metal-organic compounds
1,4-Diazoniabicyclo[2.2.2]octane tetrachloridocadmate(II) monohydrate
aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia
*Correspondence e-mail: habib.boughzala@ipein.rnu.tn
The 6H14N2)[CdCl4]·H2O contained one 1,4-diazabicyclo[2.2.2]octane dication, a tetrahedral CdCl42− anion and a lattice water molecule. In the crystal, the solvate water molecule interacts with the cationic and anionic species via N—H⋯O and O—H⋯Cl [O⋯Cl = 3.289 (7) Å] hydrogen-bond interactions, respectively, leading to a layered supramolecular structure extending parallel to (011).
of the title compound (CCCDC reference: 967916
Related literature
For background to this class of compounds, see: Wei & Willett (2002); Billing & Lemmerer (2009); Samet et al. (2010) Lemmerer & Billing (2012); Ben Rhaiem et al. (2013). For related structures, see: Sun & Qu (2005); Zhang & Zhu (2012).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97; molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 967916
10.1107/S1600536814007533/ds2238sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814007533/ds2238Isup2.hkl
The title compound (C6H14N2) [CdCl4]·H2O, (I), was obtained by the reaction of cadmium iodide CdI2 (0.19 g, 0.5 mmol) with DABCO (1,4-diazabicyclo[2.2.2]octane) (0.112 g, 1 mmol) in aqueous hydrochloric acid solution with pH ranging between 3 and 4. The mixture was stirred for several minutes. Colorless crystals suitable for X-ray
were obtained by slow evaporation at room temperature over 2 weeks.Hydrogen water molecules are omited. The C—H and N—H hydrogen atoms positions are generated geometrically by HFIX SHELXL command.
Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell
CAD-4 EXPRESS (Duisenberg, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).(C6H14N2)[CdCl4]·H2O | F(000) = 752 |
Mr = 386.40 | Dx = 1.959 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2837 reflections |
a = 8.528 (5) Å | θ = 2.4–27° |
b = 11.653 (2) Å | µ = 2.47 mm−1 |
c = 13.114 (6) Å | T = 298 K |
V = 1303.2 (10) Å3 | Prism, colorless |
Z = 4 | 0.54 × 0.43 × 0.29 mm |
Enraf–Nonius CAD-4 diffractometer | 2632 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.075 |
Graphite monochromator | θmax = 27.0°, θmin = 2.3° |
non–profiled ω/2θ scans | h = −10→6 |
Absorption correction: ψ scan (North et al. (1968) | k = −14→1 |
Tmin = 0.283, Tmax = 0.536 | l = −16→16 |
5639 measured reflections | 2 standard reflections every 120 min |
2837 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H-atom parameters not refined |
S = 1.19 | w = 1/[σ2(Fo2) + (0.0587P)2 + 1.6133P] where P = (Fo2 + 2Fc2)/3 |
2837 reflections | (Δ/σ)max = 0.001 |
135 parameters | Δρmax = 1.58 e Å−3 |
10 restraints | Δρmin = −1.44 e Å−3 |
(C6H14N2)[CdCl4]·H2O | V = 1303.2 (10) Å3 |
Mr = 386.40 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.528 (5) Å | µ = 2.47 mm−1 |
b = 11.653 (2) Å | T = 298 K |
c = 13.114 (6) Å | 0.54 × 0.43 × 0.29 mm |
Enraf–Nonius CAD-4 diffractometer | 2632 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al. (1968) | Rint = 0.075 |
Tmin = 0.283, Tmax = 0.536 | 2 standard reflections every 120 min |
5639 measured reflections | intensity decay: 1% |
2837 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 10 restraints |
wR(F2) = 0.134 | H-atom parameters not refined |
S = 1.19 | Δρmax = 1.58 e Å−3 |
2837 reflections | Δρmin = −1.44 e Å−3 |
135 parameters |
Experimental. Number of psi-scan sets used was 5 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd | 0.74636 (5) | 0.52500 (4) | 0.50315 (3) | 0.04606 (17) | |
Cl1 | 0.52000 (18) | 0.40196 (13) | 0.46103 (13) | 0.0465 (3) | |
Cl2 | 0.7583 (2) | 0.53068 (14) | 0.69230 (11) | 0.0544 (4) | |
Cl3 | 0.9940 (2) | 0.43346 (15) | 0.46078 (15) | 0.0557 (4) | |
Cl4 | 0.6884 (2) | 0.71103 (15) | 0.41831 (12) | 0.0542 (4) | |
C1 | 0.4091 (7) | 0.6836 (5) | 0.2060 (5) | 0.0457 (13) | |
H1A | 0.498 (5) | 0.6620 (12) | 0.153 (3) | 0.055* | |
H1B | 0.4419 (18) | 0.761 (4) | 0.2435 (19) | 0.055* | |
C2 | 0.2540 (8) | 0.6998 (6) | 0.1512 (5) | 0.0514 (13) | |
H2A | 0.2282 (17) | 0.776 (5) | 0.1496 (5) | 0.062* | |
H2B | 0.2617 (9) | 0.6741 (16) | 0.086 (4) | 0.062* | |
C3 | 0.2824 (8) | 0.6248 (7) | 0.3636 (6) | 0.0583 (18) | |
H3A | 0.3266 (11) | 0.6796 (11) | 0.4005 (8) | 0.070* | |
H3B | 0.2613 (9) | 0.5660 (12) | 0.4042 (9) | 0.070* | |
C4 | 0.1319 (9) | 0.6690 (6) | 0.3149 (6) | 0.065 (2) | |
H4A | 0.0481 (16) | 0.6394 (8) | 0.3470 (8) | 0.078* | |
H4B | 0.1274 (9) | 0.7458 (14) | 0.3198 (7) | 0.078* | |
C5 | 0.3284 (9) | 0.4857 (5) | 0.2294 (6) | 0.0519 (16) | |
H5A | 0.3330 (9) | 0.4244 (11) | 0.2713 (9) | 0.062* | |
H5B | 0.3874 (13) | 0.4708 (6) | 0.1738 (11) | 0.062* | |
C6 | 0.1623 (9) | 0.5077 (6) | 0.1985 (7) | 0.0586 (18) | |
H6A | 0.0970 (14) | 0.4692 (9) | 0.2392 (9) | 0.070* | |
H6B | 0.1468 (9) | 0.4843 (7) | 0.1344 (12) | 0.070* | |
N1 | 0.3888 (6) | 0.5887 (5) | 0.2823 (4) | 0.0431 (11) | |
H1 | 0.477 (2) | 0.5730 (6) | 0.3082 (7) | 0.052* | |
N2 | 0.1318 (6) | 0.6341 (5) | 0.2067 (5) | 0.0554 (15) | |
H2 | 0.043 (2) | 0.6488 (6) | 0.1811 (8) | 0.067* | |
O | 0.1563 (8) | 0.2409 (6) | 0.3238 (6) | 0.0861 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd | 0.0463 (3) | 0.0409 (2) | 0.0510 (3) | 0.00213 (18) | −0.0028 (2) | 0.00245 (17) |
Cl1 | 0.0486 (8) | 0.0402 (7) | 0.0508 (8) | −0.0018 (6) | 0.0024 (6) | −0.0039 (6) |
Cl2 | 0.0613 (8) | 0.0530 (8) | 0.0490 (7) | 0.0058 (9) | −0.0041 (8) | −0.0042 (6) |
Cl3 | 0.0519 (8) | 0.0515 (8) | 0.0635 (9) | 0.0105 (7) | 0.0063 (7) | 0.0105 (8) |
Cl4 | 0.0684 (9) | 0.0423 (7) | 0.0520 (8) | 0.0014 (7) | −0.0163 (7) | 0.0047 (7) |
C1 | 0.042 (3) | 0.034 (3) | 0.061 (3) | −0.005 (2) | 0.004 (3) | 0.007 (3) |
C2 | 0.049 (3) | 0.048 (3) | 0.057 (3) | −0.006 (3) | −0.001 (3) | 0.020 (3) |
C3 | 0.063 (5) | 0.057 (4) | 0.056 (3) | −0.006 (3) | 0.006 (3) | −0.005 (3) |
C4 | 0.062 (4) | 0.046 (4) | 0.087 (5) | 0.012 (3) | 0.032 (4) | 0.012 (4) |
C5 | 0.055 (4) | 0.026 (2) | 0.075 (4) | 0.001 (3) | −0.008 (3) | 0.002 (3) |
C6 | 0.061 (4) | 0.041 (3) | 0.075 (5) | −0.008 (3) | −0.016 (4) | 0.006 (3) |
N1 | 0.042 (2) | 0.040 (2) | 0.047 (3) | 0.002 (2) | −0.005 (2) | 0.004 (2) |
N2 | 0.038 (3) | 0.044 (3) | 0.084 (4) | 0.004 (2) | −0.004 (3) | 0.027 (3) |
O | 0.085 (4) | 0.070 (4) | 0.103 (5) | −0.014 (3) | 0.008 (4) | −0.009 (4) |
Cd—Cl3 | 2.430 (2) | C3—H3B | 0.8860 |
Cd—Cl1 | 2.4673 (18) | C4—N2 | 1.476 (11) |
Cd—Cl2 | 2.4835 (19) | C4—H4A | 0.8977 |
Cd—Cl4 | 2.4864 (17) | C4—H4B | 0.8977 |
C1—N1 | 1.502 (8) | C5—N1 | 1.479 (9) |
C1—C2 | 1.517 (9) | C5—C6 | 1.496 (10) |
C1—H1A | 1.0614 | C5—H5A | 0.9026 |
C1—H1B | 1.0614 | C5—H5B | 0.9026 |
C2—N2 | 1.485 (8) | C6—N2 | 1.499 (9) |
C2—H2A | 0.9127 | C6—H6A | 0.8931 |
C2—H2B | 0.9127 | C6—H6B | 0.8931 |
C3—N1 | 1.461 (9) | N1—H1 | 0.8477 |
C3—C4 | 1.524 (10) | N2—H2 | 0.8420 |
C3—H3A | 0.8860 | ||
Cl3—Cd—Cl1 | 111.93 (7) | N2—C4—H4B | 110.1 |
Cl3—Cd—Cl2 | 101.80 (6) | C3—C4—H4B | 110.1 |
Cl1—Cd—Cl2 | 105.73 (6) | H4A—C4—H4B | 108.4 |
Cl3—Cd—Cl4 | 116.95 (6) | N1—C5—C6 | 108.5 (5) |
Cl1—Cd—Cl4 | 104.53 (6) | N1—C5—H5A | 110.0 |
Cl2—Cd—Cl4 | 115.58 (6) | C6—C5—H5A | 110.0 |
N1—C1—C2 | 107.9 (5) | N1—C5—H5B | 110.0 |
N1—C1—H1A | 110.1 | C6—C5—H5B | 110.0 |
C2—C1—H1A | 110.1 | H5A—C5—H5B | 108.4 |
N1—C1—H1B | 110.1 | C5—C6—N2 | 108.3 (5) |
C2—C1—H1B | 110.1 | C5—C6—H6A | 110.0 |
H1A—C1—H1B | 108.4 | N2—C6—H6A | 110.0 |
N2—C2—C1 | 108.4 (5) | C5—C6—H6B | 110.0 |
N2—C2—H2A | 110.0 | N2—C6—H6B | 110.0 |
C1—C2—H2A | 110.0 | H6A—C6—H6B | 108.4 |
N2—C2—H2B | 110.0 | C3—N1—C5 | 111.1 (6) |
C1—C2—H2B | 110.0 | C3—N1—C1 | 110.2 (5) |
H2A—C2—H2B | 108.4 | C5—N1—C1 | 109.0 (5) |
N1—C3—C4 | 108.4 (6) | C3—N1—H1 | 108.8 |
N1—C3—H3A | 110.0 | C5—N1—H1 | 108.8 |
C4—C3—H3A | 110.0 | C1—N1—H1 | 108.8 |
N1—C3—H3B | 110.0 | C4—N2—C2 | 109.2 (6) |
C4—C3—H3B | 110.0 | C4—N2—C6 | 109.9 (6) |
H3A—C3—H3B | 108.4 | C2—N2—C6 | 110.5 (6) |
N2—C4—C3 | 108.0 (5) | C4—N2—H2 | 109.1 |
N2—C4—H4A | 110.1 | C2—N2—H2 | 109.1 |
C3—C4—H4A | 110.1 | C6—N2—H2 | 109.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···Oi | 0.84 | 2.01 | 2.783 (1) | 151 |
Symmetry code: (i) −x, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···Oi | 0.84 | 2.01 | 2.783 (1) | 151 |
Symmetry code: (i) −x, y+1/2, −z+1/2. |
References
Ben Rhaiem, T., Boughzala, H. & Driss, A. (2013). Acta Cryst. E69, m330. CSD CrossRef IUCr Journals Google Scholar
Billing, D. G. & Lemmerer, A. (2009). CrystEngComm, 11, 1549–1562. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Lemmerer, A. & Billing, D. G. (2012). CrystEngComm, 14, 1954–1966. Web of Science CSD CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Samet, A., Boughzala, H., Khemekhem, H. & Abid, Y. (2010). J. Mol. Struct. 984, 23–29. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, X.-M. & Qu, Y. (2005). Acta Cryst. E61, m1360–m1362. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wei, M. & Willett, R. D. (2002). J. Chem. Crystallogr. 32, 439–445. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, Y. & Zhu, B. H. (2012). Acta Cryst. E68, m687. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, a significant number of organic–inorganic hybrid materials based on metal halide units have been prepared and studied (Lemmerer & Billing, 2012). It has been shown that their structures can vary considerably, ranging from systems based on isolated polyhydra to ones containing extended chains and up to two- or three-dimensional networks (Ben Rhaiem et al., 2013; Samet et al., 2010; Billing & Lemmerer, 2009). Generally, the organic cations contain ammonium groups linked to the anionic framework by hydrogen bonds via halogenous tetrahedral vertices (Sun & Qu, 2005) and (Zhang & Zhu, 2012). In pseudopolymorphic cases, the water molecules can be able to coordinate the charged components strengthening the crystal cohesion as it was observed in (dabcoH2)CuCl4 and (dabcoH2)CuCl4·H2O (Wei & Willett, 2002).
The new chloridocadmate(II) compound, (C6H14N2) [CdCl4]·H2O (I), is self-assembled into alternating organic and inorganic layered structure. the organic part is made up of 1,4-diazabicyclo[2.2.2]octane cations and water molecules. The inorganic component contains isolated [CdCl4]2- units. The layers are stacked along the c axis, as illustrated in Fig. 1.
The asymmetric unit of (I) comprises one 1,4-diazabicyclo[2.2.2]octane cation, one [CdCl4]2- anion and a lattice occluded water molecule (Fig. 2).
The [CdCl4]2- unit possesses a configuration of distorted tetrahedron, so that the central cadmium (II) ion is surrounded by four chlorine atoms. The Cd–Cl bond lengths vary from 2.430 (2) Å to 2.4864 (17) Å and the Cl–Cd–Cl angles fall in the range 101.80 (6)°–116.95 (6)°.
The protonated N2 atom of the organic cation interacts via a simple hydrogen bond with oxygen atom of the water molecule (Fig. 3 and Tab. 1).