.642 (2) ŵ = 3.90 mm1
b = 8.5455 (16) ÅT = 120 K
c = 11.846 (2) Å0.30 × 0.25 × 0.25 mm
β = 116.106 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
6146 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
5186 reflections with I > 2σ(I)
Tmin = 0.388, Tmax = 0.442Rint = 0.043
13846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.118Δρmax = 1.97 e Å3
S = 1.01Δρmin = 0.86 e Å3
6146 reflectionsAbsolute structure: Flack (1983), 2866 Friedel pairs
289 parametersAbsolute structure parameter: 0.025 (11)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.11522 (3)0.26312 (4)1.18963 (3)0.03080 (7)
F10.09963 (18)0.2247 (3)0.45774 (18)0.0409 (5)
F20.0174 (2)0.4285 (3)0.3927 (2)0.0451 (5)
F30.1028 (2)0.2017 (3)0.35005 (19)0.0444 (6)
N10.0732 (2)0.2970 (3)0.6606 (2)0.0273 (6)
N20.1541 (2)0.2779 (3)0.5405 (2)0.0275 (5)
C10.0288 (3)0.2907 (3)0.5599 (3)0.0251 (6)
C20.0130 (3)0.2852 (4)0.4393 (3)0.0295 (7)
C30.2122 (3)0.3864 (4)0.5954 (3)0.0319 (7)
H3A0.16070.47710.64280.038*
H3B0.27030.34260.62830.038*
C40.2560 (3)0.3829 (4)0.4556 (3)0.0345 (8)
H4A0.34080.33670.40240.041*
H4B0.23110.47130.41700.041*
C50.0744 (3)0.2934 (4)0.7808 (3)0.0255 (6)
C60.0055 (3)0.1941 (4)0.8088 (3)0.0283 (7)
H60.06830.13270.74430.034*
C70.0070 (3)0.1857 (4)0.9306 (3)0.0285 (7)
H70.04660.11830.95020.034*
C80.0988 (2)0.2770 (4)1.0237 (3)0.0267 (6)
C90.1785 (3)0.3738 (4)0.9972 (3)0.0274 (6)
H90.24060.43581.06190.033*
C100.1679 (3)0.3806 (4)0.8765 (3)0.0279 (7)
H100.22450.44480.85870.034*
Br20.42565 (3)0.56843 (4)0.34093 (3)0.03331 (7)
F40.6460 (2)0.5903 (4)1.18097 (19)0.0506 (6)
F50.44343 (19)0.6038 (3)1.07301 (19)0.0455 (6)
F60.5344 (2)0.3820 (3)1.1287 (2)0.0497 (6)
N30.4603 (2)0.5260 (3)0.8663 (2)0.0261 (6)
N40.6881 (2)0.5003 (3)0.9894 (2)0.0273 (6)
C110.5624 (3)0.5129 (4)0.9676 (3)0.0241 (6)
C120.5469 (3)0.5233 (4)1.0885 (3)0.0293 (7)
C130.7334 (3)0.3884 (4)0.9255 (3)0.0320 (7)
H13A0.79940.42380.89990.038*
H13B0.67100.31240.86770.038*
C140.7710 (3)0.3724 (4)1.0628 (3)0.0342 (8)
H14A0.73180.28661.09010.041*
H14B0.86030.39821.12220.041*
C150.4617 (3)0.5305 (3)0.7482 (3)0.0242 (6)
C160.5513 (3)0.6135 (4)0.7248 (3)0.0284 (7)
H160.62050.66340.79230.034*
C170.5408 (3)0.6246 (4)0.6031 (3)0.0283 (7)
H170.60230.68130.58720.034*
C180.4399 (3)0.5519 (4)0.5065 (3)0.0263 (6)
C190.3487 (3)0.4687 (4)0.5270 (3)0.0294 (7)
H190.28020.41840.45920.035*
C200.3586 (3)0.4601 (4)0.6479 (3)0.0280 (7)
H200.29520.40610.66270.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02611 (10)0.03998 (15)0.02471 (11)0.00583 (12)0.00971 (9)0.00366 (12)
F10.0358 (8)0.0569 (14)0.0337 (8)0.0102 (8)0.0188 (7)0.0010 (8)
F20.0660 (11)0.0346 (11)0.0429 (9)0.0019 (9)0.0315 (9)0.0065 (8)
F30.0423 (10)0.0577 (13)0.0293 (8)0.0130 (10)0.0122 (8)0.0137 (9)
N10.0243 (9)0.0302 (13)0.0260 (10)0.0010 (9)0.0099 (8)0.0010 (9)
N20.0209 (9)0.0305 (12)0.0267 (10)0.0031 (10)0.0066 (8)0.0002 (10)
C10.0245 (10)0.0251 (14)0.0239 (11)0.0043 (10)0.0088 (9)0.0046 (10)
C20.0301 (12)0.0265 (15)0.0278 (12)0.0035 (11)0.0090 (10)0.0042 (11)
C30.0260 (12)0.0347 (16)0.0347 (14)0.0017 (12)0.0130 (11)0.0019 (12)
C40.0251 (12)0.0389 (17)0.0343 (14)0.0007 (13)0.0082 (11)0.0002 (13)
C50.0211 (10)0.0302 (15)0.0234 (11)0.0010 (10)0.0082 (9)0.0009 (10)
C60.0250 (12)0.0275 (14)0.0305 (13)0.0021 (11)0.0104 (10)0.0007 (11)
C70.0291 (12)0.0238 (14)0.0307 (13)0.0041 (11)0.0112 (11)0.0021 (11)
C80.0255 (10)0.0297 (14)0.0276 (11)0.0030 (12)0.0143 (9)0.0019 (11)
C90.0192 (11)0.0283 (14)0.0300 (13)0.0010 (10)0.0064 (10)0.0046 (11)
C100.0201 (10)0.0293 (14)0.0321 (13)0.0019 (11)0.0093 (10)0.0018 (12)
Br20.03588 (13)0.03795 (15)0.02514 (11)0.00254 (13)0.01254 (10)0.00202 (12)
F40.0362 (9)0.0816 (18)0.0296 (8)0.0126 (11)0.0106 (7)0.0142 (11)
F50.0434 (9)0.0601 (15)0.0381 (9)0.0166 (10)0.0227 (8)0.0032 (9)
F60.0759 (12)0.0382 (11)0.0497 (10)0.0016 (11)0.0411 (9)0.0083 (9)
N30.0213 (9)0.0281 (13)0.0247 (10)0.0008 (9)0.0064 (8)0.0010 (9)
N40.0192 (9)0.0300 (12)0.0285 (11)0.0033 (9)0.0067 (9)0.0002 (10)
C110.0231 (11)0.0207 (12)0.0267 (12)0.0004 (10)0.0093 (10)0.0006 (10)
C120.0237 (12)0.0372 (16)0.0232 (12)0.0025 (11)0.0068 (10)0.0014 (11)
C130.0301 (12)0.0297 (15)0.0361 (14)0.0028 (12)0.0144 (11)0.0051 (12)
C140.0228 (12)0.0367 (16)0.0347 (15)0.0057 (12)0.0049 (11)0.0074 (13)
C150.0184 (10)0.0257 (14)0.0260 (11)0.0019 (9)0.0073 (9)0.0011 (10)
C160.0234 (11)0.0303 (15)0.0285 (12)0.0025 (10)0.0088 (10)0.0019 (11)
C170.0232 (11)0.0294 (14)0.0301 (13)0.0018 (11)0.0095 (10)0.0076 (11)
C180.0234 (11)0.0309 (15)0.0221 (11)0.0038 (11)0.0077 (9)0.0029 (11)
C190.0215 (11)0.0363 (16)0.0274 (12)0.0006 (11)0.0080 (10)0.0029 (12)
C200.0186 (10)0.0313 (14)0.0302 (13)0.0033 (11)0.0073 (10)0.0033 (12)
Geometric parameters (Å, º) top
Br1—C81.893 (3)Br2—C181.899 (3)
F1—C21.335 (4)F4—C121.322 (4)
F2—C21.335 (4)F5—C121.328 (4)
F3—C21.322 (4)F6—C121.329 (4)
N1—C11.261 (3)N3—C111.269 (4)
N1—C51.418 (4)N3—C151.407 (4)
N2—C11.377 (4)N4—C111.373 (4)
N2—C31.459 (4)N4—C131.456 (4)
N2—C41.474 (4)N4—C141.464 (4)
C1—C21.520 (4)C11—C121.522 (5)
C3—C41.504 (5)C13—C141.493 (5)
C3—H3A0.9900C13—H13A0.9900
C3—H3B0.9900C13—H13B0.9900
C4—H4A0.9900C14—H14A0.9900
C4—H4B0.9900C14—H14B0.9900
C5—C101.392 (4)C15—C161.387 (4)
C5—C61.403 (5)C15—C201.399 (4)
C6—C71.387 (5)C16—C171.396 (5)
C6—H60.9500C16—H160.9500
C7—C81.389 (4)C17—C181.375 (4)
C7—H70.9500C17—H170.9500
C8—C91.378 (4)C18—C191.386 (5)
C9—C101.382 (4)C19—C201.387 (5)
C9—H90.9500C19—H190.9500
C10—H100.9500C20—H200.9500
C1—N1—C5122.5 (3)C11—N3—C15121.8 (3)
C1—N2—C3122.7 (3)C11—N4—C13123.6 (3)
C1—N2—C4122.7 (3)C11—N4—C14122.7 (3)
C3—N2—C461.7 (2)C13—N4—C1461.5 (2)
N1—C1—N2130.5 (3)N3—C11—N4131.5 (3)
N1—C1—C2115.9 (3)N3—C11—C12115.8 (3)
N2—C1—C2113.4 (2)N4—C11—C12112.6 (2)
F3—C2—F2107.0 (2)F4—C12—F5107.3 (3)
F3—C2—F1107.2 (3)F4—C12—F6106.8 (3)
F2—C2—F1106.2 (3)F5—C12—F6106.5 (3)
F3—C2—C1112.8 (3)F4—C12—C11112.6 (3)
F2—C2—C1111.2 (3)F5—C12—C11112.1 (2)
F1—C2—C1112.0 (2)F6—C12—C11111.2 (3)
N2—C3—C459.7 (2)N4—C13—C1459.5 (2)
N2—C3—H3A117.8N4—C13—H13A117.8
C4—C3—H3A117.8C14—C13—H13A117.8
N2—C3—H3B117.8N4—C13—H13B117.8
C4—C3—H3B117.8C14—C13—H13B117.8
H3A—C3—H3B114.9H13A—C13—H13B115.0
N2—C4—C358.6 (2)N4—C14—C1359.0 (2)
N2—C4—H4A117.9N4—C14—H14A117.9
C3—C4—H4A117.9C13—C14—H14A117.9
N2—C4—H4B117.9N4—C14—H14B117.9
C3—C4—H4B117.9C13—C14—H14B117.9
H4A—C4—H4B115.1H14A—C14—H14B115.0
C10—C5—C6119.6 (3)C16—C15—C20119.3 (3)
C10—C5—N1117.7 (3)C16—C15—N3123.4 (3)
C6—C5—N1122.4 (3)C20—C15—N3116.9 (3)
C7—C6—C5120.0 (3)C15—C16—C17120.6 (3)
C7—C6—H6120.0C15—C16—H16119.7
C5—C6—H6120.0C17—C16—H16119.7
C6—C7—C8119.3 (3)C18—C17—C16118.9 (3)
C6—C7—H7120.4C18—C17—H17120.5
C8—C7—H7120.4C16—C17—H17120.5
C9—C8—C7121.1 (3)C17—C18—C19121.7 (3)
C9—C8—Br1120.2 (2)C17—C18—Br2118.7 (2)
C7—C8—Br1118.7 (2)C19—C18—Br2119.6 (2)
C8—C9—C10119.9 (3)C18—C19—C20119.1 (3)
C8—C9—H9120.1C18—C19—H19120.5
C10—C9—H9120.1C20—C19—H19120.5
C9—C10—C5120.2 (3)C19—C20—C15120.3 (3)
C9—C10—H10119.9C19—C20—H20119.9
C5—C10—H10119.9C15—C20—H20119.9
C5—N1—C1—N20.8 (5)C15—N3—C11—N40.2 (5)
C5—N1—C1—C2176.2 (3)C15—N3—C11—C12175.1 (3)
C3—N2—C1—N154.6 (5)C13—N4—C11—N350.5 (5)
C4—N2—C1—N1129.6 (4)C14—N4—C11—N3125.8 (4)
C3—N2—C1—C2130.0 (3)C13—N4—C11—C12134.1 (3)
C4—N2—C1—C254.9 (4)C14—N4—C11—C1258.8 (4)
N1—C1—C2—F3146.9 (3)N3—C11—C12—F4146.2 (3)
N2—C1—C2—F329.3 (4)N4—C11—C12—F430.0 (4)
N1—C1—C2—F292.9 (3)N3—C11—C12—F525.1 (4)
N2—C1—C2—F291.0 (3)N4—C11—C12—F5151.1 (3)
N1—C1—C2—F125.8 (4)N3—C11—C12—F694.0 (3)
N2—C1—C2—F1150.3 (3)N4—C11—C12—F689.9 (3)
C1—N2—C3—C4112.6 (3)C11—N4—C13—C14112.2 (3)
C1—N2—C4—C3112.5 (3)C11—N4—C14—C13113.6 (3)
C1—N1—C5—C10145.7 (3)C11—N3—C15—C1641.6 (4)
C1—N1—C5—C640.9 (4)C11—N3—C15—C20145.2 (3)
C10—C5—C6—C71.3 (5)C20—C15—C16—C171.3 (5)
N1—C5—C6—C7174.6 (3)N3—C15—C16—C17174.3 (3)
C5—C6—C7—C80.3 (5)C15—C16—C17—C180.1 (5)
C6—C7—C8—C90.9 (5)C16—C17—C18—C190.2 (5)
C6—C7—C8—Br1179.6 (2)C16—C17—C18—Br2179.6 (2)
C7—C8—C9—C100.2 (5)C17—C18—C19—C200.7 (5)
Br1—C8—C9—C10178.5 (2)Br2—C18—C19—C20178.7 (2)
C8—C9—C10—C51.9 (5)C18—C19—C20—C151.9 (5)
C6—C5—C10—C92.5 (5)C16—C15—C20—C192.2 (5)
N1—C5—C10—C9176.0 (3)N3—C15—C20—C19175.7 (3)

Experimental details

Crystal data
Chemical formulaC10H8BrF3N2
Mr293.09
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)11.642 (2), 8.5455 (16), 11.846 (2)
β (°) 116.106 (3)
V3)1058.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.90
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.388, 0.442
No. of measured, independent and
observed [I > 2σ(I)] reflections
13846, 6146, 5186
Rint0.043
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.118, 1.01
No. of reflections6146
No. of parameters289
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.97, 0.86
Absolute structureFlack (1983), 2866 Friedel pairs
Absolute structure parameter0.025 (11)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to the Ministry of Education and Science of the Russian Federation (State contract No. 426).

References

First citationArmstrong, R. W., Tellew, J. E. & Moran, E. J. (1996). Tetrahedron Lett. 37, 447–450.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinnakali, K., Fun, H.-K., Sriraghavan, K., Ramakrishnan, V. T. & Razak, I. A. (1998). Acta Cryst. C54, 1299–1301.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKatoh, T., Itoh, E., Yoshino, T. & Terashima, S. (1996). Tetrahedron Lett. 37, 3471–3474.  CrossRef CAS Web of Science Google Scholar
First citationMcCoull, W. & Davis, F. A. (2000). Synthesis, pp. 1347–1365.  Web of Science CrossRef Google Scholar
First citationMcLaren, A. B. & Sweeney, J. B. (1999). Org. Lett. 1, 1339–1341.  Web of Science CrossRef CAS Google Scholar
First citationMoragas Solà, T., Lewis, W., Bettigeri, S. V., Stockman, R. A. & Forbes, D. C. (2010). Acta Cryst. E66, o3335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRemers, W. A. & Iyengar, B. C. (1995). Cancer Chemother. Agents, pp. 584–592.  Google Scholar
First citationSchirmeister, T. (1999a). Biopolym. Pept. Sci. 51, 87–97.  Web of Science CrossRef CAS Google Scholar
First citationSchirmeister, T. (1999b). J. Med. Chem. 42, 560–572.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanner, D. (1994). Angew. Chem. Int. Ed. 33, 599–619.  CrossRef Web of Science Google Scholar
First citationZhu, J., Zhang, M.-J., Liu, Q.-W. & Pan, Z.-H. (2006). Acta Cryst. E62, o1507–o1508.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds