organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Nitro­benzyl methane­sulfonate

aDepartment of Physics, Dr M. G. R. Educational and Research Institute, Maduravoyal, Chennai, India, bDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Chemistry, BET Academy of Higher Education, Bharathi College, Bharthi Nagara, Mandya 571 422, India
*Correspondence e-mail: nagendra088@yahoo.co.in

(Received 8 April 2014; accepted 21 April 2014; online 30 April 2014)

In the title compound, C8H9NO5S, the dihedral angle between the benzene ring and the nitro group is 5.86 (15)° and the C—C—O—S group adopts an anti conformation [torsion angle = −168.44 (15)°]. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For background to nitro­benzene derivatives, see: Ranu & Banerjee (2005[Ranu, B. C. & Banerjee, S. (2005). Org. Lett. 7, 3049-3052.]); Ballini et al. (2005[Ballini, R., Bosica, G., Fiorini, D., Palmieri, A. & Petrini, M. (2005). Chem. Rev. 105, 933-971.]). For a related structure, see: Khan et al. (2008[Khan, G. S., Clark, G. R. & Barker, D. (2008). Acta Cryst. E64, o1470.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9NO5S

  • Mr = 231.23

  • Monoclinic, P 21 /c

  • a = 12.414 (3) Å

  • b = 7.967 (2) Å

  • c = 10.994 (3) Å

  • β = 112.235 (11)°

  • V = 1006.5 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.94 mm−1

  • T = 296 K

  • 0.23 × 0.22 × 0.21 mm

Data collection
  • Bruker X8 Proteum CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.552, Tmax = 0.578

  • 6524 measured reflections

  • 1663 independent reflections

  • 1541 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.112

  • S = 1.08

  • 1663 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.54 3.266 (3) 135
C3—H3⋯O2ii 0.93 2.53 3.335 (3) 145
C7—H7B⋯O4iii 0.97 2.58 3.539 (3) 169
C8—H8A⋯O4iii 0.96 2.42 3.374 (4) 172
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nitroalkenes have been used as substrates for Michael addition reactions (Ranu & Banerjee, 2005) and for the synthesis of many organic molecules (Ballini et al., 2005).

The ORTEP of the title molecule is shown in figure 1. The molecules in the crystal structure are connected with C—H···O hydrogen bonds (Table 1). The C8—H8B···O4 hydrogen bond exhibits ring motifs of the type R22(8). The overall geometry of the title compound is similar to the 3,5-dinitrobenzyl methanesulfonate (Khan et al., 2008). Overall packing of the molecule is shown in figure 2.

Related literature top

For background to nitrobenzene derivatives, see: Ranu & Banerjee (2005); Ballini et al. (2005). For a related structure, see: Khan et al. (2008).

Experimental top

Red blocks were obtained from slow evaporation of a solution of ethanol.

Refinement top

The hydrogen atom were fixed geometrically (C—H= 0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) =1.5Ueq(C-methyl) and = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title molecule, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A viewed along the b axis of the crystal packing of the title compound.
2-Nitrobenzyl methanesulfonate top
Crystal data top
C8H9NO5SF(000) = 480
Mr = 231.23Dx = 1.526 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1663 reflections
a = 12.414 (3) Åθ = 3.8–64.5°
b = 7.967 (2) ŵ = 2.94 mm1
c = 10.994 (3) ÅT = 296 K
β = 112.235 (11)°Block, red
V = 1006.5 (5) Å30.23 × 0.22 × 0.21 mm
Z = 4
Data collection top
Bruker X8 Proteum CCD
diffractometer
1663 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode1541 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.047
Detector resolution: 10.7 pixels mm-1θmax = 64.5°, θmin = 3.9°
ϕ and ω scansh = 1413
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 89
Tmin = 0.552, Tmax = 0.578l = 129
6524 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.5912P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1663 reflectionsΔρmax = 0.41 e Å3
138 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0114 (9)
Crystal data top
C8H9NO5SV = 1006.5 (5) Å3
Mr = 231.23Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.414 (3) ŵ = 2.94 mm1
b = 7.967 (2) ÅT = 296 K
c = 10.994 (3) Å0.23 × 0.22 × 0.21 mm
β = 112.235 (11)°
Data collection top
Bruker X8 Proteum CCD
diffractometer
1663 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1541 reflections with I > 2σ(I)
Tmin = 0.552, Tmax = 0.578Rint = 0.047
6524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.08Δρmax = 0.41 e Å3
1663 reflectionsΔρmin = 0.32 e Å3
138 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08637 (5)0.25179 (7)0.06271 (5)0.0405 (2)
O10.43500 (18)0.3906 (3)0.69206 (16)0.0672 (7)
O20.36003 (19)0.2381 (2)0.52088 (19)0.0601 (7)
O30.16548 (14)0.3941 (2)0.15092 (14)0.0458 (5)
O40.05351 (17)0.3133 (3)0.06740 (15)0.0592 (7)
O50.14617 (16)0.0958 (2)0.09607 (18)0.0584 (6)
N10.38559 (15)0.3744 (2)0.57357 (17)0.0376 (6)
C10.35397 (16)0.5255 (2)0.49184 (19)0.0295 (6)
C20.3940 (2)0.6755 (3)0.5560 (2)0.0411 (7)
C30.3686 (2)0.8231 (3)0.4862 (3)0.0523 (9)
C40.3040 (2)0.8185 (3)0.3534 (3)0.0533 (9)
C50.2634 (2)0.6678 (3)0.2901 (2)0.0424 (7)
C60.28708 (17)0.5157 (3)0.35717 (19)0.0310 (6)
C70.2405 (2)0.3532 (3)0.2870 (2)0.0387 (7)
C80.0341 (2)0.2504 (3)0.1059 (3)0.0526 (9)
H20.437800.676600.645800.0490*
H30.394900.924900.528300.0630*
H40.287300.917900.305600.0640*
H50.219200.668200.200300.0510*
H7A0.304200.281700.288300.0460*
H7B0.196300.294300.329900.0460*
H8A0.010500.221100.197000.0790*
H8B0.089500.169600.053200.0790*
H8C0.069200.359800.091500.0790*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0457 (4)0.0446 (4)0.0265 (3)0.0009 (2)0.0083 (3)0.0091 (2)
O10.0821 (13)0.0607 (13)0.0332 (10)0.0016 (10)0.0071 (9)0.0119 (8)
O20.0803 (13)0.0282 (9)0.0564 (12)0.0036 (8)0.0083 (10)0.0025 (7)
O30.0555 (10)0.0432 (9)0.0289 (8)0.0069 (7)0.0050 (7)0.0037 (7)
O40.0670 (11)0.0806 (14)0.0262 (9)0.0037 (10)0.0134 (8)0.0061 (8)
O50.0595 (11)0.0463 (11)0.0559 (11)0.0051 (8)0.0065 (9)0.0161 (8)
N10.0376 (9)0.0337 (10)0.0345 (10)0.0023 (7)0.0056 (8)0.0053 (8)
C10.0322 (10)0.0256 (10)0.0298 (10)0.0008 (8)0.0106 (8)0.0013 (8)
C20.0463 (12)0.0365 (12)0.0349 (12)0.0059 (10)0.0090 (10)0.0070 (9)
C30.0668 (16)0.0272 (12)0.0591 (16)0.0085 (11)0.0197 (13)0.0070 (11)
C40.0712 (16)0.0295 (12)0.0571 (16)0.0019 (11)0.0220 (13)0.0121 (11)
C50.0531 (13)0.0382 (13)0.0325 (11)0.0006 (10)0.0123 (10)0.0058 (9)
C60.0339 (10)0.0299 (11)0.0303 (10)0.0002 (8)0.0135 (9)0.0014 (8)
C70.0465 (12)0.0361 (12)0.0279 (11)0.0004 (9)0.0079 (9)0.0034 (8)
C80.0529 (15)0.0635 (18)0.0402 (14)0.0060 (11)0.0163 (12)0.0060 (11)
Geometric parameters (Å, º) top
S1—O31.5715 (17)C4—C51.384 (3)
S1—O41.4181 (18)C5—C61.391 (3)
S1—O51.4227 (18)C6—C71.506 (3)
S1—C81.732 (3)C2—H20.9300
O1—N11.219 (2)C3—H30.9300
O2—N11.215 (2)C4—H40.9300
O3—C71.469 (3)C5—H50.9300
N1—C11.464 (2)C7—H7A0.9700
C1—C21.381 (3)C7—H7B0.9700
C1—C61.399 (3)C8—H8A0.9600
C2—C31.374 (3)C8—H8B0.9600
C3—C41.375 (4)C8—H8C0.9600
O3—S1—O4104.31 (11)O3—C7—C6107.68 (18)
O3—S1—O5109.14 (10)C1—C2—H2120.00
O3—S1—C8103.78 (11)C3—C2—H2120.00
O4—S1—O5119.00 (13)C2—C3—H3120.00
O4—S1—C8109.28 (14)C4—C3—H3120.00
O5—S1—C8110.13 (12)C3—C4—H4120.00
S1—O3—C7118.41 (14)C5—C4—H4120.00
O1—N1—O2122.6 (2)C4—C5—H5119.00
O1—N1—C1118.59 (18)C6—C5—H5119.00
O2—N1—C1118.77 (17)O3—C7—H7A110.00
N1—C1—C2115.91 (17)O3—C7—H7B110.00
N1—C1—C6121.17 (17)C6—C7—H7A110.00
C2—C1—C6122.93 (18)C6—C7—H7B110.00
C1—C2—C3119.6 (2)H7A—C7—H7B108.00
C2—C3—C4119.3 (2)S1—C8—H8A109.00
C3—C4—C5120.8 (2)S1—C8—H8B110.00
C4—C5—C6121.7 (2)S1—C8—H8C110.00
C1—C6—C5115.73 (19)H8A—C8—H8B109.00
C1—C6—C7123.31 (19)H8A—C8—H8C109.00
C5—C6—C7120.95 (18)H8B—C8—H8C109.00
O4—S1—O3—C7163.22 (18)C2—C1—C6—C50.5 (3)
O5—S1—O3—C735.1 (2)C2—C1—C6—C7178.4 (2)
C8—S1—O3—C782.36 (19)N1—C1—C6—C71.5 (3)
S1—O3—C7—C6168.44 (15)C1—C2—C3—C40.2 (4)
O1—N1—C1—C26.4 (3)C2—C3—C4—C50.8 (4)
O2—N1—C1—C2174.7 (2)C3—C4—C5—C60.7 (4)
O2—N1—C1—C65.4 (3)C4—C5—C6—C10.1 (4)
O1—N1—C1—C6173.6 (2)C4—C5—C6—C7179.0 (2)
C6—C1—C2—C30.4 (4)C1—C6—C7—O3174.4 (2)
N1—C1—C6—C5179.6 (2)C5—C6—C7—O34.4 (3)
N1—C1—C2—C3179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.543.266 (3)135
C3—H3···O2ii0.932.533.335 (3)145
C7—H7B···O4iii0.972.583.539 (3)169
C8—H8A···O4iii0.962.423.374 (4)172
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.543.266 (3)135
C3—H3···O2ii0.932.533.335 (3)145
C7—H7B···O4iii0.972.583.539 (3)169
C8—H8A···O4iii0.962.423.374 (4)172
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to the IOE, University of Mysore, for providing the single-crystal X-ray diffraction facility. PN thanks the BET Academy of Higher Education for research facilities.

References

First citationBallini, R., Bosica, G., Fiorini, D., Palmieri, A. & Petrini, M. (2005). Chem. Rev. 105, 933–971.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhan, G. S., Clark, G. R. & Barker, D. (2008). Acta Cryst. E64, o1470.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRanu, B. C. & Banerjee, S. (2005). Org. Lett. 7, 3049–3052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds