organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-[(R)-3-Benzyl-2-oxooxazolidin-4-yl][4-(methyl­sulfon­yl)phen­yl]methyl acetate

aSchool of Biological & Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, People's Republic of China, and bNingbo Ocean & Fishery Bureau, Ningbo 315100, People's Republic of China
*Correspondence e-mail: chjin641@163.com

(Received 26 March 2014; accepted 22 April 2014; online 26 April 2014)

The structure of the title compound, C20H21NO6S, is of inter­est with respect to its anti­bacterial properties. The oxazolidine ring makes dihedral angles of 79.63 (14) and 56.16 (12)° with the phenyl and benzene rings, respectively, while the phenyl and benzene rings make a dihedral angle of 64.37 (13)°. In the crystal, non-classical C—H⋯O hydrogen bonds link adjacent mol­ecules along the c axis.

Related literature

For the original synthesis of the title compound, see: Li et al. (2011[Li, F., Wang, Z. H., Zhao, L., Xiong, F. J., He, Q. Q. & Chen, F. E. (2011). Tetrahedron Asymmetry, 22, 1337-1341.]). For inversion of the configuration of the sulfonyloxy moiety, see: Shi et al. (2010[Shi, X. X., Shen, C. L., Yao, J. Z., Nie, L. D. & Quan, N. (2010). Tetrahedron Asymmetry, 21, 277-284.]). For background to the anti-bacterial properties of thia­mphenicol-like compounds, see: Nagabhushan (1980[Nagabhushan, T. L. (1980). EP14437. Schering Corporation, USA.], 1981[Nagabhushan, T. L. (1981). Chem. Abstr. 94, 139433.]); Jommi et al. (1985[Jommi, G., Pagliarin, R., Chiarino, D. & Fantucci, M. (1985). Gazz. Chim. Ital. 115, 653-658.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21NO6S

  • Mr = 403.44

  • Monoclinic, P 21

  • a = 5.837 (3) Å

  • b = 21.021 (10) Å

  • c = 7.884 (4) Å

  • β = 100.256 (7)°

  • V = 952.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.940, Tmax = 0.968

  • 6495 measured reflections

  • 3658 independent reflections

  • 3254 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.02

  • 3658 reflections

  • 255 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1356 Friedel pairs

  • Absolute structure parameter: −0.06 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O4i 0.97 2.52 3.373 (3) 147
C10—H10⋯O6i 0.98 2.54 3.384 (3) 144
C13—H13C⋯O1ii 0.96 2.55 3.305 (3) 135
Symmetry codes: (i) x, y, z+1; (ii) x-1, y, z-1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the study on the synthesis of florfenicol, a class of anti­biotics with pronounced broad-spectrum anti­bacterial activity, (Nagabhushan, 1980 & Jommi et al., 1985). the title compound was produced and is a key inter­mediate in the synthetic route to florfenicol (Li et al., 2011). The title compound was synthesized through the nucleophilic substitution reaction of (S)-((R)-3-benzyl-2-oxooxazolidin-4-yl)(4-(methyl­sulfonyl) phenyl)­methyl­methane sulfonate. Here we report the crystal structure of the title compound.

Fig. 1 shows the molecular structure of the title compound. The enanti­omer was selected on the basis of the configuration of the starting material. All chiral carbon atoms (C10 and C11) are R-configuration. Only one molecule is included in the asymmetrical unit of this compound (Fig. 1). All the bond lengths and relevant angles are in the typical ranges. Although there is no –NH or –OH group available in the structure to form strong hydrogen bonds, the C atoms are involved in the formation of non-classical inter-molecular C—H···O hydrogen bonds (Fig 2).

Experimental top

The literature procedure according to Li et al. (2011) was followed. A solution of 1,8-di­aza­bicyclo­[5.4.0]undec-7-ene (700 mg, 4.56 mmol) and glacial acetic acid (550 mg, 9.11 mmol) in anhydrous toluene (5 mL) was stirred for 1.5 h at room temperature. (S)-((R)-3-benzyl-2-oxooxazolidin-4-yl)(4-(methyl­sulfonyl)­phenyl)­methyl­methane­sulfonate was added and the reaction mixture was heated to 363 K for 8 h. The resulting mixture was cooled to r.t., diluted with CH2Cl2 (40 mL) and washed with 2M aq. HCl (30 mL), 10% aq. K2CO3 (30 mL), and brine (30 mL) successively. The organic phase was dried over Na2SO4, concentrated in vacuo. The residue was purified by flash chromatography to afford the title compound 850 mg (92%) as a white solid. Suitable crystals for X-ray experiments were obtained by slow evaporation from an AcOEt/CHCl3 solution at room temperature.

Refinement top

Hydrogen atoms bonded to the carbon atoms were placed in calculated positions and refined as riding mode, with C—H = 0.93Å (methane) or 0.96Å (methyl) and Uiso(H) = 1.2Ueq (Cmethane) or Uiso(H) = 1.5Ueq (Cmethyl).

Related literature top

For the original synthesis of the title compound, see: Li et al. (2011). For the inversion of configuration, see: Shi et al. (2010). For background to the anti-bacterial properties of thiamphenicol-like compounds, see: Nagabhushan (1980, 1981); Jommi et al. (1985).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP view of the title compound with 30% probability level ellipsoids.
[Figure 2] Fig. 2. The molecular packing diagram of the title compound.
(R)-[(R)-3-Benzyl-2-oxooxazolidin-4-yl][4-(methylsulfonyl)phenyl]methyl acetate top
Crystal data top
C20H21NO6SF(000) = 424
Mr = 403.44Dx = 1.407 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2349 reflections
a = 5.837 (3) Åθ = 2.6–25.3°
b = 21.021 (10) ŵ = 0.21 mm1
c = 7.884 (4) ÅT = 296 K
β = 100.256 (7)°Block, colourless
V = 952.0 (7) Å30.30 × 0.25 × 0.16 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3658 independent reflections
Radiation source: fine-focus sealed tube3254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 27.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 77
Tmin = 0.940, Tmax = 0.968k = 1927
6495 measured reflectionsl = 109
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0516P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3658 reflectionsΔρmax = 0.14 e Å3
255 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 1356 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (6)
Crystal data top
C20H21NO6SV = 952.0 (7) Å3
Mr = 403.44Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.837 (3) ŵ = 0.21 mm1
b = 21.021 (10) ÅT = 296 K
c = 7.884 (4) Å0.30 × 0.25 × 0.16 mm
β = 100.256 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3658 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3254 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.968Rint = 0.022
6495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.14 e Å3
S = 1.02Δρmin = 0.17 e Å3
3658 reflectionsAbsolute structure: Flack (1983), 1356 Friedel pairs
255 parametersAbsolute structure parameter: 0.06 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2302 (4)1.05248 (14)1.2707 (4)0.0558 (6)
H10.12591.03241.32950.067*
C20.1916 (6)1.11380 (17)1.2191 (5)0.0781 (10)
H20.06051.13491.24220.094*
C30.3431 (7)1.14521 (16)1.1331 (5)0.0833 (11)
H30.31551.18721.09810.100*
C40.5382 (6)1.11300 (16)1.0994 (4)0.0701 (9)
H40.64281.13351.04170.084*
C50.5769 (4)1.05031 (13)1.1517 (3)0.0506 (6)
H50.70771.02901.12900.061*
C60.4227 (4)1.01946 (11)1.2373 (3)0.0395 (5)
C70.4569 (4)0.95231 (11)1.3036 (3)0.0418 (5)
H7A0.50950.95401.42740.050*
H7B0.30700.93111.28320.050*
C80.8331 (4)0.90008 (12)1.3230 (3)0.0418 (5)
C90.7678 (4)0.82331 (14)1.1163 (3)0.0491 (6)
H9A0.72900.78001.14280.059*
H9B0.83240.82311.01120.059*
C100.5504 (3)0.86602 (11)1.0957 (3)0.0347 (4)
H100.41690.84181.12060.042*
C110.4959 (3)0.89357 (10)0.9143 (2)0.0325 (4)
H110.62860.91880.89230.039*
C120.2825 (4)0.98383 (11)0.7947 (3)0.0401 (5)
C130.0631 (5)1.02073 (14)0.7899 (3)0.0567 (7)
H13A0.08901.06430.76250.085*
H13B0.01631.01850.90050.085*
H13C0.05711.00310.70370.085*
C140.4399 (3)0.84297 (10)0.7772 (2)0.0329 (4)
C150.2402 (4)0.80602 (13)0.7690 (3)0.0453 (6)
H150.14810.81070.85310.054*
C160.1773 (4)0.76262 (12)0.6378 (3)0.0435 (5)
H160.04250.73860.63240.052*
C170.3164 (3)0.75514 (10)0.5144 (2)0.0343 (4)
C180.5208 (4)0.78958 (12)0.5248 (3)0.0394 (5)
H180.61770.78310.44470.047*
C190.5795 (3)0.83348 (11)0.6545 (3)0.0380 (5)
H190.71510.85720.66000.046*
C200.4084 (5)0.63552 (13)0.3899 (3)0.0563 (6)
H20A0.38140.61700.49590.084*
H20B0.56850.64830.40220.084*
H20C0.37390.60480.29880.084*
N10.6212 (3)0.91344 (9)1.2290 (2)0.0373 (4)
O10.9319 (3)0.92759 (11)1.4488 (2)0.0607 (5)
O20.9295 (3)0.84974 (9)1.2545 (2)0.0530 (4)
O30.2955 (2)0.93443 (7)0.90796 (18)0.0374 (3)
O40.4311 (3)0.99426 (10)0.7128 (2)0.0566 (5)
O50.0080 (3)0.68428 (10)0.3436 (2)0.0585 (5)
O60.2809 (3)0.73099 (10)0.1869 (2)0.0574 (5)
S10.22845 (9)0.70219 (3)0.34050 (6)0.03925 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0543 (14)0.0493 (16)0.0618 (15)0.0027 (12)0.0052 (11)0.0131 (13)
C20.078 (2)0.0510 (19)0.098 (2)0.0168 (16)0.0056 (18)0.0156 (19)
C30.121 (3)0.0371 (17)0.078 (2)0.0108 (18)0.020 (2)0.0006 (15)
C40.105 (2)0.0517 (18)0.0496 (15)0.0264 (18)0.0039 (15)0.0018 (13)
C50.0619 (14)0.0468 (15)0.0438 (12)0.0066 (12)0.0115 (11)0.0000 (11)
C60.0452 (11)0.0367 (12)0.0348 (10)0.0035 (9)0.0024 (8)0.0088 (9)
C70.0467 (11)0.0398 (13)0.0421 (11)0.0015 (10)0.0171 (9)0.0043 (10)
C80.0404 (10)0.0444 (14)0.0412 (11)0.0061 (10)0.0089 (9)0.0045 (11)
C90.0546 (13)0.0496 (15)0.0416 (11)0.0159 (11)0.0044 (9)0.0041 (11)
C100.0395 (10)0.0320 (11)0.0328 (10)0.0023 (9)0.0073 (8)0.0002 (8)
C110.0349 (9)0.0303 (11)0.0326 (10)0.0006 (8)0.0066 (8)0.0007 (8)
C120.0548 (12)0.0301 (11)0.0323 (10)0.0006 (10)0.0011 (9)0.0026 (9)
C130.0597 (15)0.0450 (15)0.0611 (15)0.0176 (12)0.0013 (12)0.0005 (13)
C140.0349 (10)0.0312 (11)0.0323 (9)0.0023 (8)0.0051 (7)0.0027 (8)
C150.0449 (12)0.0502 (15)0.0455 (12)0.0083 (11)0.0206 (9)0.0110 (11)
C160.0403 (11)0.0418 (14)0.0507 (12)0.0106 (10)0.0142 (9)0.0058 (11)
C170.0405 (10)0.0285 (11)0.0326 (9)0.0027 (8)0.0028 (7)0.0002 (8)
C180.0430 (11)0.0425 (13)0.0348 (10)0.0046 (10)0.0131 (8)0.0015 (10)
C190.0380 (10)0.0416 (13)0.0356 (10)0.0076 (9)0.0099 (8)0.0011 (9)
C200.0684 (15)0.0354 (13)0.0610 (15)0.0102 (12)0.0003 (12)0.0033 (12)
N10.0405 (9)0.0381 (11)0.0339 (9)0.0046 (8)0.0082 (7)0.0027 (8)
O10.0568 (9)0.0691 (13)0.0514 (10)0.0151 (9)0.0030 (7)0.0109 (10)
O20.0398 (8)0.0539 (11)0.0615 (10)0.0085 (8)0.0013 (7)0.0069 (9)
O30.0427 (7)0.0306 (8)0.0391 (7)0.0057 (6)0.0080 (6)0.0016 (6)
O40.0711 (11)0.0478 (11)0.0528 (10)0.0009 (9)0.0166 (8)0.0124 (9)
O50.0465 (9)0.0559 (12)0.0697 (11)0.0093 (8)0.0005 (8)0.0189 (9)
O60.0903 (13)0.0467 (11)0.0347 (8)0.0012 (10)0.0100 (7)0.0013 (8)
S10.0475 (3)0.0299 (2)0.0381 (3)0.0003 (2)0.0016 (2)0.0037 (2)
Geometric parameters (Å, º) top
C1—C21.359 (5)C11—C141.511 (3)
C1—C61.385 (3)C11—H110.9800
C1—H10.9300C12—O41.191 (3)
C2—C31.375 (5)C12—O31.363 (3)
C2—H20.9300C12—C131.492 (3)
C3—C41.391 (5)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.387 (4)C13—H13C0.9600
C4—H40.9300C14—C191.385 (3)
C5—C61.379 (3)C14—C151.393 (3)
C5—H50.9300C15—C161.379 (3)
C6—C71.506 (3)C15—H150.9300
C7—N11.461 (3)C16—C171.383 (3)
C7—H7A0.9700C16—H160.9300
C7—H7B0.9700C17—C181.385 (3)
C8—O11.203 (3)C17—S11.769 (2)
C8—N11.354 (3)C18—C191.374 (3)
C8—O21.355 (3)C18—H180.9300
C9—O21.421 (3)C19—H190.9300
C9—C101.539 (3)C20—S11.753 (3)
C9—H9A0.9700C20—H20A0.9600
C9—H9B0.9700C20—H20B0.9600
C10—N11.454 (3)C20—H20C0.9600
C10—C111.523 (3)O5—S11.4353 (18)
C10—H100.9800O6—S11.4346 (19)
C11—O31.445 (2)
C2—C1—C6121.0 (3)O4—C12—O3122.3 (2)
C2—C1—H1119.5O4—C12—C13126.5 (2)
C6—C1—H1119.5O3—C12—C13111.1 (2)
C1—C2—C3121.1 (3)C12—C13—H13A109.5
C1—C2—H2119.5C12—C13—H13B109.5
C3—C2—H2119.5H13A—C13—H13B109.5
C2—C3—C4118.7 (3)C12—C13—H13C109.5
C2—C3—H3120.6H13A—C13—H13C109.5
C4—C3—H3120.6H13B—C13—H13C109.5
C5—C4—C3120.1 (3)C19—C14—C15118.6 (2)
C5—C4—H4120.0C19—C14—C11121.46 (18)
C3—C4—H4120.0C15—C14—C11119.88 (17)
C6—C5—C4120.4 (3)C16—C15—C14120.81 (19)
C6—C5—H5119.8C16—C15—H15119.6
C4—C5—H5119.8C14—C15—H15119.6
C5—C6—C1118.7 (2)C15—C16—C17119.47 (19)
C5—C6—C7123.6 (2)C15—C16—H16120.3
C1—C6—C7117.7 (2)C17—C16—H16120.3
N1—C7—C6116.12 (18)C16—C17—C18120.39 (19)
N1—C7—H7A108.3C16—C17—S1119.40 (16)
C6—C7—H7A108.3C18—C17—S1120.20 (15)
N1—C7—H7B108.3C19—C18—C17119.54 (18)
C6—C7—H7B108.3C19—C18—H18120.2
H7A—C7—H7B107.4C17—C18—H18120.2
O1—C8—N1127.5 (2)C18—C19—C14121.09 (19)
O1—C8—O2122.1 (2)C18—C19—H19119.5
N1—C8—O2110.35 (19)C14—C19—H19119.5
O2—C9—C10106.0 (2)S1—C20—H20A109.5
O2—C9—H9A110.5S1—C20—H20B109.5
C10—C9—H9A110.5H20A—C20—H20B109.5
O2—C9—H9B110.5S1—C20—H20C109.5
C10—C9—H9B110.5H20A—C20—H20C109.5
H9A—C9—H9B108.7H20B—C20—H20C109.5
N1—C10—C11113.76 (18)C8—N1—C10111.57 (18)
N1—C10—C9101.58 (17)C8—N1—C7119.80 (18)
C11—C10—C9110.60 (17)C10—N1—C7123.54 (17)
N1—C10—H10110.2C8—O2—C9110.15 (17)
C11—C10—H10110.2C12—O3—C11115.21 (16)
C9—C10—H10110.2O6—S1—O5118.39 (12)
O3—C11—C14108.86 (15)O6—S1—C20108.39 (13)
O3—C11—C10106.93 (14)O5—S1—C20109.06 (13)
C14—C11—C10112.74 (18)O6—S1—C17108.20 (11)
O3—C11—H11109.4O5—S1—C17107.41 (11)
C14—C11—H11109.4C20—S1—C17104.53 (11)
C10—C11—H11109.4
C6—C1—C2—C30.5 (5)C17—C18—C19—C141.3 (3)
C1—C2—C3—C40.0 (5)C15—C14—C19—C181.4 (3)
C2—C3—C4—C50.2 (4)C11—C14—C19—C18176.6 (2)
C3—C4—C5—C60.0 (4)O1—C8—N1—C10174.6 (2)
C4—C5—C6—C10.5 (3)O2—C8—N1—C106.3 (2)
C4—C5—C6—C7177.8 (2)O1—C8—N1—C719.0 (3)
C2—C1—C6—C50.7 (4)O2—C8—N1—C7161.91 (19)
C2—C1—C6—C7178.2 (3)C11—C10—N1—C8122.93 (18)
C5—C6—C7—N118.5 (3)C9—C10—N1—C84.1 (2)
C1—C6—C7—N1164.21 (19)C11—C10—N1—C782.5 (2)
O2—C9—C10—N10.6 (2)C9—C10—N1—C7158.6 (2)
O2—C9—C10—C11121.7 (2)C6—C7—N1—C8106.2 (2)
N1—C10—C11—O364.6 (2)C6—C7—N1—C10101.2 (2)
C9—C10—C11—O3178.14 (18)O1—C8—O2—C9175.1 (2)
N1—C10—C11—C14175.82 (16)N1—C8—O2—C95.7 (3)
C9—C10—C11—C1462.3 (2)C10—C9—O2—C82.9 (3)
O3—C11—C14—C19125.2 (2)O4—C12—O3—C113.3 (3)
C10—C11—C14—C19116.3 (2)C13—C12—O3—C11176.55 (18)
O3—C11—C14—C1552.7 (2)C14—C11—O3—C1286.7 (2)
C10—C11—C14—C1565.8 (2)C10—C11—O3—C12151.25 (17)
C19—C14—C15—C162.5 (3)C16—C17—S1—O6139.88 (19)
C11—C14—C15—C16175.5 (2)C18—C17—S1—O639.0 (2)
C14—C15—C16—C170.9 (4)C16—C17—S1—O511.0 (2)
C15—C16—C17—C181.8 (3)C18—C17—S1—O5167.86 (18)
C15—C16—C17—S1177.03 (19)C16—C17—S1—C20104.8 (2)
C16—C17—C18—C193.0 (3)C18—C17—S1—C2076.4 (2)
S1—C17—C18—C19175.90 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O4i0.972.523.373 (3)147
C10—H10···O6i0.982.543.384 (3)144
C13—H13C···O1ii0.962.553.305 (3)135
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O4i0.972.523.373 (3)146.6
C10—H10···O6i0.982.543.384 (3)143.7
C13—H13C···O1ii0.962.553.305 (3)135.2
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z1.
 

Acknowledgements

The authors thank Professor Xiang-shan Wang for his help and advice in the solution of the crystal structure.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJommi, G., Pagliarin, R., Chiarino, D. & Fantucci, M. (1985). Gazz. Chim. Ital. 115, 653–658.  CAS Google Scholar
First citationLi, F., Wang, Z. H., Zhao, L., Xiong, F. J., He, Q. Q. & Chen, F. E. (2011). Tetrahedron Asymmetry, 22, 1337–1341.  Web of Science CSD CrossRef CAS Google Scholar
First citationNagabhushan, T. L. (1980). EP14437. Schering Corporation, USA.  Google Scholar
First citationNagabhushan, T. L. (1981). Chem. Abstr. 94, 139433.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X. X., Shen, C. L., Yao, J. Z., Nie, L. D. & Quan, N. (2010). Tetrahedron Asymmetry, 21, 277-284.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds