organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5-Fluoro-4′-methyl­bi­phenyl-3-yl)(2,4,6-tri­methyl­phen­yl)iodo­nium tri­fluoro­methane­sulfonate

aKey Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
*Correspondence e-mail: shaoying810724@163.com

(Received 19 March 2014; accepted 1 April 2014; online 5 April 2014)

In the title mol­ecular salt, C22H21FI+·CF3SO3, the dihedral angle between the rings of the biphenyl group is 65.6 (1)°. The ring of the mesitylene group is inclined to the fluoro­benzene ring at an angle of 86.1 (3)° and the C—I—C bond angle is 97.0 (2)°. In the crystal, extremely short I⋯O contacts of 2.862 (5) and 2.932 (5) Å occur, due to the strong electrostatic inter­actions between the I atom and two adjacent tri­fluoro­methane­sulfonate counter-ions. There are also C—H⋯F and C—H⋯π inter­actions present: together with the I⋯O bonds, these result in a three-dimensional network.

Related literature

For background to di­aryl­iodo­nium salts, see: Grushin (2000[Grushin, V. V. (2000). Chem. Soc. Rev. 29, 315-324.]); Merritt & Olofsson (2009[Merritt, E. A. & Olofsson, B. (2009). Angew. Chem. Int. Ed. 48, 9052-9070.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21FI+·CF3O3S

  • Mr = 580.37

  • Monoclinic, P 21 /n

  • a = 9.8987 (8) Å

  • b = 24.374 (2) Å

  • c = 10.0794 (9) Å

  • β = 105.820 (2)°

  • V = 2339.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.732, Tmax = 0.772

  • 13544 measured reflections

  • 4341 independent reflections

  • 3405 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.142

  • S = 1.14

  • 4341 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −1.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯F1i 0.96 2.36 3.193 (9) 145
C22—H22CCg3ii 0.96 2.76 3.648 (7) 154
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The use of diaryliodonium salts has recently gained considerable attention in organic synthesis for arylation of organic bases (Merritt et al., 2009; Grushin et al., 2000). The title compound (Fig. 1) is an important representative of such reagents. In the molecule of the compound, the iodine atom lies almost in the plane of both attached benzene rings with r.m.s. deviations of 0.012 (2) Å and 0.028 (1) Å from the C1—C6 and C7—C12 mean planes respectively. The dihedral angle between the rings of the biphenyl group is 65.6 (1)°. The ring of the mesitylene group is inclined to the phenyl rings of the biphenyl group by 93.9 (2)° (for fluorobenzene ring) and 22.4 (2)° (for toluene ring). Extremely short intermolecular I···O contacts [2.93 (5) and 2.86 (6) Å] occur, due to strong electrostatic interactions between the I atom and two adjacent trifluoromethanesulfonate counter-ions. There are also C—H···F and C—H···π hydrogen bonds present (contact distances are shown in Table 1), which combined with the other inter-actions, form a three-dimensional network (Fig. 2).

Related literature top

For background to diaryliodonium salts, see: Grushin (2000); Merritt & Olofsson (2009).

Experimental top

m-CPBA10 (85%, 2.5 mmol), 3-fluoro-5-iodo-4'-methylbiphenyl (2.0 mmol), and mesitylene (3.0 mmol) were dissolved in CH2Cl2 (5 ml). Then, TfOH (5.0 mmol) was added to the solution dropwise at 0 °C and the mixture was stirred at room temperature for 2 h and the solution was concentrated in vacuo. Et2O (1 ml) was added and the mixture was stirred at r.t. for 10 min to precipitate out an yellow solid. The precipitate was filtered off, washed with Et2O, and dried under vacuum to give the salt. Yield 76%. Yellow blocks were obtained by slow evaporation of a petroleum / CH2Cl2 solution.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing 50% probability ellipsoids.
[Figure 2] Fig. 2. Perspective view of the title compound along a direction. Labels of atoms have been omitted for clarity.
(5-Fluoro-4'-methylbiphenyl-3-yl)(2,4,6-trimethylphenyl)iodonium trifluoromethanesulfonate top
Crystal data top
C22H21FI+·CF3O3SF(000) = 1152
Mr = 580.37Dx = 1.650 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3546 reflections
a = 9.8987 (8) Åθ = 0–25.5°
b = 24.374 (2) ŵ = 1.51 mm1
c = 10.0794 (9) ÅT = 296 K
β = 105.820 (2)°Block, yellow
V = 2339.7 (3) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4341 independent reflections
Radiation source: fine-focus sealed tube3405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.732, Tmax = 0.772k = 2729
13544 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0805P)2]
where P = (Fo2 + 2Fc2)/3
4341 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 1.24 e Å3
Crystal data top
C22H21FI+·CF3O3SV = 2339.7 (3) Å3
Mr = 580.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8987 (8) ŵ = 1.51 mm1
b = 24.374 (2) ÅT = 296 K
c = 10.0794 (9) Å0.22 × 0.20 × 0.18 mm
β = 105.820 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4341 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3405 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.772Rint = 0.057
13544 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.14Δρmax = 0.75 e Å3
4341 reflectionsΔρmin = 1.24 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3026 (6)0.06955 (18)0.8802 (5)0.0656 (14)
C10.6362 (7)0.1152 (2)0.6650 (6)0.0490 (15)
C20.7058 (6)0.1336 (2)0.5718 (7)0.0533 (16)
H20.79000.15240.60450.064*
C30.6542 (5)0.1249 (2)0.4321 (6)0.0368 (12)
C40.5286 (5)0.0968 (2)0.3865 (6)0.0349 (12)
C50.4560 (6)0.0757 (2)0.4748 (6)0.0375 (12)
C60.5089 (7)0.0871 (2)0.6182 (6)0.0460 (15)
H60.45950.07600.67990.055*
C70.2621 (5)0.1271 (2)0.1450 (5)0.0361 (12)
C80.2661 (6)0.1846 (2)0.1484 (6)0.0419 (13)
C90.1403 (6)0.2116 (2)0.1369 (7)0.0494 (15)
H90.13720.24970.13610.059*
C100.0189 (6)0.1814 (3)0.1265 (7)0.0520 (16)
C110.0135 (6)0.1253 (2)0.1185 (6)0.0456 (14)
H110.07070.10640.10550.055*
C120.1373 (6)0.0983 (2)0.1305 (6)0.0428 (13)
H120.13820.06010.12890.051*
C130.7364 (8)0.3215 (3)0.1208 (12)0.106 (4)
H13A0.81640.29940.12020.159*
H13B0.75990.34570.19900.159*
H13C0.70920.34280.03770.159*
C140.3908 (6)0.2173 (2)0.1483 (6)0.0387 (12)
C150.4525 (6)0.2532 (2)0.2526 (7)0.0495 (15)
H150.41970.25540.33050.059*
C160.5641 (7)0.2863 (3)0.2419 (8)0.0606 (18)
H160.60430.31010.31400.073*
C170.6170 (6)0.2852 (3)0.1295 (8)0.0584 (18)
C180.5565 (7)0.2485 (3)0.0272 (7)0.0573 (17)
H180.59040.24610.05000.069*
C190.4453 (7)0.2149 (3)0.0362 (7)0.0523 (15)
H190.40700.19050.03490.063*
C210.0696 (7)0.0300 (3)0.7314 (8)0.0619 (18)
C220.7369 (6)0.1458 (3)0.3363 (7)0.0537 (16)
H22A0.77970.11540.30260.080*
H22B0.80860.17060.38550.080*
H22C0.67500.16470.26000.080*
C230.6930 (8)0.1254 (3)0.8169 (7)0.071 (2)
H23A0.73480.09240.86170.107*
H23B0.61790.13660.85440.107*
H23C0.76250.15390.83180.107*
C240.3196 (6)0.0431 (3)0.4328 (7)0.0535 (16)
H24A0.24140.06790.41090.080*
H24B0.31330.01970.50760.080*
H24C0.31820.02100.35350.080*
F10.1015 (4)0.20869 (18)0.1145 (6)0.0883 (15)
F20.0066 (6)0.0156 (2)0.6819 (6)0.117 (2)
F30.0720 (5)0.0605 (2)0.6257 (5)0.0839 (13)
F40.0073 (6)0.0542 (4)0.7991 (7)0.147 (3)
I10.44677 (3)0.080765 (13)0.17435 (3)0.03628 (16)
O20.2225 (6)0.0155 (2)0.9503 (5)0.0728 (14)
O30.3103 (5)0.01180 (19)0.7496 (5)0.0687 (14)
S30.24551 (15)0.01636 (6)0.84096 (15)0.0418 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.075 (3)0.050 (3)0.060 (3)0.018 (2)0.002 (3)0.007 (2)
C10.057 (4)0.041 (3)0.039 (3)0.008 (3)0.005 (3)0.006 (3)
C20.044 (3)0.042 (3)0.063 (4)0.001 (3)0.004 (3)0.010 (3)
C30.032 (3)0.035 (3)0.043 (3)0.002 (2)0.009 (2)0.003 (2)
C40.030 (3)0.035 (3)0.037 (3)0.000 (2)0.005 (2)0.002 (2)
C50.031 (3)0.041 (3)0.042 (3)0.009 (2)0.013 (2)0.002 (2)
C60.046 (3)0.056 (4)0.040 (3)0.015 (3)0.017 (3)0.000 (3)
C70.030 (3)0.037 (3)0.036 (3)0.003 (2)0.001 (2)0.000 (2)
C80.043 (3)0.034 (3)0.040 (3)0.000 (2)0.002 (3)0.001 (2)
C90.046 (3)0.040 (3)0.068 (4)0.007 (3)0.025 (3)0.003 (3)
C100.038 (3)0.056 (4)0.067 (4)0.016 (3)0.021 (3)0.009 (3)
C110.028 (3)0.051 (4)0.054 (4)0.003 (3)0.006 (3)0.007 (3)
C120.041 (3)0.044 (3)0.045 (3)0.001 (3)0.013 (3)0.003 (3)
C130.071 (5)0.044 (5)0.203 (12)0.015 (4)0.036 (7)0.004 (6)
C140.034 (3)0.038 (3)0.043 (3)0.008 (2)0.008 (2)0.001 (2)
C150.045 (3)0.052 (4)0.055 (4)0.001 (3)0.021 (3)0.003 (3)
C160.046 (4)0.040 (4)0.090 (5)0.006 (3)0.009 (4)0.014 (3)
C170.040 (3)0.037 (3)0.100 (6)0.002 (3)0.023 (4)0.005 (3)
C180.056 (4)0.063 (4)0.066 (4)0.001 (3)0.037 (4)0.011 (3)
C190.051 (4)0.052 (4)0.054 (4)0.008 (3)0.015 (3)0.004 (3)
C210.039 (3)0.074 (5)0.068 (5)0.001 (3)0.006 (3)0.003 (4)
C220.039 (3)0.061 (4)0.060 (4)0.010 (3)0.013 (3)0.003 (3)
C230.083 (5)0.087 (5)0.040 (4)0.007 (4)0.008 (4)0.008 (4)
C240.039 (3)0.056 (4)0.061 (4)0.005 (3)0.006 (3)0.011 (3)
F10.046 (2)0.069 (3)0.155 (5)0.023 (2)0.037 (3)0.017 (3)
F20.079 (3)0.127 (5)0.115 (4)0.059 (3)0.024 (3)0.016 (3)
F30.072 (3)0.094 (3)0.073 (3)0.004 (3)0.002 (2)0.029 (3)
F40.066 (3)0.237 (8)0.137 (6)0.063 (5)0.027 (4)0.017 (6)
I10.0311 (2)0.0377 (2)0.0380 (2)0.00328 (14)0.00587 (16)0.00459 (14)
O20.097 (4)0.078 (3)0.048 (3)0.016 (3)0.026 (3)0.014 (2)
O30.064 (3)0.067 (3)0.066 (3)0.032 (2)0.003 (2)0.014 (2)
S30.0421 (8)0.0415 (8)0.0386 (7)0.0011 (6)0.0056 (6)0.0001 (6)
Geometric parameters (Å, º) top
O1—S31.427 (4)C13—H13B0.9600
C1—C21.383 (9)C13—H13C0.9600
C1—C61.398 (9)C14—C151.377 (8)
C1—C231.501 (8)C14—C191.380 (8)
C2—C31.377 (8)C15—C161.395 (9)
C2—H20.9300C15—H150.9300
C3—C41.384 (7)C16—C171.372 (10)
C3—C221.515 (8)C16—H160.9300
C4—C51.387 (8)C17—C181.372 (10)
C4—I12.107 (5)C18—C191.395 (9)
C5—C61.424 (8)C18—H180.9300
C5—C241.524 (8)C19—H190.9300
C6—H60.9300C21—F41.294 (9)
C7—C121.393 (8)C21—F31.304 (8)
C7—C81.403 (8)C21—F21.306 (9)
C7—I12.099 (5)C21—S31.820 (7)
C8—C91.384 (8)C22—H22A0.9600
C8—C141.469 (8)C22—H22B0.9600
C9—C101.389 (8)C22—H22C0.9600
C9—H90.9300C23—H23A0.9600
C10—F11.342 (7)C23—H23B0.9600
C10—C111.369 (9)C23—H23C0.9600
C11—C121.367 (8)C24—H24A0.9600
C11—H110.9300C24—H24B0.9600
C12—H120.9300C24—H24C0.9600
C13—C171.499 (9)O2—S31.416 (5)
C13—H13A0.9600O3—S31.433 (5)
C2—C1—C6120.0 (5)C14—C15—H15119.9
C2—C1—C23121.4 (6)C16—C15—H15119.9
C6—C1—C23118.6 (6)C17—C16—C15122.8 (6)
C3—C2—C1122.0 (5)C17—C16—H16118.6
C3—C2—H2119.0C15—C16—H16118.6
C1—C2—H2119.0C16—C17—C18116.5 (6)
C2—C3—C4117.7 (5)C16—C17—C13121.4 (8)
C2—C3—C22119.1 (5)C18—C17—C13122.1 (8)
C4—C3—C22123.2 (5)C17—C18—C19121.6 (6)
C3—C4—C5123.2 (5)C17—C18—H18119.2
C3—C4—I1119.4 (4)C19—C18—H18119.2
C5—C4—I1117.4 (4)C14—C19—C18121.4 (6)
C4—C5—C6117.8 (5)C14—C19—H19119.3
C4—C5—C24126.2 (5)C18—C19—H19119.3
C6—C5—C24115.9 (5)F4—C21—F3108.4 (7)
C1—C6—C5119.1 (6)F4—C21—F2107.5 (7)
C1—C6—H6120.4F3—C21—F2106.6 (6)
C5—C6—H6120.4F4—C21—S3111.5 (5)
C12—C7—C8121.6 (5)F3—C21—S3111.8 (5)
C12—C7—I1117.2 (4)F2—C21—S3110.7 (5)
C8—C7—I1121.1 (4)C3—C22—H22A109.5
C9—C8—C7117.0 (5)C3—C22—H22B109.5
C9—C8—C14118.6 (5)H22A—C22—H22B109.5
C7—C8—C14124.0 (5)C3—C22—H22C109.5
C8—C9—C10119.6 (5)H22A—C22—H22C109.5
C8—C9—H9120.2H22B—C22—H22C109.5
C10—C9—H9120.2C1—C23—H23A109.5
F1—C10—C11118.1 (6)C1—C23—H23B109.5
F1—C10—C9118.2 (5)H23A—C23—H23B109.5
C11—C10—C9123.6 (5)C1—C23—H23C109.5
C12—C11—C10117.1 (5)H23A—C23—H23C109.5
C12—C11—H11121.4H23B—C23—H23C109.5
C10—C11—H11121.4C5—C24—H24A109.5
C11—C12—C7121.0 (5)C5—C24—H24B109.5
C11—C12—H12119.5H24A—C24—H24B109.5
C7—C12—H12119.5C5—C24—H24C109.5
C17—C13—H13A109.5H24A—C24—H24C109.5
C17—C13—H13B109.5H24B—C24—H24C109.5
H13A—C13—H13B109.5C7—I1—C497.0 (2)
C17—C13—H13C109.5O2—S3—O1114.7 (3)
H13A—C13—H13C109.5O2—S3—O3115.7 (3)
H13B—C13—H13C109.5O1—S3—O3113.6 (3)
C15—C14—C19117.4 (5)O2—S3—C21104.0 (3)
C15—C14—C8122.9 (5)O1—S3—C21104.1 (3)
C19—C14—C8119.6 (5)O3—S3—C21102.7 (3)
C14—C15—C16120.3 (6)
C6—C1—C2—C30.4 (9)I1—C7—C12—C11176.4 (4)
C23—C1—C2—C3179.4 (6)C9—C8—C14—C1566.3 (8)
C1—C2—C3—C40.0 (9)C7—C8—C14—C15120.6 (7)
C1—C2—C3—C22179.4 (6)C9—C8—C14—C19109.7 (7)
C2—C3—C4—C52.2 (8)C7—C8—C14—C1963.4 (8)
C22—C3—C4—C5177.2 (5)C19—C14—C15—C161.1 (9)
C2—C3—C4—I1178.6 (4)C8—C14—C15—C16175.0 (5)
C22—C3—C4—I10.7 (7)C14—C15—C16—C170.3 (10)
C3—C4—C5—C64.6 (8)C15—C16—C17—C181.4 (10)
I1—C4—C5—C6178.9 (4)C15—C16—C17—C13179.5 (6)
C3—C4—C5—C24178.3 (5)C16—C17—C18—C191.1 (10)
I1—C4—C5—C241.8 (7)C13—C17—C18—C19179.9 (7)
C2—C1—C6—C52.9 (8)C15—C14—C19—C181.4 (9)
C23—C1—C6—C5178.2 (6)C8—C14—C19—C18174.8 (6)
C4—C5—C6—C14.8 (8)C17—C18—C19—C140.3 (10)
C24—C5—C6—C1177.8 (5)C12—C7—I1—C4105.0 (4)
C12—C7—C8—C90.1 (9)C8—C7—I1—C471.2 (5)
I1—C7—C8—C9176.0 (4)C3—C4—I1—C7116.7 (4)
C12—C7—C8—C14173.1 (5)C5—C4—I1—C766.6 (4)
I1—C7—C8—C1410.9 (8)F4—C21—S3—O256.9 (7)
C7—C8—C9—C101.7 (9)F3—C21—S3—O2178.5 (5)
C14—C8—C9—C10175.3 (6)F2—C21—S3—O262.7 (6)
C8—C9—C10—F1179.5 (6)F4—C21—S3—O163.5 (7)
C8—C9—C10—C114.1 (11)F3—C21—S3—O158.1 (6)
F1—C10—C11—C12179.7 (6)F2—C21—S3—O1176.9 (6)
C9—C10—C11—C124.3 (10)F4—C21—S3—O3177.8 (7)
C10—C11—C12—C72.3 (9)F3—C21—S3—O360.6 (6)
C8—C7—C12—C110.2 (9)F2—C21—S3—O358.2 (6)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···F1i0.962.363.193 (9)145
C22—H22C···Cg3ii0.962.763.648 (7)154
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···F1i0.962.363.193 (9)145
C22—H22C···Cg3ii0.962.763.648 (7)154
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the National Natural Science Foundation of China (grant No. 21302015), and the Natural Science Fundation for Colleges and Universities of Jiangsu Province (grant No. 12KJB150005) for financial support.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrushin, V. V. (2000). Chem. Soc. Rev. 29, 315–324.  Web of Science CrossRef CAS Google Scholar
First citationMerritt, E. A. & Olofsson, B. (2009). Angew. Chem. Int. Ed. 48, 9052–9070.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds