organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(Oxolan-2-yl­­idene)-1-phenyl­pyrrolidine-2,5-dione

aKey Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
*Correspondence e-mail: shaoying810724@163.com

(Received 19 March 2014; accepted 1 April 2014; online 5 April 2014)

In the title compound, C14H13NO3, the dihedral angles between the central pyrrolidine ring and the pendant tetra­hydro­furan and phenyl rings are 5.34 (18) and 58.99 (17)°, respectively. The tetra­hydro­furan ring is almost planar (r.m.s. deviation = 0.008 Å). In the crystal, mol­ecules are linked by C—H⋯O inter­actions, generating a three-dimensional network.

Related literature

For synthetic background, see: Han et al. (2013[Han, X., Zhou, Z., Wan, C., Xiao, Y. & Qin, Z. (2013). Synthesis, 45, 0615-0620.]); Sodhi et al. (2012[Sodhi, R. K., Paul, S. & Clark, J. H. (2012). Green Chem. 14, 1649-1656.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO3

  • Mr = 243.25

  • Monoclinic, P 21 /n

  • a = 8.144 (2) Å

  • b = 13.729 (4) Å

  • c = 11.160 (3) Å

  • β = 105.177 (8)°

  • V = 1204.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.30 × 0.28 × 0.25 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.736, Tmax = 0.977

  • 11234 measured reflections

  • 2201 independent reflections

  • 1893 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.161

  • S = 1.08

  • 2201 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.59 3.487 (4) 161
C9—H9A⋯O1ii 0.97 2.50 3.403 (3) 154
C14—H14A⋯O2iii 0.97 2.50 3.376 (4) 150
C14—H14B⋯O2iv 0.97 2.51 3.384 (4) 149
Symmetry codes: (i) -x+1, -y, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2000[Rigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The area of allylic and benzylic oxidation with tert-butyl hydroperoxide (TBHP) in the presence of Co(acac)2 has been attracted more and more attention (Han, et al., 2013; Sodhi, et al., 2012). The title compound, C14H13NO3, was synthesized by Co(acac)2 catalyzed cross-dehydrogenative-coupling (CDC) between 1-phenyl-1H-pyrrole-2,5-dione and tetrahydrofuran in the presence of t-BuOOH as a oxidant in the air. In the molecule of the title compound (Fig. 1), the compound adopts an E conformation. All the non-H atoms of the pyrrolidine-2,5-dione and the tetrahydrofuran fragment, linked by carbon—carbon double bond, are nearly coplanar, with a maximum deviation of 0.056 (1) Å. While the dihedral angle between the benzene ring and the pyrrolidine-2,5-dione ring is 59.9 Å. In the crystal, C—H···O interactions link the molecules (Table 1).

Related literature top

For synthetic background, see: Han et al. (2013); Sodhi et al. (2012).

Experimental top

1-Phenyl-1H-pyrrole-2,5-dione(86.6 mg, 0.5 mmol), THF (0.5 ml, 7.0 mmol), cobalt(II) acetylacetonate (12.9 mg), 1,4-diazabicyclo[2.2.2]octane (70.1 mg, 0.6 mmol), TBHP (2.0 equiv, 70% aqueous solution 140 uL), 1.0 ml acetonitrile, 1.0 ml 1,4-dioxane were added to a tube under air. The reaction mixture was stirred at 60 oC for 4 h. Then the reaction mixture was quenched with saturated Na2SO3 solution, extracted repeatedly with ethyl acetate, and dried over Na2SO4. It was then removal of the organic solvent in vacuum and followed by flash silica gel column chromatographic purification afforded product with petroleum/ ethyl acetate mixtures. Yield 40%. Colourless crystals were obtained by slow evaporation of ethyl acetate and CH2Cl2 mixed solvent.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalStructure (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing 50% probability ellipsoids.
[Figure 2] Fig. 2. Perspective view of the packing of the title compound along a direction.
(E)-3-(Oxolan-2-ylidene)-1-phenylpyrrolidine-2,5-dione top
Crystal data top
C14H13NO3F(000) = 512
Mr = 243.25Dx = 1.342 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 4321 reflections
a = 8.144 (2) Åθ = 3.2–25.3°
b = 13.729 (4) ŵ = 0.10 mm1
c = 11.160 (3) ÅT = 296 K
β = 105.177 (8)°Block, colorless
V = 1204.2 (6) Å30.30 × 0.28 × 0.25 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2201 independent reflections
Radiation source: fine-focus sealed tube1893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.2°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 1615
Tmin = 0.736, Tmax = 0.977l = 1313
11234 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.8273P]
where P = (Fo2 + 2Fc2)/3
2201 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H13NO3V = 1204.2 (6) Å3
Mr = 243.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.144 (2) ŵ = 0.10 mm1
b = 13.729 (4) ÅT = 296 K
c = 11.160 (3) Å0.30 × 0.28 × 0.25 mm
β = 105.177 (8)°
Data collection top
Rigaku Mercury CCD
diffractometer
2201 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
1893 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 0.977Rint = 0.035
11234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.08Δρmax = 0.23 e Å3
2201 reflectionsΔρmin = 0.21 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5949 (3)0.34863 (14)0.08693 (17)0.0660 (6)
O20.3330 (3)0.05454 (15)0.01104 (17)0.0632 (6)
O30.4751 (3)0.32363 (14)0.31330 (16)0.0612 (6)
N10.4759 (3)0.19466 (15)0.06629 (18)0.0505 (6)
C10.5003 (3)0.1742 (2)0.1954 (2)0.0526 (7)
C20.4297 (4)0.2340 (2)0.2671 (3)0.0720 (9)
H20.36370.28730.23230.086*
C30.4596 (6)0.2129 (3)0.3938 (3)0.0938 (13)
H30.41530.25310.44470.113*
C40.5547 (6)0.1324 (4)0.4428 (3)0.0986 (14)
H40.57390.11850.52690.118*
C50.6209 (5)0.0727 (3)0.3697 (3)0.0866 (11)
H50.68350.01800.40350.104*
C60.5947 (4)0.0937 (2)0.2458 (3)0.0639 (8)
H60.64060.05360.19570.077*
C70.5310 (3)0.28121 (19)0.0200 (2)0.0514 (6)
C80.4917 (3)0.27047 (19)0.1134 (2)0.0507 (6)
C90.4145 (4)0.1720 (2)0.1479 (2)0.0571 (7)
H9A0.30380.17750.20690.069*
H9B0.48750.13190.18380.069*
C100.3991 (3)0.1303 (2)0.0279 (2)0.0503 (6)
C110.5168 (3)0.34047 (19)0.1899 (2)0.0508 (7)
C120.5857 (4)0.4404 (2)0.1610 (3)0.0603 (7)
H12A0.70150.43850.10890.072*
H12B0.51610.47760.11890.072*
C130.5797 (6)0.4839 (3)0.2852 (3)0.0956 (13)
H13A0.50890.54180.29890.115*
H13B0.69320.50190.28950.115*
C140.5080 (4)0.4095 (2)0.3792 (3)0.0679 (8)
H14A0.40320.43290.43510.081*
H14B0.58780.39430.42760.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0912 (15)0.0522 (11)0.0478 (11)0.0092 (11)0.0059 (10)0.0045 (9)
O20.0689 (13)0.0623 (12)0.0580 (11)0.0180 (10)0.0161 (9)0.0065 (10)
O30.0833 (14)0.0570 (11)0.0427 (10)0.0044 (10)0.0154 (9)0.0014 (9)
N10.0628 (14)0.0465 (12)0.0390 (11)0.0043 (10)0.0080 (9)0.0018 (9)
C10.0590 (16)0.0550 (16)0.0420 (14)0.0120 (13)0.0103 (12)0.0030 (12)
C20.086 (2)0.068 (2)0.0651 (19)0.0158 (17)0.0259 (17)0.0166 (16)
C30.120 (3)0.108 (3)0.066 (2)0.048 (3)0.046 (2)0.038 (2)
C40.114 (3)0.128 (4)0.048 (2)0.053 (3)0.010 (2)0.008 (2)
C50.084 (2)0.112 (3)0.056 (2)0.020 (2)0.0052 (17)0.022 (2)
C60.0620 (18)0.073 (2)0.0542 (17)0.0030 (15)0.0099 (13)0.0091 (14)
C70.0576 (16)0.0468 (15)0.0464 (14)0.0016 (12)0.0077 (12)0.0012 (12)
C80.0559 (16)0.0484 (14)0.0445 (14)0.0023 (12)0.0074 (11)0.0001 (12)
C90.0667 (18)0.0587 (17)0.0431 (14)0.0069 (14)0.0092 (12)0.0059 (12)
C100.0478 (15)0.0512 (15)0.0496 (15)0.0000 (12)0.0085 (11)0.0050 (12)
C110.0532 (15)0.0532 (15)0.0435 (14)0.0046 (12)0.0080 (11)0.0025 (12)
C120.0725 (19)0.0493 (15)0.0572 (16)0.0014 (14)0.0136 (14)0.0015 (13)
C130.153 (4)0.067 (2)0.069 (2)0.030 (2)0.032 (2)0.0000 (18)
C140.086 (2)0.0648 (19)0.0566 (17)0.0054 (16)0.0264 (16)0.0122 (15)
Geometric parameters (Å, º) top
O1—C71.217 (3)C6—H60.9300
O2—C101.208 (3)C7—C81.447 (4)
O3—C111.349 (3)C8—C111.336 (4)
O3—C141.451 (3)C8—C91.498 (4)
N1—C101.390 (3)C9—C101.492 (4)
N1—C71.414 (3)C9—H9A0.9700
N1—C11.430 (3)C9—H9B0.9700
C1—C21.372 (4)C11—C121.486 (4)
C1—C61.379 (4)C12—C131.498 (4)
C2—C31.402 (5)C12—H12A0.9700
C2—H20.9300C12—H12B0.9700
C3—C41.378 (6)C13—C141.472 (4)
C3—H30.9300C13—H13A0.9700
C4—C51.364 (6)C13—H13B0.9700
C4—H40.9300C14—H14A0.9700
C5—C61.374 (4)C14—H14B0.9700
C5—H50.9300
C11—O3—C14110.3 (2)C10—C9—H9A110.9
C10—N1—C7112.4 (2)C8—C9—H9A110.9
C10—N1—C1123.6 (2)C10—C9—H9B110.9
C7—N1—C1124.0 (2)C8—C9—H9B110.9
C2—C1—C6121.0 (3)H9A—C9—H9B108.9
C2—C1—N1120.0 (3)O2—C10—N1124.1 (2)
C6—C1—N1118.9 (3)O2—C10—C9128.0 (2)
C1—C2—C3118.4 (4)N1—C10—C9107.9 (2)
C1—C2—H2120.8C8—C11—O3119.3 (2)
C3—C2—H2120.8C8—C11—C12129.6 (2)
C4—C3—C2119.8 (4)O3—C11—C12111.1 (2)
C4—C3—H3120.1C11—C12—C13104.4 (2)
C2—C3—H3120.1C11—C12—H12A110.9
C5—C4—C3121.0 (3)C13—C12—H12A110.9
C5—C4—H4119.5C11—C12—H12B110.9
C3—C4—H4119.5C13—C12—H12B110.9
C4—C5—C6119.6 (4)H12A—C12—H12B108.9
C4—C5—H5120.2C14—C13—C12107.1 (3)
C6—C5—H5120.2C14—C13—H13A110.3
C5—C6—C1120.1 (3)C12—C13—H13A110.3
C5—C6—H6119.9C14—C13—H13B110.3
C1—C6—H6119.9C12—C13—H13B110.3
O1—C7—N1122.7 (2)H13A—C13—H13B108.6
O1—C7—C8130.7 (3)O3—C14—C13107.1 (2)
N1—C7—C8106.5 (2)O3—C14—H14A110.3
C11—C8—C7123.7 (2)C13—C14—H14A110.3
C11—C8—C9127.5 (2)O3—C14—H14B110.3
C7—C8—C9108.7 (2)C13—C14—H14B110.3
C10—C9—C8104.1 (2)H14A—C14—H14B108.6
C10—N1—C1—C2120.8 (3)C11—C8—C9—C10173.3 (3)
C7—N1—C1—C260.9 (4)C7—C8—C9—C104.4 (3)
C10—N1—C1—C658.9 (4)C7—N1—C10—O2175.2 (3)
C7—N1—C1—C6119.3 (3)C1—N1—C10—O26.4 (4)
C6—C1—C2—C31.7 (4)C7—N1—C10—C94.8 (3)
N1—C1—C2—C3178.6 (3)C1—N1—C10—C9173.6 (2)
C1—C2—C3—C41.4 (5)C8—C9—C10—O2174.5 (3)
C2—C3—C4—C50.1 (6)C8—C9—C10—N15.5 (3)
C3—C4—C5—C60.9 (6)C7—C8—C11—O3179.6 (2)
C4—C5—C6—C10.7 (5)C9—C8—C11—O32.2 (4)
C2—C1—C6—C50.6 (4)C7—C8—C11—C120.3 (5)
N1—C1—C6—C5179.6 (3)C9—C8—C11—C12177.1 (3)
C10—N1—C7—O1176.9 (3)C14—O3—C11—C8178.4 (3)
C1—N1—C7—O14.7 (4)C14—O3—C11—C121.0 (3)
C10—N1—C7—C81.9 (3)C8—C11—C12—C13179.0 (3)
C1—N1—C7—C8176.5 (2)O3—C11—C12—C130.3 (4)
O1—C7—C8—C112.6 (5)C11—C12—C13—C140.5 (4)
N1—C7—C8—C11176.1 (2)C11—O3—C14—C131.3 (4)
O1—C7—C8—C9179.6 (3)C12—C13—C14—O31.0 (4)
N1—C7—C8—C91.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.593.487 (4)161
C9—H9A···O1ii0.972.503.403 (3)154
C14—H14A···O2iii0.972.503.376 (4)150
C14—H14B···O2iv0.972.513.384 (4)149
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.593.487 (4)161
C9—H9A···O1ii0.972.503.403 (3)154
C14—H14A···O2iii0.972.503.376 (4)150
C14—H14B···O2iv0.972.513.384 (4)149
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z1/2.
 

Acknowledgements

We gratefully acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the National Natural Science Foundation of China (grant No. 21302015), and the Natural Science Fundation for Colleges and Universities of Jiangsu Province (grant No. 12KJB150005) for financial support.

References

First citationHan, X., Zhou, Z., Wan, C., Xiao, Y. & Qin, Z. (2013). Synthesis, 45, 0615–0620.  CAS Google Scholar
First citationRigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSodhi, R. K., Paul, S. & Clark, J. H. (2012). Green Chem. 14, 1649–1656.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds