organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o574-o575

4-[(5-Chloro-2-hy­dr­oxy­benzyl­­idene)amino]-3-ethyl-1H-1,2,4-triazole-5(4H)-thione

aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China, and bCollege of Chemistry & Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: miaoli@sxu.edu.cn

(Received 3 March 2014; accepted 13 April 2014; online 18 April 2014)

The title compound, C11H11ClN4OS, crystallizes with two mol­ecules, A and B, in the asymmetric unit in which the dihedral angles between the triazole and benzene rings are 54.6 (3) and 56.0 (3)°. Both mol­ecules feature an intra­molecular O—H⋯N hydrogen bond, which generates an S(6) ring. In the crystal, AB dimers are linked by pairs of weak C—H⋯S hydrogen bonds along with ππ stacking inter­actions between the triazole rings [centroid–centroid separations = 3.631 (3) and 3.981 (4)Å]. N—H⋯S hydrogen bonds link the dimers into [100] chains, which feature R22(8) loops.

Related literature

For background to 1,2,4-triazoles fused to Schiff bases, see: Sumangala et al. (2013[Sumangala, V., Poojary, B., Chidananda, N., Arulmoli, T. & Shenoy, S. (2013). Med. Chem. Res. 22, 2921-2928.]); Brandt et al. (2007[Brandt, C. D., Kitchen, J. A., Beckmann, U., White, N. G., Jameson, G. B. & Brooker, S. (2007). Supramol. Chem. 19, 17-27.]). For related structures, see: Pannu et al. (2011[Pannu, A. P. S. & Hundal, M. S. (2011). J. Chem. Crystallogr. 41, 1447-1450.]); Wu et al. (2012[Wu, X., Yuan, C.-X., Ma, L., Zhai, K.-L. & Zhu, M.-L. (2012). Acta Cryst. E68, o1674.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11ClN4OS

  • Mr = 282.75

  • Monoclinic, P 21

  • a = 6.297 (3) Å

  • b = 16.418 (8) Å

  • c = 12.290 (6) Å

  • β = 90.997 (7)°

  • V = 1270.2 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.914, Tmax = 0.935

  • 14098 measured reflections

  • 2451 independent reflections

  • 1924 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.084

  • S = 1.03

  • 2451 reflections

  • 329 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2274 Friedel pairs

  • Absolute structure parameter: 0.03 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2i 0.86 2.43 3.287 (4) 177
N5—H5A⋯S1ii 0.86 2.44 3.300 (4) 176
O1—H1A⋯N4 0.82 1.99 2.693 (5) 143
O2—H2⋯N8 0.82 1.99 2.699 (5) 144
C15—H15A⋯S1 0.96 3.01 3.922 (6) 160
C4—H4B⋯S2 0.96 2.87 3.805 (6) 164
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The incorporation of the 1,2,4-triazole unit into Schiff base is of considerable current interest as complexes of 1,2,4-triazoles which are being developed for potential use in pharmaceutical and material applications (Sumangala et al. 2013; Brandt et al. 2007). Therefore, the title compound (I), has been synthesized and its crystal structure has been determinated.

The crystal structure is illustrated in Fig. 1 and the main geometric parameters of the commpound are listed in Table 1. The title compound (I) crystallizes in the monoclinic space group P21 with two symmetry-independent molecules in the unit cell. The bond lengths of N4—C5 (1.275 Å) and N8—C16 (1.272 Å) confirm them as double bonds, which is similar to those reported in other Schiff bases (Pannu et al. 2011; Wu et al. 2012;). It is noticeable that the C—S bond length (1.670 Å) in the compound is close to CS double bond, indicating that the compound exists in the thione form.

The packing arrangement in the crystal structure of (I) is shown in Fig. 2. As is a common feature of o-hydroxysalicylidene systems, the compound displays the strong intermolecular and intramolecular hydrogen bond between atoms N, O and S. The molecules of the compound is linked by an inversion-related pair of almost linear intermolecular hydrogen bonds N—H···S to form the cyclic centrosymmetric dimers characterized by an R22(8) motif. The dimer is further held together by the ππ interactions between two rings (Cg1 and Cg2) in the crystal.

Related literature top

For background to 1,2,4-triazoles fused to Schiff bases, see: Sumangala et al. (2013); Brandt et al. (2007). For related structures, see: Pannu et al. (2011); Wu et al. (2012).

Experimental top

0.5 mmol of 4-Amino-3-ethyl-1,2,4-triazole-5-thione was dissolved in 20 ml of ethanol with a constant stirring at 353 K. Then, 0.5 mmol of 5-chlorosalicylaldehyde in 10 ml of ethanol was added dropwise and the mixture solution was further refluxed for 2 h. The resulting yellow solution was filtered and the filtrate was left to stand at room temperature. The yellow blocks of the compound (I) were received from the filtrate with slowly evaporating solvent for a few days. Yield: 70%. Anal. Calcd. for C11H11ClN4OS: C 46.73, H 3.92, N 19.82%. Found: C 46.67, H 4.02, N 19.72%. IR (ν/cm-1): 3113, 3055, 2932, 1606, 1587, 1509, 1477, 1417, 1285, 1161, 1025, 965, 822, 657. UV/vis in DMSO, λmax/nm (ε 103/M-1 cm-1): 260(19.94), 342(8.14).

Refinement top

The H atoms bonded to C atoms were placed in calculated positions (C—H=0.96, 0.97 and 0.93 Å for Csp3, Csp2 and Csp atoms, respectively), assigned fixed Uiso values [Uiso H)=1.2 Ueq (Csp2) and 1.5Ueq (Csp3)] and treated as riding atoms. The H atoms attached to O and N atoms were found in the difference electron-density map and were refined isotropically, with O—H (0.82 Å) and N—H (0.86 Å) bond lengths.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The view of the structure of (I) with displacement ellipsoids drawn at the 30% probability level. Dotted lines indicate hydrogen bonds and ππ interactions.
[Figure 2] Fig. 2. A part of the crystal structure I showing formation of a chain of R22(8) hydrogen-bonded rings and ππ stacking between Cg1 and Cg2 rings; Cg1: C1/C2/N1/N2/N3, Cg2: C12/C13/N5/N6/N7, Symmetry codes: i) x, y, z+1; ii) x, y, z-1.
4-[(5-Chloro-2-hydroxybenzylidene)amino]-3-ethyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C11H11ClN4OSF(000) = 584
Mr = 282.75Dx = 1.478 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1893 reflections
a = 6.297 (3) Åθ = 2.5–20.7°
b = 16.418 (8) ŵ = 0.46 mm1
c = 12.290 (6) ÅT = 298 K
β = 90.997 (7)°Block, colorless
V = 1270.2 (10) Å30.20 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2451 independent reflections
Radiation source: fine-focus sealed tube1924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 77
Tmin = 0.914, Tmax = 0.935k = 1919
14098 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.183P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2451 reflectionsΔρmax = 0.17 e Å3
329 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983), 2274 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (10)
Crystal data top
C11H11ClN4OSV = 1270.2 (10) Å3
Mr = 282.75Z = 4
Monoclinic, P21Mo Kα radiation
a = 6.297 (3) ŵ = 0.46 mm1
b = 16.418 (8) ÅT = 298 K
c = 12.290 (6) Å0.20 × 0.20 × 0.15 mm
β = 90.997 (7)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2451 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1924 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.935Rint = 0.060
14098 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.17 e Å3
S = 1.03Δρmin = 0.27 e Å3
2451 reflectionsAbsolute structure: Flack (1983), 2274 Friedel pairs
329 parametersAbsolute structure parameter: 0.03 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.3625 (2)0.60813 (11)1.00331 (11)0.0760 (5)
N10.2557 (6)0.7267 (3)0.2890 (3)0.0444 (10)
H10.34940.74630.24610.053*
N20.0832 (7)0.6828 (3)0.2520 (3)0.0438 (11)
N30.0891 (6)0.6948 (3)0.4301 (3)0.0347 (10)
N40.0053 (6)0.6921 (3)0.5349 (3)0.0377 (10)
O10.2784 (6)0.7242 (3)0.6907 (3)0.0543 (11)
H1A0.23460.72580.62830.081*
S10.44562 (18)0.78763 (8)0.47087 (9)0.0436 (3)
C10.2662 (7)0.7364 (3)0.3962 (3)0.0364 (11)
C20.0177 (8)0.6646 (3)0.3409 (4)0.0377 (12)
C30.2158 (8)0.6175 (3)0.3463 (4)0.0453 (12)
H3A0.32260.65030.38160.054*
H3B0.19090.56950.39080.054*
C40.3003 (8)0.5911 (3)0.2359 (4)0.0518 (14)
H4A0.19640.55780.20090.078*
H4B0.32940.63830.19210.078*
H4C0.42870.56050.24470.078*
C50.1366 (8)0.6718 (3)0.6103 (4)0.0393 (13)
H50.27410.65700.59230.047*
C60.0756 (8)0.6715 (3)0.7232 (4)0.0368 (12)
C70.1230 (8)0.6988 (3)0.7578 (4)0.0411 (13)
C80.1660 (8)0.7003 (3)0.8684 (4)0.0523 (14)
H80.29560.72030.89180.063*
C90.0194 (9)0.6725 (4)0.9431 (4)0.0572 (15)
H90.05020.67301.01680.069*
C100.1759 (9)0.6436 (3)0.9084 (4)0.0497 (14)
C110.2243 (8)0.6449 (3)0.8005 (4)0.0456 (14)
H110.35760.62780.77850.055*
Cl20.3045 (2)0.97311 (11)0.41889 (11)0.0672 (5)
N50.2140 (6)0.8673 (3)0.2996 (3)0.0477 (11)
H5A0.30780.84850.34300.057*
N60.0421 (7)0.9120 (3)0.3347 (3)0.0471 (11)
N70.0462 (6)0.8961 (2)0.1579 (3)0.0360 (10)
N80.0415 (6)0.8959 (3)0.0537 (3)0.0404 (10)
O20.3237 (5)0.8558 (3)0.1000 (3)0.0567 (10)
H20.28530.86320.03740.085*
S20.40057 (19)0.80215 (8)0.11776 (9)0.0453 (3)
C120.2233 (7)0.8553 (3)0.1915 (4)0.0365 (11)
C130.0582 (8)0.9277 (3)0.2478 (4)0.0389 (12)
C140.2574 (8)0.9764 (4)0.2401 (4)0.0488 (13)
H14A0.23211.02320.19350.059*
H14B0.36700.94340.20750.059*
C150.3339 (9)1.0054 (3)0.3517 (4)0.0591 (15)
H15A0.35400.95930.39880.089*
H15B0.22981.04120.38200.089*
H15C0.46591.03400.34480.089*
C160.0890 (8)0.9128 (3)0.0232 (4)0.0376 (13)
H160.22730.92750.00640.045*
C170.0282 (8)0.9097 (3)0.1362 (4)0.0363 (12)
C180.1690 (8)0.8807 (3)0.1703 (4)0.0400 (12)
C190.2111 (8)0.8760 (3)0.2799 (4)0.0463 (14)
H190.33950.85420.30240.056*
C200.0655 (8)0.9030 (3)0.3562 (4)0.0440 (14)
H200.09550.89990.42990.053*
C210.1263 (9)0.9350 (3)0.3228 (4)0.0423 (13)
C220.1739 (8)0.9368 (3)0.2148 (4)0.0417 (13)
H220.30530.95630.19350.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0791 (11)0.1054 (14)0.0429 (8)0.0219 (10)0.0152 (7)0.0181 (8)
N10.041 (2)0.065 (3)0.027 (2)0.005 (2)0.0082 (18)0.003 (2)
N20.042 (3)0.061 (3)0.029 (2)0.002 (2)0.0026 (19)0.002 (2)
N30.036 (2)0.044 (3)0.024 (2)0.000 (2)0.0078 (17)0.0003 (18)
N40.040 (2)0.050 (3)0.024 (2)0.001 (2)0.0079 (18)0.0020 (19)
O10.048 (2)0.078 (3)0.037 (2)0.010 (2)0.0084 (18)0.002 (2)
S10.0429 (7)0.0589 (8)0.0293 (6)0.0055 (6)0.0057 (5)0.0008 (6)
C10.038 (3)0.045 (3)0.026 (3)0.008 (2)0.007 (2)0.006 (2)
C20.039 (3)0.041 (3)0.033 (3)0.009 (2)0.000 (2)0.000 (2)
C30.046 (3)0.052 (3)0.039 (3)0.000 (3)0.005 (2)0.004 (2)
C40.060 (3)0.046 (3)0.049 (3)0.007 (3)0.008 (3)0.000 (3)
C50.043 (3)0.043 (3)0.032 (3)0.002 (2)0.009 (2)0.002 (2)
C60.042 (3)0.041 (3)0.027 (3)0.006 (2)0.007 (2)0.001 (2)
C70.049 (3)0.046 (3)0.029 (3)0.010 (3)0.010 (2)0.002 (2)
C80.055 (3)0.066 (4)0.037 (3)0.005 (3)0.014 (3)0.004 (3)
C90.069 (4)0.072 (4)0.031 (3)0.024 (3)0.017 (3)0.005 (3)
C100.062 (4)0.060 (4)0.026 (3)0.021 (3)0.003 (2)0.004 (2)
C110.048 (3)0.050 (3)0.039 (3)0.007 (3)0.007 (2)0.001 (3)
Cl20.0642 (9)0.1033 (13)0.0339 (7)0.0065 (9)0.0054 (6)0.0041 (8)
N50.045 (3)0.073 (3)0.025 (2)0.002 (2)0.0093 (19)0.002 (2)
N60.045 (3)0.066 (3)0.030 (2)0.000 (2)0.003 (2)0.006 (2)
N70.040 (2)0.048 (3)0.020 (2)0.006 (2)0.0032 (17)0.0036 (18)
N80.044 (2)0.050 (3)0.027 (2)0.002 (2)0.0106 (19)0.0017 (19)
O20.051 (2)0.082 (3)0.037 (2)0.018 (2)0.0077 (17)0.005 (2)
S20.0447 (7)0.0605 (9)0.0308 (6)0.0031 (7)0.0049 (5)0.0026 (6)
C120.036 (3)0.045 (3)0.029 (3)0.005 (2)0.005 (2)0.002 (2)
C130.039 (3)0.050 (3)0.028 (3)0.008 (2)0.004 (2)0.004 (2)
C140.052 (3)0.053 (3)0.042 (3)0.001 (3)0.006 (2)0.002 (3)
C150.064 (4)0.058 (4)0.054 (3)0.014 (3)0.011 (3)0.001 (3)
C160.041 (3)0.037 (3)0.034 (3)0.001 (2)0.009 (2)0.006 (2)
C170.044 (3)0.034 (3)0.031 (3)0.009 (2)0.010 (2)0.002 (2)
C180.045 (3)0.042 (3)0.034 (3)0.001 (2)0.007 (2)0.001 (2)
C190.052 (3)0.048 (3)0.039 (3)0.004 (3)0.017 (3)0.008 (3)
C200.056 (3)0.051 (3)0.025 (3)0.003 (3)0.011 (2)0.005 (2)
C210.051 (3)0.047 (3)0.029 (3)0.005 (3)0.003 (2)0.002 (2)
C220.040 (3)0.052 (3)0.034 (3)0.003 (2)0.005 (2)0.001 (2)
Geometric parameters (Å, º) top
Cl1—C101.741 (5)Cl2—C211.732 (5)
N1—C11.327 (6)N5—C121.342 (6)
N1—N21.375 (6)N5—N61.371 (5)
N1—H10.8600N5—H5A0.8600
N2—C21.308 (7)N6—C131.277 (7)
N3—C21.370 (6)N7—C121.370 (6)
N3—C11.378 (6)N7—C131.377 (6)
N3—N41.401 (5)N7—N81.403 (5)
N4—C51.275 (6)N8—C161.272 (6)
O1—C71.335 (6)O2—C181.355 (5)
O1—H1A0.8200O2—H20.8200
S1—C11.670 (5)S2—C121.672 (5)
C2—C31.470 (7)C13—C141.492 (7)
C3—C41.512 (6)C14—C151.522 (6)
C3—H3A0.9700C14—H14A0.9700
C3—H3B0.9700C14—H14B0.9700
C4—H4A0.9600C15—H15A0.9600
C4—H4B0.9600C15—H15B0.9600
C4—H4C0.9600C15—H15C0.9600
C5—C61.446 (6)C16—C171.448 (7)
C5—H50.9300C16—H160.9300
C6—C111.392 (7)C17—C221.394 (7)
C6—C71.402 (7)C17—C181.400 (7)
C7—C81.390 (6)C18—C191.380 (7)
C8—C91.369 (7)C19—C201.373 (7)
C8—H80.9300C19—H190.9300
C9—C101.392 (8)C20—C211.386 (7)
C9—H90.9300C20—H200.9300
C10—C111.366 (6)C21—C221.366 (7)
C11—H110.9300C22—H220.9300
C1—N1—N2114.6 (4)C12—N5—N6114.2 (4)
C1—N1—H1122.7C12—N5—H5A122.9
N2—N1—H1122.7N6—N5—H5A122.9
C2—N2—N1103.7 (4)C13—N6—N5104.2 (4)
C2—N3—C1109.0 (4)C12—N7—C13108.8 (4)
C2—N3—N4122.5 (4)C12—N7—N8127.5 (4)
C1—N3—N4127.8 (4)C13—N7—N8122.8 (4)
C5—N4—N3115.2 (4)C16—N8—N7114.8 (4)
C7—O1—H1A109.5C18—O2—H2109.5
N1—C1—N3102.4 (4)N5—C12—N7101.8 (4)
N1—C1—S1128.8 (4)N5—C12—S2129.0 (4)
N3—C1—S1128.8 (3)N7—C12—S2129.1 (3)
N2—C2—N3110.3 (4)N6—C13—N7111.0 (5)
N2—C2—C3125.7 (4)N6—C13—C14126.2 (5)
N3—C2—C3124.0 (4)N7—C13—C14122.8 (4)
C2—C3—C4113.3 (4)C13—C14—C15111.3 (4)
C2—C3—H3A108.9C13—C14—H14A109.4
C4—C3—H3A108.9C15—C14—H14A109.4
C2—C3—H3B108.9C13—C14—H14B109.4
C4—C3—H3B108.9C15—C14—H14B109.4
H3A—C3—H3B107.7H14A—C14—H14B108.0
C3—C4—H4A109.5C14—C15—H15A109.5
C3—C4—H4B109.5C14—C15—H15B109.5
H4A—C4—H4B109.5H15A—C15—H15B109.5
C3—C4—H4C109.5C14—C15—H15C109.5
H4A—C4—H4C109.5H15A—C15—H15C109.5
H4B—C4—H4C109.5H15B—C15—H15C109.5
N4—C5—C6121.2 (5)N8—C16—C17121.8 (5)
N4—C5—H5119.4N8—C16—H16119.1
C6—C5—H5119.4C17—C16—H16119.1
C11—C6—C7119.0 (4)C22—C17—C18118.5 (5)
C11—C6—C5118.0 (5)C22—C17—C16118.2 (5)
C7—C6—C5122.9 (5)C18—C17—C16123.4 (5)
O1—C7—C8116.4 (4)O2—C18—C19117.2 (4)
O1—C7—C6124.1 (4)O2—C18—C17122.9 (4)
C8—C7—C6119.5 (5)C19—C18—C17119.9 (5)
C9—C8—C7120.6 (5)C20—C19—C18120.7 (5)
C9—C8—H8119.7C20—C19—H19119.7
C7—C8—H8119.7C18—C19—H19119.7
C8—C9—C10119.8 (5)C19—C20—C21119.7 (5)
C8—C9—H9120.1C19—C20—H20120.1
C10—C9—H9120.1C21—C20—H20120.1
C11—C10—C9120.4 (5)C22—C21—C20120.2 (5)
C11—C10—Cl1119.8 (4)C22—C21—Cl2120.3 (4)
C9—C10—Cl1119.9 (4)C20—C21—Cl2119.5 (4)
C10—C11—C6120.6 (5)C21—C22—C17120.9 (5)
C10—C11—H11119.7C21—C22—H22119.5
C6—C11—H11119.7C17—C22—H22119.5
C1—N1—N2—C20.1 (6)C12—N5—N6—C130.4 (6)
C2—N3—N4—C5137.3 (5)C12—N7—N8—C1652.0 (6)
C1—N3—N4—C553.0 (7)C13—N7—N8—C16139.5 (5)
N2—N1—C1—N30.8 (5)N6—N5—C12—N70.6 (5)
N2—N1—C1—S1178.1 (4)N6—N5—C12—S2177.7 (4)
C2—N3—C1—N11.3 (5)C13—N7—C12—N51.3 (5)
N4—N3—C1—N1172.1 (4)N8—N7—C12—N5171.1 (4)
C2—N3—C1—S1177.6 (4)C13—N7—C12—S2177.0 (4)
N4—N3—C1—S16.8 (7)N8—N7—C12—S27.2 (7)
N1—N2—C2—N30.9 (5)N5—N6—C13—N71.3 (5)
N1—N2—C2—C3180.0 (5)N5—N6—C13—C14179.0 (5)
C1—N3—C2—N21.5 (6)C12—N7—C13—N61.7 (6)
N4—N3—C2—N2172.8 (4)N8—N7—C13—N6172.1 (4)
C1—N3—C2—C3179.4 (5)C12—N7—C13—C14179.5 (5)
N4—N3—C2—C38.0 (7)N8—N7—C13—C1410.1 (7)
N2—C2—C3—C40.8 (7)N6—C13—C14—C150.9 (8)
N3—C2—C3—C4179.8 (5)N7—C13—C14—C15178.4 (4)
N3—N4—C5—C6176.1 (4)N7—N8—C16—C17175.6 (4)
N4—C5—C6—C11177.0 (5)N8—C16—C17—C22173.7 (5)
N4—C5—C6—C74.9 (8)N8—C16—C17—C186.4 (8)
C11—C6—C7—O1178.7 (5)C22—C17—C18—O2177.7 (5)
C5—C6—C7—O13.2 (8)C16—C17—C18—O22.5 (8)
C11—C6—C7—C81.2 (8)C22—C17—C18—C193.0 (8)
C5—C6—C7—C8176.9 (5)C16—C17—C18—C19176.8 (5)
O1—C7—C8—C9177.5 (5)O2—C18—C19—C20177.5 (5)
C6—C7—C8—C92.4 (8)C17—C18—C19—C203.2 (8)
C7—C8—C9—C100.9 (9)C18—C19—C20—C210.4 (8)
C8—C9—C10—C111.8 (8)C19—C20—C21—C222.5 (8)
C8—C9—C10—Cl1179.9 (4)C19—C20—C21—Cl2177.2 (4)
C9—C10—C11—C63.0 (8)C20—C21—C22—C172.6 (8)
Cl1—C10—C11—C6178.7 (4)Cl2—C21—C22—C17177.1 (4)
C7—C6—C11—C101.5 (8)C18—C17—C22—C210.2 (8)
C5—C6—C11—C10179.7 (5)C16—C17—C22—C21179.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.862.433.287 (4)177
N5—H5A···S1ii0.862.443.300 (4)176
O1—H1A···N40.821.992.693 (5)143
O2—H2···N80.821.992.699 (5)144
C15—H15A···S10.963.013.922 (6)160
C4—H4B···S20.962.873.805 (6)164
Cg1···Cg23.631 (3)
Cg3···Cg4iii3.981 (4)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.862.433.287 (4)177
N5—H5A···S1ii0.862.443.300 (4)176
O1—H1A···N40.821.992.693 (5)143
O2—H2···N80.821.992.699 (5)144
C15—H15A···S10.963.013.922 (6)160
C4—H4B···S20.962.873.805 (6)164
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (grant Nos. 21001070 and 21271121), the Provincial Natural Science Foundation of Shanxi Province of China (grant No. 2011021006–2), the Shanxi Scholarship Council of China (2013–026) and the Student Innovative and Entrepreneurship Training Program of Shanxi Province (2013B29 and 2013011057) as well as the Colleges and Universities in Shanxi Province Science and Technology Research and Development Project (20111002) for financial support.

References

First citationBrandt, C. D., Kitchen, J. A., Beckmann, U., White, N. G., Jameson, G. B. & Brooker, S. (2007). Supramol. Chem. 19, 17–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPannu, A. P. S. & Hundal, M. S. (2011). J. Chem. Crystallogr. 41, 1447–1450.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSumangala, V., Poojary, B., Chidananda, N., Arulmoli, T. & Shenoy, S. (2013). Med. Chem. Res. 22, 2921–2928.  Web of Science CrossRef CAS Google Scholar
First citationWu, X., Yuan, C.-X., Ma, L., Zhai, K.-L. & Zhu, M.-L. (2012). Acta Cryst. E68, o1674.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o574-o575
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds