organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[1-(4-Bromo­phen­yl)-2-nitro­eth­yl]hexa­noic acid

aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: xiaaibao@zjut.edu.cn

(Received 14 March 2014; accepted 28 March 2014; online 5 April 2014)

In the crystal structure of the title compoud, C14H18BrNO4, mol­ecules are linked by a strong O—H⋯O hydrogen bond and weaker C—H⋯O inter­actions. The benzene ring makes dihedral angles of 3.67 (3) and 72.63 (3)° with the carb­oxy­lic acid group and the nitro group, respectively.

Related literature

For related compounds, see: Wu et al. (2011[Wu, C., Zhao, L. & Xia, A.-B. (2011). Acta Cryst. E67, o1939.]); Nayak et al. (2013[Nayak, P. S., Narayana, B., Yathirajan, H. S., Gerber, T., Brecht, B. van & Betz, R. (2013). Acta Cryst. E69, o83.]); Zhang et al. (2013[Zhang, C.-X., Zhang, Y.-P. & Xia, A.-B. (2013). Acta Cryst. E69, o263.]); Thirunavukkarasu et al. (2014[Thirunavukkarasu, A., Silambarasan, A., Kumar, R. M., Umarani, P. R. & Chakkaravarthi, G. (2014). Acta Cryst. E70, o397.]). For the asymmetric Michael reaction, which allows for the formation of two asymmetric centres, see: Enders et al. (2002[Enders, D., Tedeschi, L. & Berner, O.-M. (2002). Eur. J. Org. Chem. 12, 1877-1894.]); Hayashi et al. (2005[Hayashi, Y., Gotoh, H., Hayashi, T. & Shoji, M. (2005). Angew. Chem. Int. Ed. 44, 4212-4215.]); Keller et al. (2013[Keller, M., Reiser, O. & Ouali, A. (2013). Adv. Synth. Catal. 355, 1748-1754.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18BrNO4

  • Mr = 344.20

  • Triclinic, [P \overline 1]

  • a = 7.2825 (11) Å

  • b = 8.7850 (13) Å

  • c = 13.026 (2) Å

  • α = 107.882 (3)°

  • β = 93.156 (3)°

  • γ = 101.555 (3)°

  • V = 770.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.68 mm−1

  • T = 140 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.510, Tmax = 0.746

  • 7818 measured reflections

  • 4717 independent reflections

  • 3078 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.113

  • S = 0.99

  • 4717 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O1i 0.99 2.43 3.410 (3) 172
C1—H1A⋯O2ii 0.99 2.51 3.265 (3) 133
C3—H3⋯O3iii 1.00 2.69 3.679 (3) 169
C8—H8B⋯O2iv 0.98 2.60 3.501 (4) 153
O3—H3A⋯O4v 0.84 1.79 2.619 (2) 171
Symmetry codes: (i) -x, -y, -z+1; (ii) -x-1, -y, -z+1; (iii) -x, -y+1, -z+1; (iv) x+1, y+1, z; (v) -x-1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Michael addition can represent the initiating step of many complex inter- and intramolecular tandem processes. The use of the highly reactive nitroalkene as Michael acceptors opens the way to synthetically very useful C—C and C—X bond-forming reactions and subsequent transformations as is demonstrated by various applications(Enders et al.,2002). The title compound was obtained from the Michael addition of hexanal to (E)-1-bromo-4-(2-nitrovinyl)benzene in our laboratory. The crystal structure of the title compoud has been presented in this paper in Fig. 1. The C2···C3 distance being 1.545 (2) Å. The C1—C2—C3—C4 torsion angle of 59.43 (3)°. The C12···Br distance being 1.894 (2) Å. The C1···N1 distance being 1.492 (2) Å. The H3A—O3—C4 angle of 109.49 (3)°. In the crystal, molecules are linked by weak intermolecular O—H···O interactions. In addition,molecules are also linked by weak H3A—O4, H3A—C4 and H3A– H3A interactions respectively. The dihedral angle between the carboxylic acid group and the benzene ring is 3.67 (3)° and the dihedral angle between the nitro group and the benzene ring is 72.63 (3)°.

Related literature top

For related compounds, see: Wu et al. (2011); Nayak et al. (2013); Zhang et al. (2013); Thirunavukkarasu et al. (2014). For the asymmetric Michael reaction, which allows for the formation of two asymmetric centres, see: Enders et al. (2002); Hayashi et al. (2005); Keller et al. (2013).

Experimental top

N,N-Dimethylformamide(1.25 ml) was added to the mixture of hexanal (2.5 mmol) with (E)-1-bromo-4-(2-nitrovinyl)benzene(0.5 mmol) in the presence of D,L-proline (0.15 mmol) at room temperature with vigorous stirring. After 1 day, the mixture was extracted with DCM. Solvents were removed under vacuum and the residue was purified by column chromatography on silica gel(eluent:petroleum ether-ether). Then the addition product was oxidized into acid by H2O2. Suitable crystals were obtained by slow evaporation of a dichloromethane solution.

Refinement top

H atoms were placed in calculated position with C—H ranging from 0.93 Å to 0.98 Å and refined using riding model with Uiso(H)=1.2Ueq of the carrier atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the structure of the title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing of the title compound.
2-[1-(4-Bromophenyl)-2-nitroethyl]hexanoic acid top
Crystal data top
C14H18BrNO4Z = 2
Mr = 344.20F(000) = 352
Triclinic, P1Dx = 1.483 Mg m3
a = 7.2825 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7850 (13) ÅCell parameters from 1805 reflections
c = 13.026 (2) Åθ = 2.5–27.0°
α = 107.882 (3)°µ = 2.68 mm1
β = 93.156 (3)°T = 140 K
γ = 101.555 (3)°Block, colourless
V = 770.9 (2) Å30.25 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
3078 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 30.7°, θmin = 1.7°
Tmin = 0.510, Tmax = 0.746h = 710
7818 measured reflectionsk = 1211
4717 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0579P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.005
4717 reflectionsΔρmax = 0.77 e Å3
182 parametersΔρmin = 0.57 e Å3
Crystal data top
C14H18BrNO4γ = 101.555 (3)°
Mr = 344.20V = 770.9 (2) Å3
Triclinic, P1Z = 2
a = 7.2825 (11) ÅMo Kα radiation
b = 8.7850 (13) ŵ = 2.68 mm1
c = 13.026 (2) ÅT = 140 K
α = 107.882 (3)°0.25 × 0.20 × 0.15 mm
β = 93.156 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4717 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3078 reflections with I > 2σ(I)
Tmin = 0.510, Tmax = 0.746Rint = 0.026
7818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 0.99Δρmax = 0.77 e Å3
4717 reflectionsΔρmin = 0.57 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.43884 (4)0.25204 (4)1.00399 (2)0.04824 (13)
N10.2878 (3)0.0037 (2)0.57284 (16)0.0281 (4)
O10.2159 (3)0.1173 (2)0.53116 (18)0.0503 (5)
O20.4281 (3)0.0168 (2)0.61913 (17)0.0433 (5)
O30.2581 (2)0.5058 (2)0.50126 (13)0.0309 (4)
H3A0.35600.51430.46830.046*
O40.4590 (2)0.4623 (2)0.61743 (15)0.0363 (4)
C10.2028 (3)0.1613 (3)0.56541 (18)0.0239 (5)
H1A0.28500.18600.51250.029*
H1B0.07810.16040.53890.029*
C20.1790 (3)0.2947 (3)0.67608 (17)0.0211 (4)
H20.30150.28040.70700.025*
C30.1361 (3)0.4661 (3)0.66194 (17)0.0222 (4)
H30.01700.48090.62780.027*
C40.2969 (3)0.4783 (3)0.58874 (18)0.0232 (5)
C50.1128 (4)0.6028 (3)0.77204 (18)0.0271 (5)
H5A0.23000.58610.80620.033*
H5B0.00860.59360.82020.033*
C60.0709 (4)0.7759 (3)0.7638 (2)0.0340 (6)
H6A0.17780.78650.71820.041*
H6B0.06290.85600.83740.041*
C70.1105 (4)0.8203 (3)0.7162 (2)0.0393 (6)
H7A0.12700.93410.71450.047*
H7B0.09840.74650.64030.047*
C80.2860 (5)0.8075 (4)0.7796 (3)0.0547 (8)
H8A0.29110.87000.85670.082*
H8B0.39900.85240.75130.082*
H8C0.28060.69200.77140.082*
C90.0284 (3)0.2792 (3)0.75450 (17)0.0208 (4)
C100.1607 (3)0.3049 (3)0.73681 (19)0.0262 (5)
H100.19460.32730.67270.031*
C110.2991 (3)0.2982 (3)0.8106 (2)0.0305 (5)
H110.42780.31830.79840.037*
C120.2485 (4)0.2619 (3)0.90266 (19)0.0305 (5)
C130.0628 (4)0.2332 (3)0.92160 (19)0.0304 (5)
H130.02950.20760.98480.036*
C140.0752 (3)0.2422 (3)0.84734 (18)0.0260 (5)
H140.20360.22260.86020.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04362 (18)0.0746 (2)0.02979 (15)0.03115 (16)0.00597 (11)0.01222 (14)
N10.0289 (11)0.0264 (11)0.0266 (10)0.0030 (9)0.0045 (8)0.0088 (8)
O10.0634 (14)0.0274 (11)0.0616 (14)0.0184 (10)0.0132 (11)0.0107 (9)
O20.0374 (11)0.0417 (11)0.0495 (12)0.0013 (9)0.0085 (9)0.0192 (9)
O30.0297 (9)0.0443 (10)0.0287 (9)0.0175 (8)0.0073 (7)0.0199 (8)
O40.0251 (9)0.0576 (12)0.0373 (10)0.0159 (8)0.0081 (7)0.0263 (9)
C10.0245 (11)0.0237 (12)0.0240 (11)0.0047 (9)0.0021 (9)0.0092 (9)
C20.0201 (10)0.0251 (12)0.0200 (10)0.0068 (9)0.0023 (8)0.0089 (9)
C30.0220 (10)0.0262 (12)0.0214 (10)0.0085 (9)0.0019 (8)0.0104 (9)
C40.0272 (11)0.0216 (12)0.0227 (11)0.0098 (9)0.0024 (9)0.0075 (9)
C50.0350 (13)0.0258 (12)0.0227 (11)0.0098 (10)0.0049 (10)0.0090 (9)
C60.0533 (17)0.0231 (12)0.0267 (12)0.0128 (11)0.0001 (11)0.0077 (10)
C70.0575 (18)0.0270 (14)0.0333 (14)0.0037 (12)0.0011 (13)0.0140 (11)
C80.0475 (18)0.055 (2)0.060 (2)0.0039 (15)0.0035 (16)0.0280 (17)
C90.0225 (10)0.0198 (11)0.0209 (10)0.0072 (8)0.0014 (8)0.0065 (8)
C100.0244 (11)0.0332 (13)0.0236 (11)0.0080 (10)0.0051 (9)0.0117 (10)
C110.0212 (11)0.0392 (14)0.0325 (13)0.0111 (10)0.0038 (9)0.0112 (11)
C120.0318 (12)0.0360 (14)0.0235 (11)0.0162 (10)0.0033 (9)0.0050 (10)
C130.0375 (14)0.0368 (14)0.0222 (11)0.0143 (11)0.0039 (10)0.0136 (10)
C140.0254 (11)0.0322 (13)0.0243 (11)0.0091 (10)0.0062 (9)0.0124 (10)
Geometric parameters (Å, º) top
Br1—C121.894 (2)C6—C71.521 (4)
N1—O11.213 (3)C6—H6A0.9900
N1—O21.218 (3)C6—H6B0.9900
N1—C11.492 (3)C7—C81.525 (4)
O3—C41.270 (3)C7—H7A0.9900
O3—H3A0.8400C7—H7B0.9900
O4—C41.252 (3)C8—H8A0.9800
C1—C21.528 (3)C8—H8B0.9800
C1—H1A0.9900C8—H8C0.9800
C1—H1B0.9900C9—C141.388 (3)
C2—C91.512 (3)C9—C101.394 (3)
C2—C31.545 (3)C10—C111.377 (3)
C2—H21.0000C10—H100.9500
C3—C41.511 (3)C11—C121.383 (3)
C3—C51.537 (3)C11—H110.9500
C3—H31.0000C12—C131.375 (4)
C5—C61.528 (3)C13—C141.387 (3)
C5—H5A0.9900C13—H130.9500
C5—H5B0.9900C14—H140.9500
O1—N1—O2123.8 (2)C7—C6—H6B108.7
O1—N1—C1118.5 (2)C5—C6—H6B108.7
O2—N1—C1117.7 (2)H6A—C6—H6B107.6
C4—O3—H3A109.5C6—C7—C8113.6 (2)
N1—C1—C2110.98 (18)C6—C7—H7A108.9
N1—C1—H1A109.4C8—C7—H7A108.9
C2—C1—H1A109.4C6—C7—H7B108.9
N1—C1—H1B109.4C8—C7—H7B108.9
C2—C1—H1B109.4H7A—C7—H7B107.7
H1A—C1—H1B108.0C7—C8—H8A109.5
C9—C2—C1111.47 (17)C7—C8—H8B109.5
C9—C2—C3111.60 (17)H8A—C8—H8B109.5
C1—C2—C3109.94 (17)C7—C8—H8C109.5
C9—C2—H2107.9H8A—C8—H8C109.5
C1—C2—H2107.9H8B—C8—H8C109.5
C3—C2—H2107.9C14—C9—C10118.4 (2)
C4—C3—C5108.96 (17)C14—C9—C2120.5 (2)
C4—C3—C2109.26 (18)C10—C9—C2121.08 (19)
C5—C3—C2111.06 (17)C11—C10—C9121.2 (2)
C4—C3—H3109.2C11—C10—H10119.4
C5—C3—H3109.2C9—C10—H10119.4
C2—C3—H3109.2C10—C11—C12119.2 (2)
O4—C4—O3123.8 (2)C10—C11—H11120.4
O4—C4—C3118.8 (2)C12—C11—H11120.4
O3—C4—C3117.3 (2)C13—C12—C11121.0 (2)
C6—C5—C3113.78 (19)C13—C12—Br1119.74 (19)
C6—C5—H5A108.8C11—C12—Br1119.22 (19)
C3—C5—H5A108.8C12—C13—C14119.3 (2)
C6—C5—H5B108.8C12—C13—H13120.4
C3—C5—H5B108.8C14—C13—H13120.4
H5A—C5—H5B107.7C13—C14—C9120.9 (2)
C7—C6—C5114.3 (2)C13—C14—H14119.5
C7—C6—H6A108.7C9—C14—H14119.5
C5—C6—H6A108.7
O1—N1—C1—C2132.7 (2)C5—C6—C7—C858.1 (3)
O2—N1—C1—C248.5 (3)C1—C2—C9—C14115.2 (2)
N1—C1—C2—C969.0 (2)C3—C2—C9—C14121.5 (2)
N1—C1—C2—C3166.69 (17)C1—C2—C9—C1066.1 (3)
C9—C2—C3—C4176.36 (17)C3—C2—C9—C1057.2 (3)
C1—C2—C3—C459.4 (2)C14—C9—C10—C111.7 (3)
C9—C2—C3—C556.1 (2)C2—C9—C10—C11177.0 (2)
C1—C2—C3—C5179.63 (18)C9—C10—C11—C121.4 (4)
C5—C3—C4—O461.1 (3)C10—C11—C12—C130.3 (4)
C2—C3—C4—O460.4 (3)C10—C11—C12—Br1179.80 (18)
C5—C3—C4—O3118.3 (2)C11—C12—C13—C140.5 (4)
C2—C3—C4—O3120.2 (2)Br1—C12—C13—C14179.44 (18)
C4—C3—C5—C659.3 (3)C12—C13—C14—C90.1 (4)
C2—C3—C5—C6179.7 (2)C10—C9—C14—C130.9 (3)
C3—C5—C6—C760.6 (3)C2—C9—C14—C13177.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.992.433.410 (3)172
C1—H1A···O2ii0.992.513.265 (3)133
C3—H3···O3iii1.002.693.679 (3)169
C8—H8B···O2iv0.982.603.501 (4)153
O3—H3A···O4v0.841.792.619 (2)171
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y+1, z; (v) x1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.9902.4273.410 (3)172
C1—H1A···O2ii0.9892.5123.265 (3)133
C3—H3···O3iii1.0002.6933.679 (3)169
C8—H8B···O2iv0.9802.5973.501 (4)153
O3—H3A···O4v0.8401.7862.619 (2)171
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y+1, z; (v) x1, y+1, z+1.
 

Acknowledgements

We thank Professor Jie Sun of the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, for his help.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEnders, D., Tedeschi, L. & Berner, O.-M. (2002). Eur. J. Org. Chem. 12, 1877–1894.  Google Scholar
First citationHayashi, Y., Gotoh, H., Hayashi, T. & Shoji, M. (2005). Angew. Chem. Int. Ed. 44, 4212–4215.  Web of Science CrossRef CAS Google Scholar
First citationKeller, M., Reiser, O. & Ouali, A. (2013). Adv. Synth. Catal. 355, 1748–1754.  Web of Science CrossRef CAS Google Scholar
First citationNayak, P. S., Narayana, B., Yathirajan, H. S., Gerber, T., Brecht, B. van & Betz, R. (2013). Acta Cryst. E69, o83.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirunavukkarasu, A., Silambarasan, A., Kumar, R. M., Umarani, P. R. & Chakkaravarthi, G. (2014). Acta Cryst. E70, o397.  CSD CrossRef IUCr Journals Google Scholar
First citationWu, C., Zhao, L. & Xia, A.-B. (2011). Acta Cryst. E67, o1939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, C.-X., Zhang, Y.-P. & Xia, A.-B. (2013). Acta Cryst. E69, o263.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds