organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Methyl-N′-[(4-oxo-4H-chromen-3-yl)methyl­­idene]benzohydrazide

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 17 March 2014; accepted 10 April 2014; online 16 April 2014)

In the title chromone-tethered benzohydrazide derivative, C18H14N2O3, the 4H-chromen-4-one and the –CH=N–NH–CO– units are each essentially planar, with the largest deviations from thei planes being 0.052 (2) and 0.003 (2) Å, respectively. The dihedral angles between the 4H-chromen-4-one and the –CH=N–NH–CO– units, the 4H-chromen-4-one unit and the benzene ring of the 4-tolyl group, and the benzene ring of the 4-tolyl group and the –CH=N–NH–CO– unit are 8.09 (7), 9.94 (5) and 17.97 (8)°, respectively. In the crystal, the mol­ecules form two types of centrosymmetric dimers: one by N—H⋯O hydrogen bonds and the other by ππ stacking inter­actions between the 4H-chromen-4-one unit and the 4-tolyl group [centroid–centroid distance = 3.641 (5) Å]. These dimers form one-dimensional assemblies extending along the a-axis direction. Additional ππ stacking inter­actions between two 4H-chromen-4-one units [centroid–centroid distance = 3.591 (5) Å] and two 4-tolyl groups [centroid–centroid distance = 3.792 (5) Å] organize the mol­ecules into a three-dimensional network.

Related literature

For the biological activity of related compounds, see: Khan et al. (2009[Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983-2988.]); Tu et al. (2013[Tu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826-2831.]). For a related structure, see: Ishikawa & Watanabe (2014[Ishikawa, Y. & Watanabe, K. (2014). Acta Cryst. E70, o472.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2O3

  • Mr = 306.32

  • Triclinic, [P \overline 1]

  • a = 7.759 (10) Å

  • b = 8.543 (7) Å

  • c = 11.047 (15) Å

  • α = 103.55 (11)°

  • β = 95.53 (12)°

  • γ = 94.60 (9)°

  • V = 704.6 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.50 × 0.40 × 0.15 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • 3953 measured reflections

  • 3235 independent reflections

  • 2434 reflections with F2 > 2σ(F2)

  • Rint = 0.016

  • 3 standard reflections every 150 reflections intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.187

  • S = 1.09

  • 3235 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.88 2.22 3.012 (4) 151
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Schiff bases derived from 3-formyl chromones have attracted much attention due to their biological functions such as enzyme inhibition (Khan et al., 2009; Tu et al., 2013). We herein report the crystal structure of the title compound, which was prepared by the condensation reaction of 3-formylchromone with 4-methylbenzoylhydrazide in ethanol. The structure (Figure 1) shows that the atoms of both the 4H-chromen-4-one and the –CH=N–NH–CO– segments are essentially coplanar, and the largest deviations are 0.052 (2) for C2 and 0.003 (2) Å for C11, respectively. The dihedral angles between the 4H-chromen-4-one segment and the –CH=N–NH–CO– segment, the 4H-chromen-4-one segment and the benzene ring of the 4-methylbenzene segment, and the benzene ring of the 4-methylbenzene segment and the –CH=N–NH–CO– segment are 8.09 (7), 9.94 (5), and 17.97 (8)°, respectively. In the crystal, the molecules related by inversion center (symmetry code: –x + 2, –y, –z + 2) are linked by N–H···O hydrogen bonds to form a dimer. There is also an extensive sytem of π···π stacking interactions between inversion related molecules involving both the 4H-chromen-4-one unit and the 4-tolyl group.

Related literature top

For the biological activity of related compounds, see: Khan et al. (2009); Tu et al. (2013). For a related structure, see: Ishikawa & Watanabe (2014).

Experimental top

4-Methylbenzoylhydrazide (1.00 mmol), 3-formylchromone (1.00 mmol), and a few drops of acetic acid were dissolved in 25 ml of ethanol, and the mixture was stirred for 6 h at room temperature. The precipitate was collected, washed with ethanol, and dried in vacuo (yield 55.0%). 1H NMR (400 MHz, CDCl3): δ = 3.87 (s, 3H), 6.96 (d, 2H, J = 8.3 Hz), 7.41 (t, 1H, J = 7.6 Hz), 7.53 (d, 1H, J = 8.3 Hz), 7.72 (t, 1H, J = 7.6 Hz), 7.90 (d, 2H, J = 7.9 Hz), 8.13 (d, 1H, J = 8.3 Hz), 8.56 (s, 1H), 8.84 (s, 1H), 9.77 (s, 1H). DART-MS calcd for [C18H14N2O3 + H+]: 307.321, found 307.156. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetonitrile solution of the title compound at room temperature.

Refinement top

The C(sp2)- and N(sp2)-bound hydrogen atoms were placed in geometrically determined positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C), N–H 0.88 Å, Uiso(H) = 1.2Ueq(N)], and refined using a riding model. Hydrogen atoms of methyl group were found in a difference Fourier map, and a rotating group model was applied with the distance constraint [C–H = 0.98 Å, Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A crystal packing view of the title compound. Intermolecular N–H···O hydrogen bonds are represented by dashed lines. Hydrogen atoms are omitted for clarity.
(E)-4-Methyl-N'-[(4-oxo-4H-chromen-3-yl)methylidene]benzohydrazide top
Crystal data top
C18H14N2O3Z = 2
Mr = 306.32F(000) = 320.00
Triclinic, P1Dx = 1.444 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.759 (10) ÅCell parameters from 25 reflections
b = 8.543 (7) Åθ = 15.3–17.5°
c = 11.047 (15) ŵ = 0.10 mm1
α = 103.55 (11)°T = 100 K
β = 95.53 (12)°Plate, colorless
γ = 94.60 (9)°0.50 × 0.40 × 0.15 mm
V = 704.6 (15) Å3
Data collection top
Rigaku AFC-7R
diffractometer
θmax = 27.5°
ω–2θ scansh = 105
3953 measured reflectionsk = 1111
3235 independent reflectionsl = 1414
2434 reflections with F2 > 2σ(F2)3 standard reflections every 150 reflections
Rint = 0.016 intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1269P)2 + 0.0754P]
where P = (Fo2 + 2Fc2)/3
3235 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.43 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C18H14N2O3γ = 94.60 (9)°
Mr = 306.32V = 704.6 (15) Å3
Triclinic, P1Z = 2
a = 7.759 (10) ÅMo Kα radiation
b = 8.543 (7) ŵ = 0.10 mm1
c = 11.047 (15) ÅT = 100 K
α = 103.55 (11)°0.50 × 0.40 × 0.15 mm
β = 95.53 (12)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.016
3953 measured reflections3 standard reflections every 150 reflections
3235 independent reflections intensity decay: 1.0%
2434 reflections with F2 > 2σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.09Δρmax = 0.55 e Å3
3235 reflectionsΔρmin = 0.43 e Å3
209 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70112 (16)0.52823 (15)1.02907 (12)0.0164 (4)
O21.05971 (17)0.25136 (15)1.14769 (13)0.0185 (4)
O30.33072 (18)0.08140 (17)0.74095 (14)0.0243 (4)
N10.6201 (2)0.04137 (19)0.89360 (15)0.0162 (4)
N20.5919 (2)0.12076 (18)0.83493 (15)0.0153 (4)
C10.6869 (3)0.3661 (2)0.98690 (17)0.0152 (4)
C20.7963 (3)0.2663 (2)1.02346 (16)0.0130 (4)
C30.9490 (3)0.3343 (2)1.11510 (16)0.0134 (4)
C41.0907 (3)0.5952 (3)1.25872 (17)0.0164 (4)
C51.0995 (3)0.7613 (3)1.30115 (18)0.0193 (5)
C60.9761 (3)0.8487 (3)1.25160 (18)0.0180 (4)
C70.8436 (3)0.7679 (3)1.16113 (18)0.0162 (4)
C80.9585 (3)0.5112 (2)1.16508 (16)0.0131 (4)
C90.8369 (3)0.6008 (2)1.11925 (17)0.0137 (4)
C100.7627 (3)0.0913 (2)0.96497 (16)0.0143 (4)
C110.4381 (3)0.1734 (3)0.75811 (17)0.0155 (4)
C120.4090 (3)0.3499 (2)0.69518 (17)0.0145 (4)
C130.4972 (3)0.4671 (3)0.73642 (17)0.0164 (4)
C140.4579 (3)0.6300 (3)0.67544 (18)0.0180 (4)
C150.3306 (3)0.6795 (3)0.57241 (17)0.0177 (4)
C160.2422 (3)0.5614 (3)0.53282 (18)0.0214 (5)
C170.2796 (3)0.3990 (3)0.59301 (18)0.0204 (5)
C180.2909 (3)0.8561 (3)0.50609 (19)0.0257 (5)
H10.59110.31750.92580.0182*
H20.66890.18780.84610.0183*
H41.17460.53751.29310.0197*
H51.18980.81711.36440.0231*
H60.98410.96321.28050.0216*
H70.75830.82551.12800.0195*
H100.84400.01860.97990.0172*
H130.58460.43570.80650.0196*
H140.51880.70870.70460.0216*
H160.15440.59300.46310.0256*
H170.21690.32070.56470.0244*
H18A0.30580.92230.56710.0309*
H18B0.37050.88460.44260.0309*
H18C0.17060.87640.46540.0309*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0150 (7)0.0108 (7)0.0199 (7)0.0035 (5)0.0056 (5)0.0008 (5)
O20.0158 (7)0.0155 (7)0.0227 (7)0.0054 (5)0.0039 (5)0.0028 (6)
O30.0196 (8)0.0179 (7)0.0312 (8)0.0074 (6)0.0074 (6)0.0003 (6)
N10.0163 (8)0.0113 (8)0.0191 (8)0.0023 (6)0.0004 (6)0.0002 (6)
N20.0127 (8)0.0110 (8)0.0189 (8)0.0026 (6)0.0023 (6)0.0015 (6)
C10.0141 (9)0.0125 (9)0.0163 (9)0.0011 (7)0.0013 (7)0.0006 (7)
C20.0113 (9)0.0121 (9)0.0144 (9)0.0007 (7)0.0010 (7)0.0016 (7)
C30.0121 (9)0.0135 (9)0.0144 (9)0.0030 (7)0.0014 (7)0.0023 (7)
C40.0137 (9)0.0170 (9)0.0166 (9)0.0014 (7)0.0017 (7)0.0017 (7)
C50.0171 (9)0.0193 (10)0.0174 (9)0.0003 (7)0.0030 (7)0.0009 (8)
C60.0189 (10)0.0123 (9)0.0198 (9)0.0012 (7)0.0017 (8)0.0018 (7)
C70.0155 (9)0.0133 (9)0.0198 (9)0.0047 (7)0.0018 (7)0.0029 (7)
C80.0119 (9)0.0135 (9)0.0131 (9)0.0017 (7)0.0018 (7)0.0012 (7)
C90.0118 (9)0.0141 (9)0.0136 (8)0.0000 (7)0.0001 (7)0.0012 (7)
C100.0138 (9)0.0117 (9)0.0164 (9)0.0031 (7)0.0006 (7)0.0013 (7)
C110.0134 (9)0.0155 (9)0.0163 (9)0.0021 (7)0.0008 (7)0.0022 (7)
C120.0134 (9)0.0148 (9)0.0140 (9)0.0004 (7)0.0007 (7)0.0014 (7)
C130.0143 (9)0.0166 (9)0.0160 (9)0.0017 (7)0.0017 (7)0.0010 (7)
C140.0181 (10)0.0155 (9)0.0191 (10)0.0038 (7)0.0000 (8)0.0016 (7)
C150.0200 (10)0.0149 (9)0.0159 (9)0.0013 (7)0.0035 (7)0.0005 (7)
C160.0242 (11)0.0204 (10)0.0152 (9)0.0024 (8)0.0075 (8)0.0014 (8)
C170.0199 (10)0.0194 (10)0.0198 (10)0.0009 (8)0.0067 (8)0.0051 (8)
C180.0316 (12)0.0194 (10)0.0209 (10)0.0012 (8)0.0013 (9)0.0034 (8)
Geometric parameters (Å, º) top
O1—C11.345 (3)C13—C141.391 (3)
O1—C91.375 (3)C14—C151.393 (4)
O2—C31.236 (3)C15—C161.393 (4)
O3—C111.221 (3)C15—C181.508 (3)
N1—N21.375 (3)C16—C171.385 (3)
N1—C101.275 (3)N2—H20.880
N2—C111.374 (3)C1—H10.950
C1—C21.350 (3)C4—H40.950
C2—C31.466 (4)C5—H50.950
C2—C101.474 (3)C6—H60.950
C3—C81.476 (3)C7—H70.950
C4—C51.380 (3)C10—H100.950
C4—C81.403 (4)C13—H130.950
C5—C61.407 (4)C14—H140.950
C6—C71.377 (4)C16—H160.950
C7—C91.389 (3)C17—H170.950
C8—C91.392 (3)C18—H18A0.980
C11—C121.494 (3)C18—H18B0.980
C12—C131.394 (3)C18—H18C0.980
C12—C171.397 (4)
O1···C32.871 (4)C5···H14v3.0350
O2···C13.573 (5)C5···H17vii3.2163
O2···C42.887 (4)C5···H18Bix3.4854
O2···C102.926 (5)C5···H18Cix3.1753
O3···N12.655 (5)C5···H18Civ3.4913
O3···C172.796 (4)C6···H10ii3.4010
N1···C12.712 (4)C6···H18Aiv3.1090
N2···C132.910 (4)C6···H18Cix3.0855
C1···C73.571 (5)C6···H18Civ3.3918
C1···C82.737 (5)C7···H1i3.3884
C2···C92.786 (4)C7···H10iii3.2563
C4···C72.796 (4)C7···H14iv3.3602
C5···C92.746 (5)C7···H18Aiv3.3403
C6···C82.805 (4)C9···H1i3.4609
C10···C113.498 (6)C9···H14iv3.5858
C12···C152.814 (4)C10···H6ii3.4658
C13···C162.768 (5)C10···H7vi3.2123
C14···C172.770 (4)C10···H10v3.3064
O1···O1i3.100 (5)C11···H7i3.4762
O1···O2ii3.559 (5)C11···H18Aiii3.4878
O1···C1i3.212 (5)C11···H18Bviii2.8982
O1···C3ii3.533 (5)C12···H18Bviii3.2615
O1···C8ii3.548 (5)C13···H1vi3.1655
O1···C13iii3.470 (6)C13···H4v2.6957
O1···C13iv3.260 (5)C14···H1vi3.0044
O1···C14iv3.543 (6)C14···H4v2.8629
O2···O1ii3.559 (5)C14···H5v3.2908
O2···N2v3.012 (4)C14···H7iv3.5029
O2···C7ii3.533 (6)C16···H4x2.9759
O2···C10v3.360 (4)C16···H16xi3.4437
O3···C2iv3.523 (5)C17···H4x3.2407
O3···C6i3.217 (4)C17···H5x3.5108
O3···C7i3.111 (4)C17···H16xi3.3564
O3···C10iv3.415 (6)C18···H5xii2.8674
O3···C18iii3.579 (5)C18···H6xii3.2749
N1···N1iv3.304 (5)C18···H6iv3.5518
N1···N2iv3.513 (6)H1···O1i2.7414
N2···O2v3.012 (4)H1···C4ii3.4921
N2···N1iv3.513 (6)H1···C7i3.3884
C1···O1i3.212 (5)H1···C9i3.4609
C1···C4ii3.418 (6)H1···C13iii3.1655
C1···C8ii3.569 (5)H1···C14iii3.0044
C1···C13iv3.454 (6)H1···H4ii3.5465
C2···O3iv3.523 (5)H1···H7i2.8309
C2···C11iv3.357 (5)H1···H13iii2.7376
C2···C12iv3.579 (6)H1···H13iv3.3501
C3···O1ii3.533 (5)H1···H14iii2.4082
C3···C7ii3.548 (6)H2···O1vi3.5116
C3···C9ii3.335 (5)H2···O2v2.2147
C4···C1ii3.418 (6)H2···C3v3.3375
C4···C13v3.461 (5)H2···H4v3.3991
C4···C14v3.482 (5)H2···H7vi3.0983
C6···O3i3.217 (4)H2···H18Bviii3.3788
C6···C10ii3.382 (5)H4···C13v2.6957
C6···C18iv3.531 (6)H4···C14v2.8629
C7···O2ii3.533 (6)H4···C16vii2.9759
C7···O3i3.111 (4)H4···C17vii3.2407
C7···C3ii3.548 (6)H4···H1ii3.5465
C7···C14iv3.389 (5)H4···H2v3.3991
C7···C15iv3.565 (6)H4···H13v2.3807
C8···O1ii3.548 (5)H4···H14v2.6851
C8···C1ii3.569 (5)H4···H16vii2.4088
C9···C3ii3.335 (5)H4···H17vii2.9362
C9···C13iv3.426 (5)H5···C14v3.2908
C9···C14iv3.356 (6)H5···C17vii3.5108
C10···O2v3.360 (4)H5···C18ix2.8674
C10···O3iv3.415 (6)H5···H14v2.6245
C10···C6ii3.382 (5)H5···H17vii2.7383
C10···C11iv3.516 (6)H5···H18Aix2.7813
C11···C2iv3.357 (5)H5···H18Bix2.7145
C11···C10iv3.516 (6)H5···H18Cix2.6172
C12···C2iv3.579 (6)H5···H18Civ3.5212
C13···O1vi3.470 (6)H6···O2iii3.1915
C13···O1iv3.260 (5)H6···O3i2.7276
C13···C1iv3.454 (6)H6···C10ii3.4658
C13···C4v3.461 (5)H6···C18ix3.2749
C13···C9iv3.426 (5)H6···C18iv3.5518
C14···O1iv3.543 (6)H6···H10iii3.5436
C14···C4v3.482 (5)H6···H10ii3.3155
C14···C7iv3.389 (5)H6···H18Aiv2.9828
C14···C9iv3.356 (6)H6···H18Bix3.3372
C15···C7iv3.565 (6)H6···H18Cix2.4385
C18···O3vi3.579 (5)H6···H18Civ3.3689
C18···C6iv3.531 (6)H7···O2ii3.4265
O1···H72.5030H7···O3i2.5113
O2···H42.6243H7···N1i3.2406
O2···H102.7081H7···N2iii3.5138
O3···H23.0580H7···C10iii3.2123
O3···H172.5031H7···C11i3.4762
N1···H12.3347H7···C14iv3.5029
N2···H102.4367H7···H1i2.8309
N2···H132.6299H7···H2iii3.0983
C1···H103.2867H7···H10iii2.6721
C3···H13.2832H7···H14iv3.2138
C3···H42.6821H7···H18Aiv3.3708
C3···H102.7745H10···O2v2.6112
C4···H63.2746H10···O3iv3.4330
C5···H73.2733H10···C3v3.5196
C6···H43.2772H10···C6ii3.4010
C7···H53.2633H10···C7vi3.2563
C8···H53.2697H10···C10v3.3064
C8···H73.2937H10···H6vi3.5436
C9···H13.1796H10···H6ii3.3155
C9···H43.2541H10···H7vi2.6721
C9···H63.2435H10···H10v2.4774
C10···H12.5273H13···O1vi2.6329
C10···H22.4517H13···O1iv3.1636
C11···H132.7298H13···O2v3.0022
C11···H172.6041H13···C1vi2.9937
C12···H22.5663H13···C1iv3.2392
C12···H143.2687H13···C4v3.0275
C12···H163.2653H13···H1vi2.7376
C13···H22.6000H13···H1iv3.3501
C13···H173.2627H13···H4v2.3807
C14···H163.2482H14···O3vi3.5214
C14···H18A2.6299H14···N1vi3.4032
C14···H18B2.9350H14···C1vi3.1600
C14···H18C3.2781H14···C4v3.0644
C15···H133.2778H14···C5v3.0350
C15···H173.2748H14···C7iv3.3602
C16···H143.2489H14···C9iv3.5858
C16···H18A3.2627H14···H1vi2.4082
C16···H18B2.9920H14···H4v2.6851
C16···H18C2.6162H14···H5v2.6245
C17···H133.2631H14···H7iv3.2138
C18···H142.6690H16···O2x3.4097
C18···H162.6813H16···C4x3.0884
H1···H103.4674H16···C16xi3.4437
H2···H102.2688H16···C17xi3.3564
H2···H132.0957H16···H4x2.4088
H4···H52.3230H16···H16xi3.0510
H5···H62.3532H16···H17xi2.8844
H6···H72.3374H17···C4x3.3186
H13···H142.3314H17···C5x3.2163
H14···H18A2.4703H17···H4x2.9362
H14···H18B3.0000H17···H5x2.7383
H14···H18C3.5445H17···H16xi2.8844
H16···H172.3230H17···H18Aiii3.4121
H16···H18A3.5215H17···H18Bviii3.5420
H16···H18B3.0907H17···H18Cxi3.5867
H16···H18C2.4407H18A···O3vi2.6017
O1···H1i2.7414H18A···C6iv3.1090
O1···H2iii3.5116H18A···C7iv3.3403
O1···H13iii2.6329H18A···C11vi3.4878
O1···H13iv3.1636H18A···H5xii2.7813
O2···H2v2.2147H18A···H6iv2.9828
O2···H6vi3.1915H18A···H7iv3.3708
O2···H7ii3.4265H18A···H17vi3.4121
O2···H10v2.6112H18A···H18Bxiii3.1100
O2···H13v3.0022H18B···O3viii3.2105
O2···H16vii3.4097H18B···N2viii3.1184
O3···H6i2.7276H18B···C5xii3.4854
O3···H7i2.5113H18B···C11viii2.8982
O3···H10iv3.4330H18B···C12viii3.2615
O3···H14iii3.5214H18B···H2viii3.3788
O3···H18Aiii2.6017H18B···H5xii2.7145
O3···H18Bviii3.2105H18B···H6xii3.3372
N1···H7i3.2406H18B···H17viii3.5420
N1···H14iii3.4032H18B···H18Axiii3.1100
N2···H7vi3.5138H18B···H18Bxiii3.2931
N2···H18Bviii3.1184H18C···C5xii3.1753
C1···H13iii2.9937H18C···C5iv3.4913
C1···H13iv3.2392H18C···C6xii3.0855
C1···H14iii3.1600H18C···C6iv3.3918
C3···H2v3.3375H18C···H5xii2.6172
C3···H10v3.5196H18C···H5iv3.5212
C4···H1ii3.4921H18C···H6xii2.4385
C4···H13v3.0275H18C···H6iv3.3689
C4···H14v3.0644H18C···H17xi3.5867
C4···H16vii3.0884H18C···H18Cxiv3.5069
C4···H17vii3.3186
C1—O1—C9117.98 (18)C16—C15—C18121.33 (19)
N2—N1—C10117.43 (19)C15—C16—C17121.38 (19)
N1—N2—C11117.00 (18)C12—C17—C16120.3 (3)
O1—C1—C2125.95 (18)N1—N2—H2121.503
C1—C2—C3119.63 (18)C11—N2—H2121.492
C1—C2—C10118.57 (17)O1—C1—H1117.026
C3—C2—C10121.73 (19)C2—C1—H1117.025
O2—C3—C2123.18 (18)C5—C4—H4119.839
O2—C3—C8123.00 (17)C8—C4—H4119.837
C2—C3—C8113.82 (19)C4—C5—H5119.690
C5—C4—C8120.3 (2)C6—C5—H5119.685
C4—C5—C6120.63 (19)C5—C6—H6120.064
C5—C6—C7119.87 (19)C7—C6—H6120.067
C6—C7—C9118.7 (2)C6—C7—H7120.626
C3—C8—C4121.51 (19)C9—C7—H7120.626
C3—C8—C9120.80 (17)N1—C10—H10121.301
C4—C8—C9117.68 (18)C2—C10—H10121.295
O1—C9—C7115.60 (19)C12—C13—H13119.863
O1—C9—C8121.67 (17)C14—C13—H13119.863
C7—C9—C8122.74 (18)C13—C14—H14119.442
N1—C10—C2117.4 (2)C15—C14—H14119.438
O3—C11—N2122.18 (18)C15—C16—H16119.316
O3—C11—C12121.41 (18)C17—C16—H16119.306
N2—C11—C12116.42 (19)C12—C17—H17119.868
C11—C12—C13123.77 (18)C16—C17—H17119.869
C11—C12—C17117.3 (2)C15—C18—H18A109.473
C13—C12—C17118.88 (18)C15—C18—H18B109.470
C12—C13—C14120.27 (19)C15—C18—H18C109.469
C13—C14—C15121.1 (2)H18A—C18—H18B109.473
C14—C15—C16118.08 (18)H18A—C18—H18C109.474
C14—C15—C18120.6 (2)H18B—C18—H18C109.468
C1—O1—C9—C7178.84 (15)H6—C6—C7—H71.1
C1—O1—C9—C81.0 (3)C6—C7—C9—O1179.93 (17)
C9—O1—C1—C21.2 (3)C6—C7—C9—C80.1 (3)
C9—O1—C1—H1178.8H7—C7—C9—O10.1
N2—N1—C10—C2177.37 (15)H7—C7—C9—C8179.9
N2—N1—C10—H102.6C3—C8—C9—O12.0 (3)
C10—N1—N2—C11179.93 (16)C3—C8—C9—C7178.21 (16)
C10—N1—N2—H20.1C4—C8—C9—O1178.83 (16)
N1—N2—C11—O30.6 (3)C4—C8—C9—C71.0 (3)
N1—N2—C11—C12179.89 (15)O3—C11—C12—C13160.68 (18)
H2—N2—C11—O3179.4O3—C11—C12—C1716.1 (3)
H2—N2—C11—C120.1N2—C11—C12—C1319.8 (3)
O1—C1—C2—C31.5 (3)N2—C11—C12—C17163.39 (16)
O1—C1—C2—C10178.67 (16)C11—C12—C13—C14177.51 (16)
H1—C1—C2—C3178.5C11—C12—C13—H132.5
H1—C1—C2—C101.3C11—C12—C17—C16178.00 (16)
C1—C2—C3—O2175.92 (17)C11—C12—C17—H172.0
C1—C2—C3—C84.1 (3)C13—C12—C17—C161.1 (3)
C1—C2—C10—N18.1 (3)C13—C12—C17—H17178.9
C1—C2—C10—H10171.9C17—C12—C13—C140.8 (3)
C3—C2—C10—N1174.81 (16)C17—C12—C13—H13179.2
C3—C2—C10—H105.2C12—C13—C14—C150.1 (3)
C10—C2—C3—O21.1 (3)C12—C13—C14—H14179.9
C10—C2—C3—C8178.81 (15)H13—C13—C14—C15179.9
O2—C3—C8—C43.5 (3)H13—C13—C14—H140.1
O2—C3—C8—C9175.66 (17)C13—C14—C15—C160.7 (3)
C2—C3—C8—C4176.47 (15)C13—C14—C15—C18179.17 (17)
C2—C3—C8—C94.4 (3)H14—C14—C15—C16179.3
C5—C4—C8—C3178.06 (17)H14—C14—C15—C180.8
C5—C4—C8—C91.1 (3)C14—C15—C16—C170.4 (3)
C8—C4—C5—C60.2 (3)C14—C15—C16—H16179.6
C8—C4—C5—H5179.8C14—C15—C18—H18A33.7
H4—C4—C5—C6179.8C14—C15—C18—H18B86.3
H4—C4—C5—H50.2C14—C15—C18—H18C153.7
H4—C4—C8—C31.9C16—C15—C18—H18A146.4
H4—C4—C8—C9178.9C16—C15—C18—H18B93.6
C4—C5—C6—C70.9 (3)C16—C15—C18—H18C26.4
C4—C5—C6—H6179.1C18—C15—C16—C17179.45 (17)
H5—C5—C6—C7179.1C18—C15—C16—H160.5
H5—C5—C6—H60.9C15—C16—C17—C120.5 (3)
C5—C6—C7—C91.1 (3)C15—C16—C17—H17179.5
C5—C6—C7—H7178.9H16—C16—C17—C12179.5
H6—C6—C7—C9178.9H16—C16—C17—H170.5
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2; (iii) x, y+1, z; (iv) x+1, y, z+2; (v) x+2, y, z+2; (vi) x, y1, z; (vii) x+1, y+1, z+1; (viii) x+1, y1, z+1; (ix) x+1, y+2, z+1; (x) x1, y1, z1; (xi) x, y1, z+1; (xii) x1, y2, z1; (xiii) x+1, y2, z+1; (xiv) x, y2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2v0.882.223.012 (4)151
Symmetry code: (v) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.882.223.012 (4)151
Symmetry code: (i) x+2, y, z+2.
 

Acknowledgements

We acknowledge the University of Shizuoka for instrumental support.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIshikawa, Y. & Watanabe, K. (2014). Acta Cryst. E70, o472.  CSD CrossRef IUCr Journals Google Scholar
First citationKhan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983–2988.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826–2831.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds