metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m167-m168

Piperazine-1,4-diium bis­­(hexa­hydroxido­hepta­oxidohexa­borato-κ3O,O′,O′′)cobaltate(II) hexa­hydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: samah.akriche@fsb.rnu.tn

(Received 3 March 2014; accepted 30 March 2014; online 5 April 2014)

In the title hydrate, (C4H12N2)[Co{B6O7(OH)6}2]·6H2O, both the dication and dianion are generated by crystallographic inversion symmetry. The Co2+ ion in the dianion adopts a fairly regular CoO6 octa­hedral coordination geometry arising from the two O,O′,O′′-tridentate ligands. In the crystal, the dianions and water mol­ecules are linked by O—H⋯O hydrogen bonds, generating a framework with large [100] channels, which are occupied by the organic dications. N—H⋯O and C—H⋯O hydrogen bonds consolidate the structure.

Related literature

For related structures, see: Natarajan et al. (2003[Natarajan, S., Klein, W., Panthöfer, M., Wüllen, L. V. & Jansen, M. (2003). Z. Anorg. Allg. Chem. 629, 959-962.]); Negro et al. (1971[Negro, A., Ungaretti, L. & Sabelli, C. (1971). Am. Mineral. 56, 1553-1566.]); Zhihong et al. (2005[Zhihong, L., Lianqing, L., Jun, L. & Mancheng, H. (2005). J. Alloys Compd, 394, 277-281.]); Yue et al. (2003[Yue, T., Zhu, L., Xia, S., Gao, S. & Yu, K. (2003). J. Alloys Compd, 358, 87-92.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N2)[Co(H6B6O13)2]·6H2O

  • Mr = 813.00

  • Triclinic, [P \overline 1]

  • a = 8.226 (3) Å

  • b = 10.157 (2) Å

  • c = 11.298 (4) Å

  • α = 65.98 (2)°

  • β = 74.20 (3)°

  • γ = 69.03 (5)°

  • V = 796.2 (4) Å3

  • Z = 1

  • Ag Kα radiation

  • λ = 0.56087 Å

  • μ = 0.35 mm−1

  • T = 298 K

  • 0.23 × 0.15 × 0.11 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 9895 measured reflections

  • 7785 independent reflections

  • 6118 reflections with I > 2σ(I)

  • Rint = 0.014

  • 2 standard reflections every 120 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.153

  • S = 1.06

  • 7785 reflections

  • 259 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.42 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O2 2.0539 (17)
Co1—O1 2.0648 (14)
Co1—O4 2.1926 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2W 0.82 (1) 2.00 (2) 2.7525 (19) 153 (3)
O2—H2⋯O6i 0.81 (1) 2.11 (1) 2.876 (2) 157 (3)
O3—H3⋯O23ii 0.82 1.93 2.745 (2) 172
O4—H4⋯O2W 0.81 (1) 2.08 (1) 2.864 (2) 164 (3)
O5—H5⋯O45iii 0.82 1.91 2.7159 (18) 169
O6—H6⋯O4i 0.82 1.95 2.734 (2) 160
O1W—H1W1⋯O5 0.86 (1) 1.96 (2) 2.771 (2) 158 (4)
O1W—H2W1⋯O26iv 0.86 (1) 2.27 (1) 3.108 (3) 167 (3)
O1W—H2W1⋯O23iv 0.86 (1) 2.51 (3) 3.158 (3) 133 (3)
O2W—H1W2⋯O3v 0.85 (1) 2.05 (2) 2.861 (2) 159 (3)
O2W—H2W2⋯O1Wvi 0.85 (1) 2.01 (1) 2.838 (3) 164 (3)
O3W—H2W3⋯O1Wvii 0.85 (1) 2.05 (2) 2.842 (3) 155 (3)
O3W—H1W3⋯O1viii 0.85 (1) 2.24 (1) 3.088 (3) 179 (1)
N1—H1A⋯O16 0.90 1.78 2.654 (2) 165
N1—H1A⋯O6 0.90 2.46 2.986 (3) 117
N1—H1B⋯O3W 0.90 1.98 2.836 (3) 157
C1—H1C⋯O34v 0.97 2.56 3.321 (3) 136
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) -x+1, -y+1, -z; (iv) -x+2, -y+1, -z; (v) x, y+1, z; (vi) -x+1, -y+2, -z; (vii) -x+2, -y+2, -z; (viii) x+1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The mode of condensation of trigonal planar B(OH)3 and tetrahedral [B(OH)4]- primary structural units, leads to a variety of hydrated polyborate structures such as rings, cages, chains, sheets or extended networks. In particular, the polymerization of three tetrahedral BO3(OH) (3Δ) and three trigonal BO2(OH)(3 T) moieties form tricyclic [B6O7(OH)6]2- anions featuring an unusual three-coordinate oxygen atom (µ3–O). To date, various hydrated hexaborate structures including inorganic metals have been extensively studied. In contrast, those with organic and inorganic cations are less explored. On the best of our knowledge only one hydrated hexaborate with transition metal and organic cations, is earlier cited; [(Me)2NH(CH2)2NH(Me)2]{Zn[B6O7(OH)6]2}·2H2O (with Me = methyl)(Natarajan et al., 2003). In this work, we report the synthesis and structure of a new organic-inorganic hydrated hexaborate, [C4N2H12]{Co[B6O7(OH)6]2}·6H2O (I).

The asymmetric unit of the title complex consists of a half [C4H12N2]2+ diprotonated cation, a half of {Co[B6O7(OH)6]2}2- complex hexaborate anions and three lattice water molecules as shown in Figure 1. As the Co2+ ion is located on centre of inversion so is bonded to six O atoms of two chelating [B6O7(OH)6]2- anions forming thus a distorted octahedron. The Co—O distances range from 2.0539 (17) to 2.1926 (12) Å and the O—Co—O angles are between 87.03 (5)–180.00 (7)° (Table 1). The [B6O7(OH)6]2- unit is formed by three tetrahedral B and three trigonal B atoms (3Δ + 3 T), linked through six double bridged (µ2–O) and one triple bridged (µ3–O) oxygen atoms in which each B atom possesses one terminal OH group, resulting in the formation of a tricyclic honeycomb-like structure anion (Fig. 2). Similar hexaborate anions have been encountered in the mineral aksaite (Negro et al., 1971).

The B—O and O—B—O bond lengths range from 1.434 (2) to 1.5123 (18) Å and from 105.58 (12) to 112.53 (12) ° respectively for the tetrahedral B atoms and those for trigonal ones are in the range 1.355 (2)–1.371 (2) Å and from 114.61 (14) to 122.88 (14) °. The longer B—O distances are observed for the tetrahedral B atoms associated with the µ3 oxygen atom. These structural parameters are in good agreement with those observed for other hydrated hexaborate associated with some alkali and transition metals, such as K2Mg[B6O7(OH)6]2·4H2O (Zhihong et al., 2005) and Rb2Co[B6O7(OH)6]2·4H2O (Yue et al., 2003).

The [B6O7(OH)6]2- anions are further interconnected through O—H···O hydrogen-bonding interactions of the hydroxyl groups (Table 2) yelding to a three-dimensional framework with channels along the a axis. The negative excess charges of the anionic framework is compensated by [C4H12N2]2+ cations, which occupy the voids along with water molecules (Fig. 3). It'to be noted that the diprotonated piperazine ring adopts a chair conformation, with puckering parameters Q = 1.7803 Å, θ = 171.58° and ϕ = 90°.

Related literature top

For related structures, see: Natarajan et al. (2003); Negro et al. (1971); Zhihong et al. (2005); Yue et al. (2003).

Experimental top

Piperazine (0.086 g), CoCl2·6H2O (0.8 g) and H3BO3 (2 g) in a molar ratio: piperazine/Co/ B = 1/4/32 were dissolved in a mixture of 30 ml of distilled water and 20 ml of ethanol and then stirred for 1 h. The pH was adjusted to 9 by addition of 5 ml of pyridine. Within two weeks, pink prisms of the title compound were obtained. The existence of hexaborate anion in the prepared compound is evidenced by characteristic IR absorption band at 685 cm-1. IR (KBr, cm-1): 1358 νas(BO3), 908–850 νs(BO3), 1028νas(BO4),807 νs(BO4),1095 ν(BOH) and 685δ(BO3)+δ(BO4).

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å and N—H = 0.90 Å with Uiso(H) = 1.2Ueq(C, N) for piperazine ring. The H atoms of OH groups are fixed using restraint O—H = 0.82 Å and those of water molecules are located using restraints [O—H = 0.85 (1) Å, H···H = 1.44 (2) Å and Uiso(H) = 1.5Ueq(O). Four bad reflections with (Iobs-Icalc)/SigmaW > 10 are omitted on the final refinement.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are represented as dashed lines. [Symmetry code: (i) 1 - x, 1 - y, 1 - z]
[Figure 2] Fig. 2. Crystal structure of I viewed along a axis showing a three-dimensional-supramolecular structure featuring the voids represented as large yellow ball. The H-atoms not included in H-bond scheme are omitted.
Piperazine-1,4-diium bis(hexahydroxidoheptaoxidohexaborato-κ3O,O',O'')cobaltate(II) hexahydrate top
Crystal data top
(C4H12N2)[Co(H6B6O13)2]·6H2OZ = 1
Mr = 813.00F(000) = 417
Triclinic, P1Dx = 1.696 Mg m3
Hall symbol: -P 1Ag Kα radiation, λ = 0.56087 Å
a = 8.226 (3) ÅCell parameters from 25 reflections
b = 10.157 (2) Åθ = 9–11°
c = 11.298 (4) ŵ = 0.35 mm1
α = 65.98 (2)°T = 298 K
β = 74.20 (3)°Prism, pink
γ = 69.03 (5)°0.23 × 0.15 × 0.11 mm
V = 796.2 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.014
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.1°
Graphite monochromatorh = 1313
non–profiled ω scansk = 1616
9895 measured reflectionsl = 318
7785 independent reflections2 standard reflections every 120 min
6118 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0924P)2 + 0.2147P]
where P = (Fo2 + 2Fc2)/3
7785 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 2.42 e Å3
12 restraintsΔρmin = 0.99 e Å3
Crystal data top
(C4H12N2)[Co(H6B6O13)2]·6H2Oγ = 69.03 (5)°
Mr = 813.00V = 796.2 (4) Å3
Triclinic, P1Z = 1
a = 8.226 (3) ÅAg Kα radiation, λ = 0.56087 Å
b = 10.157 (2) ŵ = 0.35 mm1
c = 11.298 (4) ÅT = 298 K
α = 65.98 (2)°0.23 × 0.15 × 0.11 mm
β = 74.20 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.014
9895 measured reflections2 standard reflections every 120 min
7785 independent reflections intensity decay: 2%
6118 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.04912 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 2.42 e Å3
7785 reflectionsΔρmin = 0.99 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.01614 (7)
B10.7384 (2)0.59885 (17)0.23924 (15)0.0163 (2)
B20.8734 (2)0.33738 (17)0.39832 (16)0.0167 (2)
B30.8346 (2)0.12594 (18)0.36263 (17)0.0200 (3)
B40.6375 (2)0.37212 (16)0.26842 (15)0.0161 (2)
B50.6174 (2)0.59847 (19)0.06603 (16)0.0210 (3)
B61.0368 (2)0.5217 (2)0.29973 (17)0.0203 (3)
O1240.77220 (13)0.43050 (11)0.28482 (10)0.01562 (17)
O450.58438 (15)0.46319 (12)0.14086 (11)0.02026 (19)
O340.71305 (15)0.21657 (12)0.28139 (12)0.02037 (19)
O160.89561 (14)0.62883 (13)0.24323 (12)0.0225 (2)
O150.69605 (17)0.66434 (13)0.10864 (11)0.0232 (2)
O230.91602 (16)0.17965 (12)0.41590 (12)0.0229 (2)
O10.58976 (15)0.65398 (12)0.33104 (12)0.02076 (19)
H10.595 (4)0.7336 (18)0.330 (3)0.031*
O20.75590 (15)0.36962 (14)0.51227 (11)0.0222 (2)
H20.793 (4)0.361 (3)0.5750 (18)0.033*
O30.8757 (2)0.02567 (13)0.38981 (16)0.0321 (3)
H30.94630.07010.44210.048*
O40.51422 (14)0.61177 (12)0.62547 (11)0.01811 (18)
H40.528 (4)0.6931 (17)0.578 (2)0.027*
O50.5670 (2)0.67326 (16)0.05561 (13)0.0352 (3)
H50.52050.62380.07080.053*
O61.17955 (16)0.57172 (15)0.27863 (15)0.0286 (3)
H61.26280.50030.30700.043*
O261.03454 (14)0.37793 (13)0.37106 (12)0.0223 (2)
O1W0.6861 (3)0.8794 (2)0.2835 (2)0.0489 (4)
H1W10.622 (4)0.833 (4)0.216 (3)0.073*
H2W10.773 (3)0.818 (3)0.314 (3)0.073*
O2W0.5784 (2)0.87545 (16)0.41668 (16)0.0349 (3)
H1W20.676 (2)0.882 (3)0.423 (3)0.052*
H2W20.511 (3)0.959 (2)0.375 (3)0.052*
O3W1.2705 (3)0.9010 (3)0.2089 (3)0.0675 (7)
H2W31.253 (5)0.981 (2)0.223 (5)0.101*
H1W31.35780.83340.24300.101*
N10.9898 (3)0.8815 (2)0.1223 (2)0.0443 (4)
H1A0.95380.80010.17630.053*
H1B1.05450.89820.16460.053*
C10.8360 (3)1.0119 (2)0.0893 (2)0.0355 (4)
H1C0.76531.02900.16860.043*
H1D0.76380.99350.04580.043*
C21.1021 (4)0.8520 (2)0.0001 (3)0.0441 (5)
H2A1.20280.76510.02350.053*
H2B1.03390.83140.04500.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01484 (11)0.01703 (12)0.01733 (12)0.00406 (8)0.00425 (8)0.00587 (9)
B10.0158 (5)0.0161 (5)0.0180 (6)0.0053 (4)0.0062 (5)0.0038 (5)
B20.0157 (5)0.0159 (5)0.0194 (6)0.0025 (4)0.0083 (5)0.0050 (5)
B30.0214 (6)0.0157 (6)0.0240 (7)0.0030 (5)0.0078 (5)0.0070 (5)
B40.0168 (5)0.0154 (5)0.0179 (6)0.0039 (4)0.0071 (5)0.0053 (5)
B50.0255 (7)0.0211 (6)0.0173 (6)0.0073 (5)0.0086 (5)0.0034 (5)
B60.0160 (6)0.0245 (7)0.0241 (7)0.0074 (5)0.0055 (5)0.0090 (6)
O1240.0151 (4)0.0150 (4)0.0180 (4)0.0037 (3)0.0070 (3)0.0046 (3)
O450.0244 (5)0.0208 (4)0.0182 (4)0.0091 (4)0.0102 (4)0.0025 (4)
O340.0233 (5)0.0158 (4)0.0252 (5)0.0029 (3)0.0108 (4)0.0078 (4)
O160.0176 (4)0.0203 (4)0.0316 (6)0.0072 (4)0.0091 (4)0.0058 (4)
O150.0321 (6)0.0206 (5)0.0194 (5)0.0107 (4)0.0116 (4)0.0014 (4)
O230.0262 (5)0.0148 (4)0.0294 (5)0.0011 (4)0.0159 (4)0.0058 (4)
O10.0199 (4)0.0178 (4)0.0254 (5)0.0055 (3)0.0020 (4)0.0088 (4)
O20.0187 (4)0.0287 (5)0.0192 (5)0.0025 (4)0.0074 (4)0.0091 (4)
O30.0400 (7)0.0156 (5)0.0460 (8)0.0014 (4)0.0265 (6)0.0085 (5)
O40.0174 (4)0.0182 (4)0.0203 (4)0.0065 (3)0.0039 (3)0.0061 (3)
O50.0583 (9)0.0321 (6)0.0227 (6)0.0253 (6)0.0218 (6)0.0042 (5)
O60.0177 (5)0.0287 (6)0.0403 (7)0.0093 (4)0.0100 (5)0.0069 (5)
O260.0156 (4)0.0235 (5)0.0282 (5)0.0055 (4)0.0087 (4)0.0059 (4)
O1W0.0409 (9)0.0369 (8)0.0484 (10)0.0071 (7)0.0027 (7)0.0038 (7)
O2W0.0407 (7)0.0262 (6)0.0426 (8)0.0149 (5)0.0062 (6)0.0116 (6)
O3W0.0612 (14)0.0639 (14)0.0861 (17)0.0129 (11)0.0395 (13)0.0203 (13)
N10.0550 (12)0.0363 (9)0.0406 (10)0.0197 (8)0.0131 (9)0.0026 (8)
C10.0392 (10)0.0318 (8)0.0291 (8)0.0099 (7)0.0008 (7)0.0081 (7)
C20.0509 (13)0.0232 (8)0.0485 (12)0.0079 (8)0.0024 (10)0.0111 (8)
Geometric parameters (Å, º) top
Co1—O22.0539 (17)B6—O61.368 (2)
Co1—O2i2.0539 (17)B6—O161.369 (2)
Co1—O12.0648 (14)O1—H10.820 (10)
Co1—O1i2.0648 (14)O2—H20.811 (10)
Co1—O4i2.1926 (12)O3—H30.8200
Co1—O42.1926 (12)O4—B4i1.490 (2)
B1—O151.434 (2)O4—H40.810 (10)
B1—O161.4462 (19)O5—H50.8200
B1—O11.475 (2)O6—H60.8200
B1—O1241.5123 (18)O1W—H1W10.861 (10)
B2—O261.4447 (19)O1W—H2W10.856 (10)
B2—O231.4510 (19)O2W—H1W20.852 (10)
B2—O21.462 (2)O2W—H2W20.854 (10)
B2—O1241.5041 (19)O3W—H2W30.846 (10)
B3—O341.357 (2)O3W—H1W30.847 (2)
B3—O231.363 (2)N1—C11.466 (3)
B3—O31.371 (2)N1—C21.517 (4)
B4—O341.4360 (19)N1—H1A0.9000
B4—O451.4463 (19)N1—H1B0.9000
B4—O4i1.490 (2)C1—C2ii1.508 (3)
B4—O1241.5117 (18)C1—H1C0.9700
B5—O151.356 (2)C1—H1D0.9700
B5—O51.368 (2)C2—C1ii1.508 (3)
B5—O451.368 (2)C2—H2A0.9700
B6—O261.355 (2)C2—H2B0.9700
O2—Co1—O2i180.0B2—O124—B4118.01 (11)
O2—Co1—O188.68 (6)B2—O124—B1116.87 (11)
O2i—Co1—O191.32 (6)B4—O124—B1117.76 (11)
O2—Co1—O1i91.32 (6)B5—O45—B4124.30 (12)
O2i—Co1—O1i88.68 (6)B3—O34—B4120.52 (12)
O1—Co1—O1i180.0B6—O16—B1124.47 (12)
O2—Co1—O4i88.17 (5)B5—O15—B1120.85 (12)
O2i—Co1—O4i91.83 (5)B3—O23—B2123.44 (12)
O1—Co1—O4i87.03 (5)B1—O1—Co1118.94 (9)
O1i—Co1—O4i92.97 (5)B1—O1—H1109.3 (19)
O2—Co1—O491.83 (5)Co1—O1—H1121.9 (19)
O2i—Co1—O488.17 (5)B2—O2—Co1121.28 (9)
O1—Co1—O492.97 (5)B2—O2—H2122 (2)
O1i—Co1—O487.03 (5)Co1—O2—H2114 (2)
O4i—Co1—O4180.0B3—O3—H3109.5
O15—B1—O16110.89 (12)B4i—O4—Co1116.22 (9)
O15—B1—O1110.91 (13)B4i—O4—H4110.6 (19)
O16—B1—O1110.56 (12)Co1—O4—H4107.3 (19)
O15—B1—O124109.07 (12)B5—O5—H5109.5
O16—B1—O124108.17 (12)B6—O6—H6109.5
O1—B1—O124107.12 (12)B6—O26—B2119.33 (13)
O26—B2—O23109.16 (13)H1W1—O1W—H2W1112 (2)
O26—B2—O2112.53 (12)H1W2—O2W—H2W2113 (2)
O23—B2—O2110.85 (13)H2W3—O3W—H1W3111 (2)
O26—B2—O124109.35 (12)C1—N1—C2110.90 (19)
O23—B2—O124109.28 (12)C1—N1—H1A109.5
O2—B2—O124105.58 (12)C2—N1—H1A109.5
O34—B3—O23122.88 (14)C1—N1—H1B109.5
O34—B3—O3117.27 (14)C2—N1—H1B109.5
O23—B3—O3119.85 (14)H1A—N1—H1B108.0
O34—B4—O45111.78 (12)N1—C1—C2ii109.0 (2)
O34—B4—O4i109.79 (12)N1—C1—H1C109.9
O45—B4—O4i110.85 (12)C2ii—C1—H1C109.9
O34—B4—O124109.48 (12)N1—C1—H1D109.9
O45—B4—O124107.67 (11)C2ii—C1—H1D109.9
O4i—B4—O124107.13 (11)H1C—C1—H1D108.3
O15—B5—O5117.83 (14)C1ii—C2—N1109.18 (18)
O15—B5—O45122.48 (14)C1ii—C2—H2A109.8
O5—B5—O45119.68 (14)N1—C2—H2A109.8
O26—B6—O6122.85 (15)C1ii—C2—H2B109.8
O26—B6—O16122.54 (14)N1—C2—H2B109.8
O6—B6—O16114.61 (14)H2A—C2—H2B108.3
O26—B2—O124—B4158.42 (12)O1—B1—O15—B588.84 (17)
O23—B2—O124—B438.99 (17)O124—B1—O15—B528.90 (19)
O2—B2—O124—B480.28 (14)O34—B3—O23—B24.1 (3)
O26—B2—O124—B152.13 (16)O3—B3—O23—B2176.41 (15)
O23—B2—O124—B1171.56 (11)O26—B2—O23—B3136.34 (15)
O2—B2—O124—B169.17 (15)O2—B2—O23—B399.17 (17)
O34—B4—O124—B247.01 (16)O124—B2—O23—B316.8 (2)
O45—B4—O124—B2168.73 (11)O15—B1—O1—Co1128.21 (10)
O4i—B4—O124—B271.99 (15)O16—B1—O1—Co1108.36 (12)
O34—B4—O124—B1163.82 (12)O124—B1—O1—Co19.28 (14)
O45—B4—O124—B142.10 (16)O2—Co1—O1—B137.04 (10)
O4i—B4—O124—B177.18 (14)O2i—Co1—O1—B1142.96 (10)
O15—B1—O124—B2160.84 (12)O1i—Co1—O1—B13 (100)
O16—B1—O124—B240.14 (16)O4i—Co1—O1—B151.19 (10)
O1—B1—O124—B279.05 (14)O4—Co1—O1—B1128.81 (10)
O15—B1—O124—B449.63 (16)O26—B2—O2—Co1125.40 (11)
O16—B1—O124—B4170.33 (12)O23—B2—O2—Co1112.03 (12)
O1—B1—O124—B470.47 (15)O124—B2—O2—Co16.19 (15)
O15—B5—O45—B43.7 (3)O2i—Co1—O2—B2124 (100)
O5—B5—O45—B4177.61 (16)O1—Co1—O2—B247.25 (11)
O34—B4—O45—B5135.19 (15)O1i—Co1—O2—B2132.75 (11)
O4i—B4—O45—B5101.96 (17)O4i—Co1—O2—B239.82 (11)
O124—B4—O45—B514.9 (2)O4—Co1—O2—B2140.18 (11)
O23—B3—O34—B412.8 (2)O2—Co1—O4—B4i134.31 (9)
O3—B3—O34—B4167.68 (15)O2i—Co1—O4—B4i45.69 (9)
O45—B4—O34—B3151.66 (14)O1—Co1—O4—B4i136.92 (10)
O4i—B4—O34—B384.90 (16)O1i—Co1—O4—B4i43.08 (10)
O124—B4—O34—B332.44 (19)O4i—Co1—O4—B4i10 (100)
O26—B6—O16—B17.6 (3)O6—B6—O26—B2174.61 (15)
O6—B6—O16—B1172.53 (15)O16—B6—O26—B25.2 (2)
O15—B1—O16—B6129.57 (16)O23—B2—O26—B6152.56 (14)
O1—B1—O16—B6106.99 (17)O2—B2—O26—B683.94 (17)
O124—B1—O16—B610.0 (2)O124—B2—O26—B633.05 (19)
O5—B5—O15—B1174.55 (16)C2—N1—C1—C2ii59.8 (3)
O45—B5—O15—B14.2 (3)C1—N1—C2—C1ii59.9 (3)
O16—B1—O15—B5147.91 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2W0.82 (1)2.00 (2)2.7525 (19)153 (3)
O2—H2···O6iii0.81 (1)2.11 (1)2.876 (2)157 (3)
O3—H3···O23iv0.821.932.745 (2)172
O4—H4···O2W0.81 (1)2.08 (1)2.864 (2)164 (3)
O5—H5···O45v0.821.912.7159 (18)169
O6—H6···O4iii0.821.952.734 (2)160
O1W—H1W1···O50.86 (1)1.96 (2)2.771 (2)158 (4)
O1W—H2W1···O26vi0.86 (1)2.27 (1)3.108 (3)167 (3)
O1W—H2W1···O23vi0.86 (1)2.51 (3)3.158 (3)133 (3)
O2W—H1W2···O3vii0.85 (1)2.05 (2)2.861 (2)159 (3)
O2W—H2W2···O1Wviii0.85 (1)2.01 (1)2.838 (3)164 (3)
O3W—H2W3···O1Wii0.85 (1)2.05 (2)2.842 (3)155 (3)
O3W—H1W3···O1ix0.85 (1)2.24 (1)3.088 (3)179 (1)
N1—H1A···O160.901.782.654 (2)165
N1—H1A···O60.902.462.986 (3)117
N1—H1B···O3W0.901.982.836 (3)157
C1—H1C···O34vii0.972.563.321 (3)136
Symmetry codes: (ii) x+2, y+2, z; (iii) x+2, y+1, z+1; (iv) x+2, y, z+1; (v) x+1, y+1, z; (vi) x+2, y+1, z; (vii) x, y+1, z; (viii) x+1, y+2, z; (ix) x+1, y, z.
Selected bond lengths (Å) top
Co1—O22.0539 (17)Co1—O42.1926 (12)
Co1—O12.0648 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2W0.820 (10)1.996 (15)2.7525 (19)153 (3)
O2—H2···O6i0.811 (10)2.113 (14)2.876 (2)157 (3)
O3—H3···O23ii0.821.932.745 (2)171.8
O4—H4···O2W0.810 (10)2.077 (12)2.864 (2)164 (3)
O5—H5···O45iii0.821.912.7159 (18)168.6
O6—H6···O4i0.821.952.734 (2)159.7
O1W—H1W1···O50.861 (10)1.955 (18)2.771 (2)158 (4)
O1W—H2W1···O26iv0.856 (10)2.266 (13)3.108 (3)167 (3)
O1W—H2W1···O23iv0.856 (10)2.51 (3)3.158 (3)133 (3)
O2W—H1W2···O3v0.852 (10)2.050 (15)2.861 (2)159 (3)
O2W—H2W2···O1Wvi0.854 (10)2.007 (12)2.838 (3)164 (3)
O3W—H2W3···O1Wvii0.846 (10)2.054 (19)2.842 (3)155 (3)
O3W—H1W3···O1viii0.847 (2)2.2407 (19)3.088 (3)179.4 (2)
N1—H1A···O160.901.782.654 (2)165
N1—H1A···O60.902.462.986 (3)117
N1—H1B···O3W0.901.982.836 (3)157
C1—H1C···O34v0.972.563.321 (3)136
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1; (iii) x+1, y+1, z; (iv) x+2, y+1, z; (v) x, y+1, z; (vi) x+1, y+2, z; (vii) x+2, y+2, z; (viii) x+1, y, z.
 

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNatarajan, S., Klein, W., Panthöfer, M., Wüllen, L. V. & Jansen, M. (2003). Z. Anorg. Allg. Chem. 629, 959–962.  Web of Science CSD CrossRef CAS Google Scholar
First citationNegro, A., Ungaretti, L. & Sabelli, C. (1971). Am. Mineral. 56, 1553–1566.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYue, T., Zhu, L., Xia, S., Gao, S. & Yu, K. (2003). J. Alloys Compd, 358, 87–92.  CAS Google Scholar
First citationZhihong, L., Lianqing, L., Jun, L. & Mancheng, H. (2005). J. Alloys Compd, 394, 277–281.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m167-m168
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds