metal-organic compounds
Piperazine-1,4-diium bis(hexahydroxidoheptaoxidohexaborato-κ3O,O′,O′′)cobaltate(II) hexahydrate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: samah.akriche@fsb.rnu.tn
In the title hydrate, (C4H12N2)[Co{B6O7(OH)6}2]·6H2O, both the dication and dianion are generated by crystallographic inversion symmetry. The Co2+ ion in the dianion adopts a fairly regular CoO6 octahedral coordination geometry arising from the two O,O′,O′′-tridentate ligands. In the crystal, the dianions and water molecules are linked by O—H⋯O hydrogen bonds, generating a framework with large [100] channels, which are occupied by the organic dications. N—H⋯O and C—H⋯O hydrogen bonds consolidate the structure.
CCDC reference: 994558
Related literature
For related structures, see: Natarajan et al. (2003); Negro et al. (1971); Zhihong et al. (2005); Yue et al. (2003).
Experimental
Crystal data
|
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 994558
10.1107/S1600536814007090/hb7207sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814007090/hb7207Isup2.hkl
Piperazine (0.086 g), CoCl2·6H2O (0.8 g) and H3BO3 (2 g) in a molar ratio: piperazine/Co/ B = 1/4/32 were dissolved in a mixture of 30 ml of distilled water and 20 ml of ethanol and then stirred for 1 h. The pH was adjusted to 9 by addition of 5 ml of pyridine. Within two weeks, pink prisms of the title compound were obtained. The existence of hexaborate anion in the prepared compound is evidenced by characteristic IR absorption band at 685 cm-1. IR (KBr, cm-1): 1358 νas(BO3), 908–850 νs(BO3), 1028νas(BO4),807 νs(BO4),1095 ν(BOH) and 685δ(BO3)+δ(BO4).
All H atoms attached to C and N atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å and N—H = 0.90 Å with Uiso(H) = 1.2Ueq(C, N) for piperazine ring. The H atoms of OH groups are fixed using restraint O—H = 0.82 Å and those of water molecules are located using restraints [O—H = 0.85 (1) Å, H···H = 1.44 (2) Å and Uiso(H) = 1.5Ueq(O). Four bad reflections with (Iobs-Icalc)/SigmaW > 10 are omitted on the final refinement.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. An ORTEP view of (I) with displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are represented as dashed lines. [Symmetry code: (i) 1 - x, 1 - y, 1 - z] | |
Fig. 2. Crystal structure of I viewed along a axis showing a three-dimensional-supramolecular structure featuring the voids represented as large yellow ball. The H-atoms not included in H-bond scheme are omitted. |
(C4H12N2)[Co(H6B6O13)2]·6H2O | Z = 1 |
Mr = 813.00 | F(000) = 417 |
Triclinic, P1 | Dx = 1.696 Mg m−3 |
Hall symbol: -P 1 | Ag Kα radiation, λ = 0.56087 Å |
a = 8.226 (3) Å | Cell parameters from 25 reflections |
b = 10.157 (2) Å | θ = 9–11° |
c = 11.298 (4) Å | µ = 0.35 mm−1 |
α = 65.98 (2)° | T = 298 K |
β = 74.20 (3)° | Prism, pink |
γ = 69.03 (5)° | 0.23 × 0.15 × 0.11 mm |
V = 796.2 (4) Å3 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.014 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.1° |
Graphite monochromator | h = −13→13 |
non–profiled ω scans | k = −16→16 |
9895 measured reflections | l = −3→18 |
7785 independent reflections | 2 standard reflections every 120 min |
6118 reflections with I > 2σ(I) | intensity decay: 2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0924P)2 + 0.2147P] where P = (Fo2 + 2Fc2)/3 |
7785 reflections | (Δ/σ)max < 0.001 |
259 parameters | Δρmax = 2.42 e Å−3 |
12 restraints | Δρmin = −0.99 e Å−3 |
(C4H12N2)[Co(H6B6O13)2]·6H2O | γ = 69.03 (5)° |
Mr = 813.00 | V = 796.2 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.226 (3) Å | Ag Kα radiation, λ = 0.56087 Å |
b = 10.157 (2) Å | µ = 0.35 mm−1 |
c = 11.298 (4) Å | T = 298 K |
α = 65.98 (2)° | 0.23 × 0.15 × 0.11 mm |
β = 74.20 (3)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.014 |
9895 measured reflections | 2 standard reflections every 120 min |
7785 independent reflections | intensity decay: 2% |
6118 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.049 | 12 restraints |
wR(F2) = 0.153 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 2.42 e Å−3 |
7785 reflections | Δρmin = −0.99 e Å−3 |
259 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.5000 | 0.5000 | 0.5000 | 0.01614 (7) | |
B1 | 0.7384 (2) | 0.59885 (17) | 0.23924 (15) | 0.0163 (2) | |
B2 | 0.8734 (2) | 0.33738 (17) | 0.39832 (16) | 0.0167 (2) | |
B3 | 0.8346 (2) | 0.12594 (18) | 0.36263 (17) | 0.0200 (3) | |
B4 | 0.6375 (2) | 0.37212 (16) | 0.26842 (15) | 0.0161 (2) | |
B5 | 0.6174 (2) | 0.59847 (19) | 0.06603 (16) | 0.0210 (3) | |
B6 | 1.0368 (2) | 0.5217 (2) | 0.29973 (17) | 0.0203 (3) | |
O124 | 0.77220 (13) | 0.43050 (11) | 0.28482 (10) | 0.01562 (17) | |
O45 | 0.58438 (15) | 0.46319 (12) | 0.14086 (11) | 0.02026 (19) | |
O34 | 0.71305 (15) | 0.21657 (12) | 0.28139 (12) | 0.02037 (19) | |
O16 | 0.89561 (14) | 0.62883 (13) | 0.24323 (12) | 0.0225 (2) | |
O15 | 0.69605 (17) | 0.66434 (13) | 0.10864 (11) | 0.0232 (2) | |
O23 | 0.91602 (16) | 0.17965 (12) | 0.41590 (12) | 0.0229 (2) | |
O1 | 0.58976 (15) | 0.65398 (12) | 0.33104 (12) | 0.02076 (19) | |
H1 | 0.595 (4) | 0.7336 (18) | 0.330 (3) | 0.031* | |
O2 | 0.75590 (15) | 0.36962 (14) | 0.51227 (11) | 0.0222 (2) | |
H2 | 0.793 (4) | 0.361 (3) | 0.5750 (18) | 0.033* | |
O3 | 0.8757 (2) | −0.02567 (13) | 0.38981 (16) | 0.0321 (3) | |
H3 | 0.9463 | −0.0701 | 0.4421 | 0.048* | |
O4 | 0.51422 (14) | 0.61177 (12) | 0.62547 (11) | 0.01811 (18) | |
H4 | 0.528 (4) | 0.6931 (17) | 0.578 (2) | 0.027* | |
O5 | 0.5670 (2) | 0.67326 (16) | −0.05561 (13) | 0.0352 (3) | |
H5 | 0.5205 | 0.6238 | −0.0708 | 0.053* | |
O6 | 1.17955 (16) | 0.57172 (15) | 0.27863 (15) | 0.0286 (3) | |
H6 | 1.2628 | 0.5003 | 0.3070 | 0.043* | |
O26 | 1.03454 (14) | 0.37793 (13) | 0.37106 (12) | 0.0223 (2) | |
O1W | 0.6861 (3) | 0.8794 (2) | −0.2835 (2) | 0.0489 (4) | |
H1W1 | 0.622 (4) | 0.833 (4) | −0.216 (3) | 0.073* | |
H2W1 | 0.773 (3) | 0.818 (3) | −0.314 (3) | 0.073* | |
O2W | 0.5784 (2) | 0.87545 (16) | 0.41668 (16) | 0.0349 (3) | |
H1W2 | 0.676 (2) | 0.882 (3) | 0.423 (3) | 0.052* | |
H2W2 | 0.511 (3) | 0.959 (2) | 0.375 (3) | 0.052* | |
O3W | 1.2705 (3) | 0.9010 (3) | 0.2089 (3) | 0.0675 (7) | |
H2W3 | 1.253 (5) | 0.981 (2) | 0.223 (5) | 0.101* | |
H1W3 | 1.3578 | 0.8334 | 0.2430 | 0.101* | |
N1 | 0.9898 (3) | 0.8815 (2) | 0.1223 (2) | 0.0443 (4) | |
H1A | 0.9538 | 0.8001 | 0.1763 | 0.053* | |
H1B | 1.0545 | 0.8982 | 0.1646 | 0.053* | |
C1 | 0.8360 (3) | 1.0119 (2) | 0.0893 (2) | 0.0355 (4) | |
H1C | 0.7653 | 1.0290 | 0.1686 | 0.043* | |
H1D | 0.7638 | 0.9935 | 0.0458 | 0.043* | |
C2 | 1.1021 (4) | 0.8520 (2) | −0.0001 (3) | 0.0441 (5) | |
H2A | 1.2028 | 0.7651 | 0.0235 | 0.053* | |
H2B | 1.0339 | 0.8314 | −0.0450 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.01484 (11) | 0.01703 (12) | 0.01733 (12) | −0.00406 (8) | −0.00425 (8) | −0.00587 (9) |
B1 | 0.0158 (5) | 0.0161 (5) | 0.0180 (6) | −0.0053 (4) | −0.0062 (5) | −0.0038 (5) |
B2 | 0.0157 (5) | 0.0159 (5) | 0.0194 (6) | −0.0025 (4) | −0.0083 (5) | −0.0050 (5) |
B3 | 0.0214 (6) | 0.0157 (6) | 0.0240 (7) | −0.0030 (5) | −0.0078 (5) | −0.0070 (5) |
B4 | 0.0168 (5) | 0.0154 (5) | 0.0179 (6) | −0.0039 (4) | −0.0071 (5) | −0.0053 (5) |
B5 | 0.0255 (7) | 0.0211 (6) | 0.0173 (6) | −0.0073 (5) | −0.0086 (5) | −0.0034 (5) |
B6 | 0.0160 (6) | 0.0245 (7) | 0.0241 (7) | −0.0074 (5) | −0.0055 (5) | −0.0090 (6) |
O124 | 0.0151 (4) | 0.0150 (4) | 0.0180 (4) | −0.0037 (3) | −0.0070 (3) | −0.0046 (3) |
O45 | 0.0244 (5) | 0.0208 (4) | 0.0182 (4) | −0.0091 (4) | −0.0102 (4) | −0.0025 (4) |
O34 | 0.0233 (5) | 0.0158 (4) | 0.0252 (5) | −0.0029 (3) | −0.0108 (4) | −0.0078 (4) |
O16 | 0.0176 (4) | 0.0203 (4) | 0.0316 (6) | −0.0072 (4) | −0.0091 (4) | −0.0058 (4) |
O15 | 0.0321 (6) | 0.0206 (5) | 0.0194 (5) | −0.0107 (4) | −0.0116 (4) | −0.0014 (4) |
O23 | 0.0262 (5) | 0.0148 (4) | 0.0294 (5) | −0.0011 (4) | −0.0159 (4) | −0.0058 (4) |
O1 | 0.0199 (4) | 0.0178 (4) | 0.0254 (5) | −0.0055 (3) | −0.0020 (4) | −0.0088 (4) |
O2 | 0.0187 (4) | 0.0287 (5) | 0.0192 (5) | −0.0025 (4) | −0.0074 (4) | −0.0091 (4) |
O3 | 0.0400 (7) | 0.0156 (5) | 0.0460 (8) | −0.0014 (4) | −0.0265 (6) | −0.0085 (5) |
O4 | 0.0174 (4) | 0.0182 (4) | 0.0203 (4) | −0.0065 (3) | −0.0039 (3) | −0.0061 (3) |
O5 | 0.0583 (9) | 0.0321 (6) | 0.0227 (6) | −0.0253 (6) | −0.0218 (6) | 0.0042 (5) |
O6 | 0.0177 (5) | 0.0287 (6) | 0.0403 (7) | −0.0093 (4) | −0.0100 (5) | −0.0069 (5) |
O26 | 0.0156 (4) | 0.0235 (5) | 0.0282 (5) | −0.0055 (4) | −0.0087 (4) | −0.0059 (4) |
O1W | 0.0409 (9) | 0.0369 (8) | 0.0484 (10) | −0.0071 (7) | 0.0027 (7) | −0.0038 (7) |
O2W | 0.0407 (7) | 0.0262 (6) | 0.0426 (8) | −0.0149 (5) | −0.0062 (6) | −0.0116 (6) |
O3W | 0.0612 (14) | 0.0639 (14) | 0.0861 (17) | −0.0129 (11) | −0.0395 (13) | −0.0203 (13) |
N1 | 0.0550 (12) | 0.0363 (9) | 0.0406 (10) | −0.0197 (8) | −0.0131 (9) | −0.0026 (8) |
C1 | 0.0392 (10) | 0.0318 (8) | 0.0291 (8) | −0.0099 (7) | 0.0008 (7) | −0.0081 (7) |
C2 | 0.0509 (13) | 0.0232 (8) | 0.0485 (12) | −0.0079 (8) | 0.0024 (10) | −0.0111 (8) |
Co1—O2 | 2.0539 (17) | B6—O6 | 1.368 (2) |
Co1—O2i | 2.0539 (17) | B6—O16 | 1.369 (2) |
Co1—O1 | 2.0648 (14) | O1—H1 | 0.820 (10) |
Co1—O1i | 2.0648 (14) | O2—H2 | 0.811 (10) |
Co1—O4i | 2.1926 (12) | O3—H3 | 0.8200 |
Co1—O4 | 2.1926 (12) | O4—B4i | 1.490 (2) |
B1—O15 | 1.434 (2) | O4—H4 | 0.810 (10) |
B1—O16 | 1.4462 (19) | O5—H5 | 0.8200 |
B1—O1 | 1.475 (2) | O6—H6 | 0.8200 |
B1—O124 | 1.5123 (18) | O1W—H1W1 | 0.861 (10) |
B2—O26 | 1.4447 (19) | O1W—H2W1 | 0.856 (10) |
B2—O23 | 1.4510 (19) | O2W—H1W2 | 0.852 (10) |
B2—O2 | 1.462 (2) | O2W—H2W2 | 0.854 (10) |
B2—O124 | 1.5041 (19) | O3W—H2W3 | 0.846 (10) |
B3—O34 | 1.357 (2) | O3W—H1W3 | 0.847 (2) |
B3—O23 | 1.363 (2) | N1—C1 | 1.466 (3) |
B3—O3 | 1.371 (2) | N1—C2 | 1.517 (4) |
B4—O34 | 1.4360 (19) | N1—H1A | 0.9000 |
B4—O45 | 1.4463 (19) | N1—H1B | 0.9000 |
B4—O4i | 1.490 (2) | C1—C2ii | 1.508 (3) |
B4—O124 | 1.5117 (18) | C1—H1C | 0.9700 |
B5—O15 | 1.356 (2) | C1—H1D | 0.9700 |
B5—O5 | 1.368 (2) | C2—C1ii | 1.508 (3) |
B5—O45 | 1.368 (2) | C2—H2A | 0.9700 |
B6—O26 | 1.355 (2) | C2—H2B | 0.9700 |
O2—Co1—O2i | 180.0 | B2—O124—B4 | 118.01 (11) |
O2—Co1—O1 | 88.68 (6) | B2—O124—B1 | 116.87 (11) |
O2i—Co1—O1 | 91.32 (6) | B4—O124—B1 | 117.76 (11) |
O2—Co1—O1i | 91.32 (6) | B5—O45—B4 | 124.30 (12) |
O2i—Co1—O1i | 88.68 (6) | B3—O34—B4 | 120.52 (12) |
O1—Co1—O1i | 180.0 | B6—O16—B1 | 124.47 (12) |
O2—Co1—O4i | 88.17 (5) | B5—O15—B1 | 120.85 (12) |
O2i—Co1—O4i | 91.83 (5) | B3—O23—B2 | 123.44 (12) |
O1—Co1—O4i | 87.03 (5) | B1—O1—Co1 | 118.94 (9) |
O1i—Co1—O4i | 92.97 (5) | B1—O1—H1 | 109.3 (19) |
O2—Co1—O4 | 91.83 (5) | Co1—O1—H1 | 121.9 (19) |
O2i—Co1—O4 | 88.17 (5) | B2—O2—Co1 | 121.28 (9) |
O1—Co1—O4 | 92.97 (5) | B2—O2—H2 | 122 (2) |
O1i—Co1—O4 | 87.03 (5) | Co1—O2—H2 | 114 (2) |
O4i—Co1—O4 | 180.0 | B3—O3—H3 | 109.5 |
O15—B1—O16 | 110.89 (12) | B4i—O4—Co1 | 116.22 (9) |
O15—B1—O1 | 110.91 (13) | B4i—O4—H4 | 110.6 (19) |
O16—B1—O1 | 110.56 (12) | Co1—O4—H4 | 107.3 (19) |
O15—B1—O124 | 109.07 (12) | B5—O5—H5 | 109.5 |
O16—B1—O124 | 108.17 (12) | B6—O6—H6 | 109.5 |
O1—B1—O124 | 107.12 (12) | B6—O26—B2 | 119.33 (13) |
O26—B2—O23 | 109.16 (13) | H1W1—O1W—H2W1 | 112 (2) |
O26—B2—O2 | 112.53 (12) | H1W2—O2W—H2W2 | 113 (2) |
O23—B2—O2 | 110.85 (13) | H2W3—O3W—H1W3 | 111 (2) |
O26—B2—O124 | 109.35 (12) | C1—N1—C2 | 110.90 (19) |
O23—B2—O124 | 109.28 (12) | C1—N1—H1A | 109.5 |
O2—B2—O124 | 105.58 (12) | C2—N1—H1A | 109.5 |
O34—B3—O23 | 122.88 (14) | C1—N1—H1B | 109.5 |
O34—B3—O3 | 117.27 (14) | C2—N1—H1B | 109.5 |
O23—B3—O3 | 119.85 (14) | H1A—N1—H1B | 108.0 |
O34—B4—O45 | 111.78 (12) | N1—C1—C2ii | 109.0 (2) |
O34—B4—O4i | 109.79 (12) | N1—C1—H1C | 109.9 |
O45—B4—O4i | 110.85 (12) | C2ii—C1—H1C | 109.9 |
O34—B4—O124 | 109.48 (12) | N1—C1—H1D | 109.9 |
O45—B4—O124 | 107.67 (11) | C2ii—C1—H1D | 109.9 |
O4i—B4—O124 | 107.13 (11) | H1C—C1—H1D | 108.3 |
O15—B5—O5 | 117.83 (14) | C1ii—C2—N1 | 109.18 (18) |
O15—B5—O45 | 122.48 (14) | C1ii—C2—H2A | 109.8 |
O5—B5—O45 | 119.68 (14) | N1—C2—H2A | 109.8 |
O26—B6—O6 | 122.85 (15) | C1ii—C2—H2B | 109.8 |
O26—B6—O16 | 122.54 (14) | N1—C2—H2B | 109.8 |
O6—B6—O16 | 114.61 (14) | H2A—C2—H2B | 108.3 |
O26—B2—O124—B4 | 158.42 (12) | O1—B1—O15—B5 | −88.84 (17) |
O23—B2—O124—B4 | 38.99 (17) | O124—B1—O15—B5 | 28.90 (19) |
O2—B2—O124—B4 | −80.28 (14) | O34—B3—O23—B2 | 4.1 (3) |
O26—B2—O124—B1 | −52.13 (16) | O3—B3—O23—B2 | −176.41 (15) |
O23—B2—O124—B1 | −171.56 (11) | O26—B2—O23—B3 | −136.34 (15) |
O2—B2—O124—B1 | 69.17 (15) | O2—B2—O23—B3 | 99.17 (17) |
O34—B4—O124—B2 | −47.01 (16) | O124—B2—O23—B3 | −16.8 (2) |
O45—B4—O124—B2 | −168.73 (11) | O15—B1—O1—Co1 | 128.21 (10) |
O4i—B4—O124—B2 | 71.99 (15) | O16—B1—O1—Co1 | −108.36 (12) |
O34—B4—O124—B1 | 163.82 (12) | O124—B1—O1—Co1 | 9.28 (14) |
O45—B4—O124—B1 | 42.10 (16) | O2—Co1—O1—B1 | 37.04 (10) |
O4i—B4—O124—B1 | −77.18 (14) | O2i—Co1—O1—B1 | −142.96 (10) |
O15—B1—O124—B2 | 160.84 (12) | O1i—Co1—O1—B1 | 3 (100) |
O16—B1—O124—B2 | 40.14 (16) | O4i—Co1—O1—B1 | −51.19 (10) |
O1—B1—O124—B2 | −79.05 (14) | O4—Co1—O1—B1 | 128.81 (10) |
O15—B1—O124—B4 | −49.63 (16) | O26—B2—O2—Co1 | 125.40 (11) |
O16—B1—O124—B4 | −170.33 (12) | O23—B2—O2—Co1 | −112.03 (12) |
O1—B1—O124—B4 | 70.47 (15) | O124—B2—O2—Co1 | 6.19 (15) |
O15—B5—O45—B4 | −3.7 (3) | O2i—Co1—O2—B2 | −124 (100) |
O5—B5—O45—B4 | 177.61 (16) | O1—Co1—O2—B2 | −47.25 (11) |
O34—B4—O45—B5 | −135.19 (15) | O1i—Co1—O2—B2 | 132.75 (11) |
O4i—B4—O45—B5 | 101.96 (17) | O4i—Co1—O2—B2 | 39.82 (11) |
O124—B4—O45—B5 | −14.9 (2) | O4—Co1—O2—B2 | −140.18 (11) |
O23—B3—O34—B4 | −12.8 (2) | O2—Co1—O4—B4i | −134.31 (9) |
O3—B3—O34—B4 | 167.68 (15) | O2i—Co1—O4—B4i | 45.69 (9) |
O45—B4—O34—B3 | 151.66 (14) | O1—Co1—O4—B4i | 136.92 (10) |
O4i—B4—O34—B3 | −84.90 (16) | O1i—Co1—O4—B4i | −43.08 (10) |
O124—B4—O34—B3 | 32.44 (19) | O4i—Co1—O4—B4i | 10 (100) |
O26—B6—O16—B1 | −7.6 (3) | O6—B6—O26—B2 | 174.61 (15) |
O6—B6—O16—B1 | 172.53 (15) | O16—B6—O26—B2 | −5.2 (2) |
O15—B1—O16—B6 | −129.57 (16) | O23—B2—O26—B6 | 152.56 (14) |
O1—B1—O16—B6 | 106.99 (17) | O2—B2—O26—B6 | −83.94 (17) |
O124—B1—O16—B6 | −10.0 (2) | O124—B2—O26—B6 | 33.05 (19) |
O5—B5—O15—B1 | 174.55 (16) | C2—N1—C1—C2ii | −59.8 (3) |
O45—B5—O15—B1 | −4.2 (3) | C1—N1—C2—C1ii | 59.9 (3) |
O16—B1—O15—B5 | 147.91 (15) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2W | 0.82 (1) | 2.00 (2) | 2.7525 (19) | 153 (3) |
O2—H2···O6iii | 0.81 (1) | 2.11 (1) | 2.876 (2) | 157 (3) |
O3—H3···O23iv | 0.82 | 1.93 | 2.745 (2) | 172 |
O4—H4···O2W | 0.81 (1) | 2.08 (1) | 2.864 (2) | 164 (3) |
O5—H5···O45v | 0.82 | 1.91 | 2.7159 (18) | 169 |
O6—H6···O4iii | 0.82 | 1.95 | 2.734 (2) | 160 |
O1W—H1W1···O5 | 0.86 (1) | 1.96 (2) | 2.771 (2) | 158 (4) |
O1W—H2W1···O26vi | 0.86 (1) | 2.27 (1) | 3.108 (3) | 167 (3) |
O1W—H2W1···O23vi | 0.86 (1) | 2.51 (3) | 3.158 (3) | 133 (3) |
O2W—H1W2···O3vii | 0.85 (1) | 2.05 (2) | 2.861 (2) | 159 (3) |
O2W—H2W2···O1Wviii | 0.85 (1) | 2.01 (1) | 2.838 (3) | 164 (3) |
O3W—H2W3···O1Wii | 0.85 (1) | 2.05 (2) | 2.842 (3) | 155 (3) |
O3W—H1W3···O1ix | 0.85 (1) | 2.24 (1) | 3.088 (3) | 179 (1) |
N1—H1A···O16 | 0.90 | 1.78 | 2.654 (2) | 165 |
N1—H1A···O6 | 0.90 | 2.46 | 2.986 (3) | 117 |
N1—H1B···O3W | 0.90 | 1.98 | 2.836 (3) | 157 |
C1—H1C···O34vii | 0.97 | 2.56 | 3.321 (3) | 136 |
Symmetry codes: (ii) −x+2, −y+2, −z; (iii) −x+2, −y+1, −z+1; (iv) −x+2, −y, −z+1; (v) −x+1, −y+1, −z; (vi) −x+2, −y+1, −z; (vii) x, y+1, z; (viii) −x+1, −y+2, −z; (ix) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2W | 0.820 (10) | 1.996 (15) | 2.7525 (19) | 153 (3) |
O2—H2···O6i | 0.811 (10) | 2.113 (14) | 2.876 (2) | 157 (3) |
O3—H3···O23ii | 0.82 | 1.93 | 2.745 (2) | 171.8 |
O4—H4···O2W | 0.810 (10) | 2.077 (12) | 2.864 (2) | 164 (3) |
O5—H5···O45iii | 0.82 | 1.91 | 2.7159 (18) | 168.6 |
O6—H6···O4i | 0.82 | 1.95 | 2.734 (2) | 159.7 |
O1W—H1W1···O5 | 0.861 (10) | 1.955 (18) | 2.771 (2) | 158 (4) |
O1W—H2W1···O26iv | 0.856 (10) | 2.266 (13) | 3.108 (3) | 167 (3) |
O1W—H2W1···O23iv | 0.856 (10) | 2.51 (3) | 3.158 (3) | 133 (3) |
O2W—H1W2···O3v | 0.852 (10) | 2.050 (15) | 2.861 (2) | 159 (3) |
O2W—H2W2···O1Wvi | 0.854 (10) | 2.007 (12) | 2.838 (3) | 164 (3) |
O3W—H2W3···O1Wvii | 0.846 (10) | 2.054 (19) | 2.842 (3) | 155 (3) |
O3W—H1W3···O1viii | 0.847 (2) | 2.2407 (19) | 3.088 (3) | 179.4 (2) |
N1—H1A···O16 | 0.90 | 1.78 | 2.654 (2) | 165 |
N1—H1A···O6 | 0.90 | 2.46 | 2.986 (3) | 117 |
N1—H1B···O3W | 0.90 | 1.98 | 2.836 (3) | 157 |
C1—H1C···O34v | 0.97 | 2.56 | 3.321 (3) | 136 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, −y, −z+1; (iii) −x+1, −y+1, −z; (iv) −x+2, −y+1, −z; (v) x, y+1, z; (vi) −x+1, −y+2, −z; (vii) −x+2, −y+2, −z; (viii) x+1, y, z. |
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Google Scholar
Natarajan, S., Klein, W., Panthöfer, M., Wüllen, L. V. & Jansen, M. (2003). Z. Anorg. Allg. Chem. 629, 959–962. Web of Science CSD CrossRef CAS Google Scholar
Negro, A., Ungaretti, L. & Sabelli, C. (1971). Am. Mineral. 56, 1553–1566. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yue, T., Zhu, L., Xia, S., Gao, S. & Yu, K. (2003). J. Alloys Compd, 358, 87–92. CAS Google Scholar
Zhihong, L., Lianqing, L., Jun, L. & Mancheng, H. (2005). J. Alloys Compd, 394, 277–281. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The mode of condensation of trigonal planar B(OH)3 and tetrahedral [B(OH)4]- primary structural units, leads to a variety of hydrated polyborate structures such as rings, cages, chains, sheets or extended networks. In particular, the polymerization of three tetrahedral BO3(OH) (3Δ) and three trigonal BO2(OH)(3 T) moieties form tricyclic [B6O7(OH)6]2- anions featuring an unusual three-coordinate oxygen atom (µ3–O). To date, various hydrated hexaborate structures including inorganic metals have been extensively studied. In contrast, those with organic and inorganic cations are less explored. On the best of our knowledge only one hydrated hexaborate with transition metal and organic cations, is earlier cited; [(Me)2NH(CH2)2NH(Me)2]{Zn[B6O7(OH)6]2}·2H2O (with Me = methyl)(Natarajan et al., 2003). In this work, we report the synthesis and structure of a new organic-inorganic hydrated hexaborate, [C4N2H12]{Co[B6O7(OH)6]2}·6H2O (I).
The asymmetric unit of the title complex consists of a half [C4H12N2]2+ diprotonated cation, a half of {Co[B6O7(OH)6]2}2- complex hexaborate anions and three lattice water molecules as shown in Figure 1. As the Co2+ ion is located on centre of inversion so is bonded to six O atoms of two chelating [B6O7(OH)6]2- anions forming thus a distorted octahedron. The Co—O distances range from 2.0539 (17) to 2.1926 (12) Å and the O—Co—O angles are between 87.03 (5)–180.00 (7)° (Table 1). The [B6O7(OH)6]2- unit is formed by three tetrahedral B and three trigonal B atoms (3Δ + 3 T), linked through six double bridged (µ2–O) and one triple bridged (µ3–O) oxygen atoms in which each B atom possesses one terminal OH group, resulting in the formation of a tricyclic honeycomb-like structure anion (Fig. 2). Similar hexaborate anions have been encountered in the mineral aksaite (Negro et al., 1971).
The B—O and O—B—O bond lengths range from 1.434 (2) to 1.5123 (18) Å and from 105.58 (12) to 112.53 (12) ° respectively for the tetrahedral B atoms and those for trigonal ones are in the range 1.355 (2)–1.371 (2) Å and from 114.61 (14) to 122.88 (14) °. The longer B—O distances are observed for the tetrahedral B atoms associated with the µ3 oxygen atom. These structural parameters are in good agreement with those observed for other hydrated hexaborate associated with some alkali and transition metals, such as K2Mg[B6O7(OH)6]2·4H2O (Zhihong et al., 2005) and Rb2Co[B6O7(OH)6]2·4H2O (Yue et al., 2003).
The [B6O7(OH)6]2- anions are further interconnected through O—H···O hydrogen-bonding interactions of the hydroxyl groups (Table 2) yelding to a three-dimensional framework with channels along the a axis. The negative excess charges of the anionic framework is compensated by [C4H12N2]2+ cations, which occupy the voids along with water molecules (Fig. 3). It'to be noted that the diprotonated piperazine ring adopts a chair conformation, with puckering parameters Q = 1.7803 Å, θ = 171.58° and ϕ = 90°.