organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o541-o542

1′-Allyl-1-(3,4-di­methyl­benzo­yl)-2-(4-methyl-1,3-thia­zol-5-yl)-1,2,5,6,7,7a-hexa­hydro­spiro­[pyrrolizine-3,3′-indolin]-2′-one

aDepartment of Chemistry, Madras Christian College, Tambaram, Chennai 600 059, Tamil Nadu, India, and bDepartment of Chemistry, IIT Madras, Chennai 600 036, TamilNadu, India
*Correspondence e-mail: rjkmcc@yahoo.com

(Received 1 March 2014; accepted 29 March 2014; online 12 April 2014)

In the title compound, C30H31N3O2S, the fused pyrrolidine ring bearing three substituents adopts an envelope conformation with the C atom bearing the benzoyl group as the flap. The other fused pyrrolidine ring adopts a twisted conformation about one of its C—C bonds. The dihedral angle between the isatin ring system and the methyl­thia­zole ring is 25.95 (8)°. An intra­molecular C—H⋯O inter­action closes an S(8) ring. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, generating C(11) chains propagating in [001].

Related literature

For general background to spiro compounds and their biological activity, see: Pradhan et al. (2006[Pradhan, R., Patra, M., Behera, A. K. & Behera, R. K. (2006). Tetrahedron, 62, 779-828.]); Saeedi et al. (2010[Saeedi, M., Heravi, M. M., Beheshtiha, Y. S. & Oskooie, H. A. (2010). Tetrahedron, 66, 5345-5348.]); Dandia et al. (2011[Dandia, A., Singh, R., Bhaskarana, S. & Samant, S. D. (2011). Green Chem. 13, 1852-1859.]). For uses of oxindole derivatives, see: Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B. & Cohen, L. A. (1999). J. Org. Chem. 64, 1369-1371.]) and of pyrrolidine derivatives, see: Suzuki et al. (1994[Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119-6122.]). For the biological activity of pyrrolidine derivatives, see: Cuzzocrea et al. (2002[Cuzzocrea, S., Chatterjee, P. K., Mazzon, E., Dugo, L., Serraino, I., Britti, D., Mazzullo, G., Caputi, A. P. & Thiemermann, C. (2002). Br. J. Pharmacol. 135, 496-510.]); Obniska et al. (2002[Obniska, J., Zeic, A. & Zagorska, A. (2002). Acta Pol. Pharm. 59, 209-213.]); Amal Raj et al. (2003[Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-409.]).

[Scheme 1]

Experimental

Crystal data
  • C30H31N3O2S

  • Mr = 497.64

  • Monoclinic, P 21 /c

  • a = 14.5718 (4) Å

  • b = 9.7218 (2) Å

  • c = 18.2609 (5) Å

  • β = 94.604 (1)°

  • V = 2578.57 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 298 K

  • 0.35 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.984

  • 14973 measured reflections

  • 4494 independent reflections

  • 3647 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.06

  • 4494 reflections

  • 328 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O2 0.93 2.43 3.191 (2) 138
C30—H30A⋯O2i 0.96 2.57 3.533 (3) 178
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

Spirooxindoles are a class of oxindoles with a 3,3-spirocyclic junction and these compounds are extremely common in nature as part of natural products as well as many synthetic drugs (Pradhan et al., 2006); Oxindole derivatives help to treat and prevent diabetic complications arising from elevated levels of sorbitol, and act as aldose reductase inhibitors (Rajeswaran et al.,1999). Thus more and more novel spiroheterocycle compounds have been prepared and characterized (Saeedi et al., 2010); Dandia et al., 2011). In addition, the pyrrolidine group occurs in many families of biologically important compounds. Derivatives of pyrrolidine have anticonvulsant (Obniska et al., 2002), antimicrobial and antifungal activity against various pathogens, except Bacillus subtilis (Amal Raj et al., 2003). Pyrrolidine dithiocarbamate attenuates the development of acute and chronic inflammation (Cuzzocrea et al., 2002). Optically active pyrrolidine derivatives have been used as intermediates in controlled asymmetric synthesis (Suzuki et al., 1994). As spiro pyrrolidine compounds are of great medicinal properties, we have undertaken the three dimensional structure of the title compound. In view of these importance and continuation of our work on the crystal structure analysis of spiropyrrolidine derivatives, the crystal structure of the title compound has been carried out and the results are presented here.

The title compound, C30H31N3O2S, the pyrrolidine ring (N2/C9—C12)is twisted and the other pyrrolidine ring (N1/C1/C6—C8) is almost planar. In one of the pyrrolidine rings (N2/C9—C12) carbon atom C11 deviates by 0.537 Å from the plane. The dihedryl angle between the isatin ring and methylthiazol ring is 25.95 (8)°. The crystal structure features a C—H···O interaction which is connected along the c-axis forming a chain.

Related literature top

For general background to spiro compounds and their biological activity, see: Pradhan et al. (2006); Saeedi et al. (2010); Dandia et al. (2011). For uses of oxindole derivatives, see: Rajeswaran et al. (1999) and of pyrrolidine derivatives, see: Suzuki et al. (1994). For the biological activity of pyrrolidine derivatives, see: Cuzzocrea et al. (2002); Obniska et al. (2002); Amal Raj et al. (2003).

Experimental top

Equimolar quantities of dimethyl acetophenone (0.02 mol) and methyl thiazole aldehyde (0.02 mol) were dissolved in 15 mL of ethanol, and aqueous NaOH (50% 12 mL) was added in dropwise. The reaction mixture was stirred at room temperature the pure compound precipitated from the solution filtered and dried. The dried thiazole aldehyde chalcone product (0.02 mol) reacted with of L-Proline (0.02 mol) and substituted isatins (0.02 mol) in ethanol solvent and the reaction mixture refluxed for two hours to form novel spiro compounds. The completion of the reaction monitored by TLC, the reaction mixture was cooled to room temperature and the solvent evaporated by vacuo the resulting reaction mass purified by column chromatography to isolate the pure compound. Colourless blocks of the title compound were obtained from ethanol solution by slow evaporation at room temperature.

Refinement top

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, methine C—H = 0.98 Å me thylene C—H = 0.97 Å and methyl C—H = 0.96 Å. The displacement parameters were set for phenyl H atoms at Uiso(H) = 1.2Ueq(C) and for methine,methylene and methyl H atoms at Uiso(H) =1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of the molecule with atoms represented as 30% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram showing the C—H···O interaction along the C-axis
1'-Allyl-1-(3,4-dimethylbenzoyl)-2-(4-methyl-1,3-thiazol-5-yl)-1,2,5,6,7,7a-hexahydrospiro[pyrrolizine-3,3'-indolin]-2'-one top
Crystal data top
C30H31N3O2SF(000) = 1056
Mr = 497.64Dx = 1.282 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.5718 (4) ÅCell parameters from 7315 reflections
b = 9.7218 (2) Åθ = 2.5–28.3°
c = 18.2609 (5) ŵ = 0.16 mm1
β = 94.604 (1)°T = 298 K
V = 2578.57 (11) Å3Block, colourless
Z = 40.35 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3647 reflections with I > 2σ(I)
phi and ω scansRint = 0.017
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 1.4°
Tmin = 0.947, Tmax = 0.984h = 1717
14973 measured reflectionsk = 1110
4494 independent reflectionsl = 1721
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0482P)2 + 1.2211P],
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4494 reflectionsΔρmax = 0.48 e Å3
328 parametersΔρmin = 0.27 e Å3
Crystal data top
C30H31N3O2SV = 2578.57 (11) Å3
Mr = 497.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5718 (4) ŵ = 0.16 mm1
b = 9.7218 (2) ÅT = 298 K
c = 18.2609 (5) Å0.35 × 0.20 × 0.10 mm
β = 94.604 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4494 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3647 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.984Rint = 0.017
14973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.06Δρmax = 0.48 e Å3
4494 reflectionsΔρmin = 0.27 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65413 (13)0.39883 (19)0.85262 (10)0.0383 (4)
C20.58768 (14)0.4613 (2)0.80571 (11)0.0518 (5)
H20.59860.54580.78410.062*
C30.50416 (14)0.3940 (3)0.79186 (12)0.0581 (6)
H30.45820.43390.76050.070*
C40.48832 (14)0.2689 (2)0.82378 (12)0.0552 (6)
H40.43230.22460.81320.066*
C50.55540 (13)0.2081 (2)0.87182 (11)0.0461 (5)
H50.54410.12410.89380.055*
C60.63861 (12)0.27365 (18)0.88649 (10)0.0350 (4)
C70.72224 (11)0.23936 (17)0.93863 (9)0.0318 (4)
C80.78884 (12)0.35889 (17)0.92293 (9)0.0325 (4)
C90.63441 (14)0.3191 (2)1.04689 (11)0.0466 (5)
H9A0.58290.33011.01030.056*
H9B0.65630.40931.06290.056*
C100.60697 (16)0.2348 (2)1.11132 (13)0.0564 (6)
H10A0.64480.25781.15580.068*
H10B0.54280.24971.11960.068*
C110.62314 (16)0.0887 (2)1.08836 (12)0.0547 (6)
H11A0.57210.05471.05600.066*
H11B0.63200.02851.13070.066*
C120.71102 (13)0.09952 (18)1.04812 (10)0.0376 (4)
H120.76500.08961.08330.045*
C130.72035 (12)0.00419 (18)0.98251 (10)0.0345 (4)
H130.65810.01670.96120.041*
C140.76642 (12)0.09562 (17)0.92753 (9)0.0315 (4)
H140.83240.10130.94270.038*
C150.75471 (12)0.03912 (18)0.84903 (10)0.0351 (4)
C160.81039 (12)0.09678 (18)0.79174 (9)0.0330 (4)
C170.78684 (13)0.06349 (19)0.71827 (10)0.0393 (4)
H170.73780.00450.70600.047*
C180.83632 (14)0.1180 (2)0.66390 (10)0.0435 (5)
H180.82060.09380.61520.052*
C190.90914 (13)0.2083 (2)0.68006 (10)0.0407 (4)
C200.93371 (12)0.24228 (19)0.75315 (10)0.0379 (4)
C210.88487 (12)0.18377 (19)0.80783 (10)0.0362 (4)
H210.90270.20360.85670.043*
C220.76718 (13)0.12999 (18)1.00085 (10)0.0374 (4)
C230.72805 (15)0.25530 (19)1.00826 (11)0.0456 (5)
N30.78804 (15)0.36140 (18)1.02743 (10)0.0574 (5)
C250.87117 (18)0.3172 (2)1.03383 (12)0.0587 (6)
H250.92090.37501.04600.070*
C260.78500 (16)0.5701 (2)0.84570 (11)0.0510 (5)
H26A0.84610.58230.87010.061*
H26B0.74830.64950.85690.061*
C270.79208 (15)0.5635 (2)0.76434 (12)0.0545 (6)
H270.81240.48200.74450.065*
C280.77137 (17)0.6652 (3)0.72003 (13)0.0625 (6)
H28A0.75080.74800.73840.075*
H28B0.77710.65540.66990.075*
C290.62774 (17)0.2887 (3)0.99541 (17)0.0746 (8)
H29A0.60550.32291.04000.112*
H29B0.61910.35750.95780.112*
H29C0.59430.20720.98020.112*
C300.96004 (16)0.2666 (3)0.61853 (12)0.0646 (7)
H30A0.93400.23070.57250.097*
H30B1.02380.24130.62550.097*
H30C0.95470.36500.61830.097*
C311.00940 (15)0.3431 (3)0.77401 (13)0.0595 (6)
H31A1.06710.30620.76120.089*
H31B1.01230.35960.82600.089*
H31C0.99720.42810.74820.089*
N10.74354 (10)0.44675 (15)0.87448 (8)0.0393 (4)
N20.70847 (10)0.23905 (14)1.01728 (8)0.0353 (3)
O10.69856 (10)0.05143 (15)0.83445 (8)0.0535 (4)
O20.86754 (9)0.37134 (13)0.94943 (7)0.0409 (3)
S10.88481 (4)0.14445 (6)1.01858 (3)0.05538 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0442 (10)0.0379 (10)0.0324 (10)0.0008 (8)0.0013 (8)0.0026 (8)
C20.0567 (12)0.0521 (13)0.0457 (12)0.0046 (10)0.0018 (10)0.0158 (10)
C30.0466 (12)0.0744 (16)0.0514 (13)0.0104 (11)0.0084 (10)0.0065 (12)
C40.0405 (11)0.0676 (15)0.0562 (14)0.0054 (10)0.0048 (10)0.0061 (11)
C50.0438 (10)0.0441 (11)0.0501 (12)0.0068 (9)0.0017 (9)0.0002 (9)
C60.0379 (9)0.0337 (10)0.0331 (10)0.0010 (8)0.0019 (7)0.0000 (7)
C70.0374 (9)0.0277 (9)0.0303 (9)0.0041 (7)0.0032 (7)0.0019 (7)
C80.0420 (10)0.0284 (9)0.0274 (9)0.0042 (7)0.0036 (7)0.0019 (7)
C90.0562 (12)0.0392 (11)0.0459 (12)0.0077 (9)0.0131 (9)0.0006 (9)
C100.0591 (13)0.0564 (14)0.0562 (14)0.0026 (11)0.0204 (11)0.0020 (11)
C110.0724 (14)0.0442 (12)0.0514 (13)0.0075 (10)0.0296 (11)0.0017 (10)
C120.0495 (10)0.0308 (9)0.0331 (10)0.0022 (8)0.0075 (8)0.0047 (8)
C130.0407 (9)0.0283 (9)0.0351 (10)0.0003 (7)0.0069 (8)0.0041 (7)
C140.0358 (9)0.0282 (9)0.0308 (9)0.0012 (7)0.0038 (7)0.0027 (7)
C150.0398 (9)0.0298 (9)0.0353 (10)0.0014 (8)0.0009 (8)0.0002 (7)
C160.0386 (9)0.0292 (9)0.0312 (9)0.0035 (7)0.0032 (7)0.0004 (7)
C170.0459 (10)0.0357 (10)0.0354 (10)0.0010 (8)0.0018 (8)0.0015 (8)
C180.0546 (11)0.0484 (12)0.0272 (9)0.0077 (9)0.0013 (8)0.0001 (8)
C190.0411 (10)0.0446 (11)0.0372 (10)0.0101 (9)0.0077 (8)0.0063 (8)
C200.0346 (9)0.0397 (10)0.0400 (11)0.0038 (8)0.0060 (8)0.0023 (8)
C210.0393 (9)0.0390 (10)0.0301 (9)0.0023 (8)0.0023 (7)0.0031 (8)
C220.0483 (10)0.0331 (10)0.0321 (10)0.0043 (8)0.0103 (8)0.0035 (7)
C230.0635 (13)0.0310 (10)0.0439 (11)0.0046 (9)0.0147 (10)0.0032 (8)
N30.0843 (14)0.0359 (10)0.0530 (11)0.0144 (9)0.0116 (10)0.0062 (8)
C250.0804 (17)0.0487 (13)0.0464 (13)0.0279 (12)0.0009 (12)0.0014 (10)
C260.0656 (13)0.0370 (11)0.0497 (12)0.0152 (10)0.0008 (10)0.0130 (9)
C270.0633 (13)0.0458 (13)0.0562 (14)0.0030 (10)0.0160 (11)0.0126 (10)
C280.0760 (16)0.0611 (15)0.0510 (14)0.0116 (12)0.0082 (12)0.0139 (11)
C290.0684 (16)0.0407 (13)0.117 (2)0.0092 (11)0.0203 (15)0.0028 (14)
C300.0615 (14)0.0898 (19)0.0442 (13)0.0014 (13)0.0154 (11)0.0134 (12)
C310.0477 (12)0.0712 (16)0.0601 (14)0.0150 (11)0.0069 (11)0.0050 (12)
N10.0468 (9)0.0334 (8)0.0368 (9)0.0089 (7)0.0016 (7)0.0093 (7)
N20.0459 (8)0.0285 (8)0.0323 (8)0.0006 (6)0.0078 (7)0.0018 (6)
O10.0681 (9)0.0484 (9)0.0446 (8)0.0245 (7)0.0081 (7)0.0083 (6)
O20.0408 (7)0.0399 (7)0.0413 (7)0.0082 (6)0.0012 (6)0.0010 (6)
S10.0504 (3)0.0509 (3)0.0646 (4)0.0101 (2)0.0029 (3)0.0022 (3)
Geometric parameters (Å, º) top
C1—C21.381 (3)C15—C161.484 (2)
C1—C61.392 (3)C16—C211.389 (2)
C1—N11.411 (2)C16—C171.396 (2)
C2—C31.387 (3)C17—C181.379 (3)
C2—H20.9300C17—H170.9300
C3—C41.376 (3)C18—C191.390 (3)
C3—H30.9300C18—H180.9300
C4—C51.391 (3)C19—C201.394 (3)
C4—H40.9300C19—C301.506 (3)
C5—C61.377 (3)C20—C211.393 (3)
C5—H50.9300C20—C311.502 (3)
C6—C71.522 (2)C21—H210.9300
C7—N21.466 (2)C22—C231.357 (3)
C7—C81.555 (2)C22—S11.7244 (19)
C7—C141.559 (2)C23—N31.379 (3)
C8—O21.214 (2)C23—C291.497 (3)
C8—N11.362 (2)N3—C251.282 (3)
C9—N21.468 (2)C25—S11.716 (2)
C9—C101.514 (3)C25—H250.9300
C9—H9A0.9700C26—N11.459 (2)
C9—H9B0.9700C26—C271.499 (3)
C10—C111.506 (3)C26—H26A0.9700
C10—H10A0.9700C26—H26B0.9700
C10—H10B0.9700C27—C281.298 (3)
C11—C121.530 (3)C27—H270.9300
C11—H11A0.9700C28—H28A0.9300
C11—H11B0.9700C28—H28B0.9300
C12—N21.468 (2)C29—H29A0.9600
C12—C131.529 (3)C29—H29B0.9600
C12—H120.9800C29—H29C0.9600
C13—C221.498 (2)C30—H30A0.9600
C13—C141.535 (2)C30—H30B0.9600
C13—H130.9800C30—H30C0.9600
C14—C151.532 (2)C31—H31A0.9600
C14—H140.9800C31—H31B0.9600
C15—O11.217 (2)C31—H31C0.9600
C2—C1—C6121.97 (18)C21—C16—C17118.18 (16)
C2—C1—N1128.02 (18)C21—C16—C15122.89 (16)
C6—C1—N1110.01 (15)C17—C16—C15118.93 (16)
C1—C2—C3117.8 (2)C18—C17—C16120.03 (18)
C1—C2—H2121.1C18—C17—H17120.0
C3—C2—H2121.1C16—C17—H17120.0
C4—C3—C2120.95 (19)C17—C18—C19121.61 (18)
C4—C3—H3119.5C17—C18—H18119.2
C2—C3—H3119.5C19—C18—H18119.2
C3—C4—C5120.6 (2)C18—C19—C20119.08 (17)
C3—C4—H4119.7C18—C19—C30119.51 (18)
C5—C4—H4119.7C20—C19—C30121.41 (19)
C6—C5—C4119.3 (2)C21—C20—C19118.87 (17)
C6—C5—H5120.4C21—C20—C31119.46 (17)
C4—C5—H5120.4C19—C20—C31121.65 (17)
C5—C6—C1119.34 (17)C16—C21—C20122.17 (17)
C5—C6—C7131.98 (17)C16—C21—H21118.9
C1—C6—C7108.61 (15)C20—C21—H21118.9
N2—C7—C6116.59 (14)C23—C22—C13128.09 (18)
N2—C7—C8108.57 (13)C23—C22—S1109.12 (14)
C6—C7—C8101.61 (13)C13—C22—S1122.77 (14)
N2—C7—C14102.47 (13)C22—C23—N3115.7 (2)
C6—C7—C14115.69 (14)C22—C23—C29126.31 (19)
C8—C7—C14112.06 (14)N3—C23—C29117.93 (19)
O2—C8—N1126.11 (16)C25—N3—C23110.32 (19)
O2—C8—C7125.75 (15)N3—C25—S1115.74 (17)
N1—C8—C7108.14 (14)N3—C25—H25122.1
N2—C9—C10104.31 (16)S1—C25—H25122.1
N2—C9—H9A110.9N1—C26—C27112.65 (17)
C10—C9—H9A110.9N1—C26—H26A109.1
N2—C9—H9B110.9C27—C26—H26A109.1
C10—C9—H9B110.9N1—C26—H26B109.1
H9A—C9—H9B108.9C27—C26—H26B109.1
C11—C10—C9103.73 (17)H26A—C26—H26B107.8
C11—C10—H10A111.0C28—C27—C26123.7 (2)
C9—C10—H10A111.0C28—C27—H27118.2
C11—C10—H10B111.0C26—C27—H27118.2
C9—C10—H10B111.0C27—C28—H28A120.0
H10A—C10—H10B109.0C27—C28—H28B120.0
C10—C11—C12102.96 (16)H28A—C28—H28B120.0
C10—C11—H11A111.2C23—C29—H29A109.5
C12—C11—H11A111.2C23—C29—H29B109.5
C10—C11—H11B111.2H29A—C29—H29B109.5
C12—C11—H11B111.2C23—C29—H29C109.5
H11A—C11—H11B109.1H29A—C29—H29C109.5
N2—C12—C13105.10 (14)H29B—C29—H29C109.5
N2—C12—C11104.56 (15)C19—C30—H30A109.5
C13—C12—C11117.70 (16)C19—C30—H30B109.5
N2—C12—H12109.7H30A—C30—H30B109.5
C13—C12—H12109.7C19—C30—H30C109.5
C11—C12—H12109.7H30A—C30—H30C109.5
C22—C13—C12114.85 (15)H30B—C30—H30C109.5
C22—C13—C14115.80 (14)C20—C31—H31A109.5
C12—C13—C14103.44 (14)C20—C31—H31B109.5
C22—C13—H13107.4H31A—C31—H31B109.5
C12—C13—H13107.4C20—C31—H31C109.5
C14—C13—H13107.4H31A—C31—H31C109.5
C15—C14—C13112.50 (14)H31B—C31—H31C109.5
C15—C14—C7115.27 (14)C8—N1—C1111.42 (14)
C13—C14—C7103.13 (13)C8—N1—C26123.80 (16)
C15—C14—H14108.6C1—N1—C26124.68 (15)
C13—C14—H14108.6C7—N2—C12112.11 (13)
C7—C14—H14108.6C7—N2—C9121.47 (15)
O1—C15—C16120.99 (16)C12—N2—C9110.19 (14)
O1—C15—C14119.13 (16)C25—S1—C2289.08 (11)
C16—C15—C14119.87 (15)
C6—C1—C2—C31.1 (3)C15—C16—C17—C18178.67 (16)
N1—C1—C2—C3179.66 (19)C16—C17—C18—C191.1 (3)
C1—C2—C3—C40.1 (3)C17—C18—C19—C201.3 (3)
C2—C3—C4—C51.1 (4)C17—C18—C19—C30179.07 (19)
C3—C4—C5—C60.8 (3)C18—C19—C20—C210.5 (3)
C4—C5—C6—C10.4 (3)C30—C19—C20—C21179.18 (18)
C4—C5—C6—C7175.96 (19)C18—C19—C20—C31177.71 (19)
C2—C1—C6—C51.4 (3)C30—C19—C20—C312.6 (3)
N1—C1—C6—C5179.25 (17)C17—C16—C21—C202.6 (3)
C2—C1—C6—C7175.73 (18)C15—C16—C21—C20176.85 (16)
N1—C1—C6—C73.6 (2)C19—C20—C21—C162.5 (3)
C5—C6—C7—N263.4 (3)C31—C20—C21—C16175.78 (18)
C1—C6—C7—N2113.23 (17)C12—C13—C22—C23101.5 (2)
C5—C6—C7—C8178.8 (2)C14—C13—C22—C23137.95 (19)
C1—C6—C7—C84.58 (18)C12—C13—C22—S176.69 (19)
C5—C6—C7—C1457.1 (3)C14—C13—C22—S143.9 (2)
C1—C6—C7—C14126.20 (16)C13—C22—C23—N3178.37 (17)
N2—C7—C8—O260.6 (2)S1—C22—C23—N30.0 (2)
C6—C7—C8—O2175.91 (17)C13—C22—C23—C293.7 (3)
C14—C7—C8—O251.8 (2)S1—C22—C23—C29178.0 (2)
N2—C7—C8—N1119.33 (15)C22—C23—N3—C250.5 (3)
C6—C7—C8—N14.11 (18)C29—C23—N3—C25177.7 (2)
C14—C7—C8—N1128.21 (15)C23—N3—C25—S10.8 (2)
N2—C9—C10—C1132.1 (2)N1—C26—C27—C28136.2 (2)
C9—C10—C11—C1237.9 (2)O2—C8—N1—C1177.76 (17)
C10—C11—C12—N229.4 (2)C7—C8—N1—C12.3 (2)
C10—C11—C12—C13145.56 (18)O2—C8—N1—C261.3 (3)
N2—C12—C13—C22152.65 (15)C7—C8—N1—C26178.70 (17)
C11—C12—C13—C2291.5 (2)C2—C1—N1—C8178.46 (19)
N2—C12—C13—C1425.51 (18)C6—C1—N1—C80.8 (2)
C11—C12—C13—C14141.35 (17)C2—C1—N1—C265.1 (3)
C22—C13—C14—C1572.1 (2)C6—C1—N1—C26175.59 (18)
C12—C13—C14—C15161.31 (14)C27—C26—N1—C8115.9 (2)
C22—C13—C14—C7163.02 (15)C27—C26—N1—C160.1 (3)
C12—C13—C14—C736.48 (17)C6—C7—N2—C12108.89 (17)
N2—C7—C14—C15156.57 (14)C8—C7—N2—C12137.19 (15)
C6—C7—C14—C1528.6 (2)C14—C7—N2—C1218.49 (18)
C8—C7—C14—C1587.22 (17)C6—C7—N2—C924.4 (2)
N2—C7—C14—C1333.57 (16)C8—C7—N2—C989.54 (19)
C6—C7—C14—C1394.39 (17)C14—C7—N2—C9151.77 (16)
C8—C7—C14—C13149.78 (14)C13—C12—N2—C74.19 (19)
C13—C14—C15—O113.8 (2)C11—C12—N2—C7128.77 (16)
C7—C14—C15—O1104.05 (19)C13—C12—N2—C9134.38 (16)
C13—C14—C15—C16167.26 (15)C11—C12—N2—C99.8 (2)
C7—C14—C15—C1674.9 (2)C10—C9—N2—C7147.77 (17)
O1—C15—C16—C21169.49 (18)C10—C9—N2—C1213.7 (2)
C14—C15—C16—C2111.6 (3)N3—C25—S1—C220.64 (18)
O1—C15—C16—C1711.0 (3)C23—C22—S1—C250.32 (15)
C14—C15—C16—C17167.86 (15)C13—C22—S1—C25178.81 (16)
C21—C16—C17—C180.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O20.932.433.191 (2)138
C30—H30A···O2i0.962.573.533 (3)178
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O20.932.433.191 (2)138
C30—H30A···O2i0.962.573.533 (3)178
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection and Orchid Chemicals and Pharmaceuticals, Chennai, India, for providing necessary laboratory facilities.

References

First citationAmal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409.  Web of Science PubMed Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCuzzocrea, S., Chatterjee, P. K., Mazzon, E., Dugo, L., Serraino, I., Britti, D., Mazzullo, G., Caputi, A. P. & Thiemermann, C. (2002). Br. J. Pharmacol. 135, 496–510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDandia, A., Singh, R., Bhaskarana, S. & Samant, S. D. (2011). Green Chem. 13, 1852–1859.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationObniska, J., Zeic, A. & Zagorska, A. (2002). Acta Pol. Pharm. 59, 209–213.  PubMed CAS Google Scholar
First citationPradhan, R., Patra, M., Behera, A. K. & Behera, R. K. (2006). Tetrahedron, 62, 779–828.  Web of Science CrossRef CAS Google Scholar
First citationRajeswaran, W. G., Labroo, R. B. & Cohen, L. A. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationSaeedi, M., Heravi, M. M., Beheshtiha, Y. S. & Oskooie, H. A. (2010). Tetrahedron, 66, 5345–5348.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o541-o542
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds