metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(nicotinamide-κN1)bis­­(thio­cyanato-κN)nickel(II)

aDepartment of Chemistry, Motilal Nehru National Institute of Technology, Allahabad 211 004, India, and bDepartment of Chemistry, Howard University, 2400 Sixth Street, N.W. Washington, DC 20059, USA
*Correspondence e-mail: deepanjalipandey.1@gmail.com

(Received 14 March 2014; accepted 27 March 2014; online 16 April 2014)

In the title complex, [Ni(NCS)2(C6H6N2O)2(H2O)2], the NiII ion is located on an inversion center and is coordinated in a distorted octa­hedral environment by two N atoms from two nicotinamide ligands and two water mol­ecules in the equatorial plane, and two N atoms from two thio­cyanate anions in the axial positions, all acting as monodentate ligands. In the crystal, weak N—H⋯S hydrogen bonds between the amino groups and the thio­cyanate anions form an R42(8) motif. The complex mol­ecules are linked by O—H⋯O, O—H⋯S, and N—H⋯S hydrogen bonds into a three-dimensional supra­molecular structure. Weak ππ inter­actions between the pyridine rings is also found [centroid–centroid distance = 3.8578 (14) Å].

Related literature

For background to the applications of transition metal complexes with biochemically active ligands, see: Antolini et al. (1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]); Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For related structures, see: Hökelek, Dal et al. (2009[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m481-m482.]); Hökelek, Yilmaz et al. (2009[Hökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m768-m769.]); Özbek et al. (2009[Özbek, F. E., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m341-m342.]); Zhu et al. (2006[Zhu, C.-G., Wang, F.-W. & Wei, Y.-J. (2006). Acta Cryst. E62, m1816-m1817.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C6H6N2O)2(H2O)2]

  • Mr = 455.16

  • Triclinic, [P \overline 1]

  • a = 7.5574 (15) Å

  • b = 8.2683 (19) Å

  • c = 9.0056 (15) Å

  • α = 73.010 (18)°

  • β = 69.698 (17)°

  • γ = 66.51 (2)°

  • V = 476.23 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 123 K

  • 0.48 × 0.32 × 0.26 mm

Data collection
  • Agilent Xcalibur Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.690, Tmax = 1.000

  • 8114 measured reflections

  • 4752 independent reflections

  • 3477 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.125

  • S = 1.03

  • 4752 reflections

  • 132 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯S1i 0.79 (3) 2.47 (3) 3.224 (2) 161 (3)
O1W—H1W2⋯O1ii 0.79 (2) 1.92 (2) 2.686 (2) 164 (3)
N2—H2A⋯S1iii 0.88 2.67 3.459 (2) 150
N2—H2B⋯S1iv 0.88 2.62 3.435 (2) 154
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) -x, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). As ligands, nicotinamide (NA) and thiocyanate are interesting due to their potential formation of metal coordination complexes as they exhibit multifunctional coordination modes due to the presence of S and N donor atoms. With reference to the hard and soft acids and bases concept, the soft cations show a pronounced affinity for coordination with the softer ligands, while hard cations prefer coordination with harder ligands (Hökelek, Dal et al., 2009; Hökelek, Yilmaz et al., 2009; Özbek et al., 2009; Zhu et al., 2006). NA is one form of niacin and a deficiency of this vitamin leads to loss of copper from body, known as pellagra disease. The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant.

In the title complex, the NiII ion is located on an inversion center and coordinated by two equatorial N atoms from two NA ligands and two equatorial O atoms from water molecules, and two axial N donor from thiocyanate ligands, as can be seen in Fig. 1. The Ni—O1W bond distance is 2.088 (2) Å, which is very close to the Ni—N3(thiocyanate) distance of 2.090 (2) Å. The bond distance of Ni—N1(NA) is longer at 2.178 (1) Å. The N—Ni–N, O—Ni–N angles indicate a slightly distorted octahedral coordination for the NiII ion. The thiocyanate anion is almost linear with an N—C—S bond angle being 178.3 (2)°, coordinating in a little bent fashion to Ni with an Ni—N3—C7 angle of 160.38 (17)°. The two terminal N–bonded thiocyanate anions around the NiII ion are trans arranged. The Ni···Ni distance spaced by the thiocyanate ligand is 7.5574 (15) Å.

As can be seen from the packing diagram (Fig. 2), the complex molecules are linked by intermolecular O—H···O, O—H···S and N—H···S hydrogen bonds (Table 1), forming a supramolecular structure. The discrete molecules are connected by O1W—H···O1 and O1W—H···S1 hydrogen bonds into a two-dimensional layer parallel to (010). The thiocyanate S1 atom also accepts the other two hydrogen bonds from two different amide N atoms, completing an overall three-dimensional supramolecular structure.

Related literature top

For background to the applications of transition metal complexes with biochemically active ligands, see: Antolini et al. (1982); Krishnamachari (1974). For related structures, see: Hökelek, Dal et al. (2009); Hökelek, Yilmaz et al. (2009); Özbek et al. (2009); Zhu et al. (2006).

Experimental top

An aqueous solution (10 ml) of nickel acetate tetrahydrate (0.246 g, 1 mmol) and potassium thiocyanate (0.196 g, 2 mmol) was slowly added drop wise to a hot aqueous solution (10 ml) of nicotinamide (0.244 g, 2 mmol) with stirring. Greenish blue colour solution was obtained. After filtration the final clear solution left undisturbed at room temperature for slow evaporation. Next day, needle shaped greenish blue crystals were collected and dried in vacuo over silica gel. Crystals suitable for single crystal X-ray diffraction were manually selected and immersed in silicon oil.

Refinement top

H atoms bound to C and N atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.95 and N—H = 0.88 Å and with Uiso(H) = 1.2Ueq(C, N). H atoms of the water molecule were located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex, showing the 50% probability level ellipsoids. [Symmetry code: (i) 1-x, 1-y, 2-z.]
[Figure 2] Fig. 2. Packing diagram of the title complex. Hydrogen bonds are shown as dashed lines.
Diaquabis(nicotinamide-κN1)bis(thiocyanato-κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C6H6N2O)2(H2O)2]Z = 1
Mr = 455.16F(000) = 234
Triclinic, P1Dx = 1.587 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5574 (15) ÅCell parameters from 1387 reflections
b = 8.2683 (19) Åθ = 5.2–37.4°
c = 9.0056 (15) ŵ = 1.27 mm1
α = 73.010 (18)°T = 123 K
β = 69.698 (17)°Prism, green-blue
γ = 66.51 (2)°0.48 × 0.32 × 0.26 mm
V = 476.23 (18) Å3
Data collection top
Agilent Xcalibur Ruby CCD
diffractometer
4752 independent reflections
Radiation source: Enhance (Mo) X-ray Source3477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.5081 pixels mm-1θmax = 37.8°, θmin = 5.1°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1314
Tmin = 0.690, Tmax = 1.000l = 1515
8114 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.1045P]
where P = (Fo2 + 2Fc2)/3
4752 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.50 e Å3
3 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Ni(NCS)2(C6H6N2O)2(H2O)2]γ = 66.51 (2)°
Mr = 455.16V = 476.23 (18) Å3
Triclinic, P1Z = 1
a = 7.5574 (15) ÅMo Kα radiation
b = 8.2683 (19) ŵ = 1.27 mm1
c = 9.0056 (15) ÅT = 123 K
α = 73.010 (18)°0.48 × 0.32 × 0.26 mm
β = 69.698 (17)°
Data collection top
Agilent Xcalibur Ruby CCD
diffractometer
4752 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3477 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 1.000Rint = 0.032
8114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0463 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.50 e Å3
4752 reflectionsΔρmin = 0.71 e Å3
132 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.50001.00000.02711 (9)
S10.10823 (7)0.89262 (6)0.85626 (6)0.03634 (11)
O10.3352 (3)0.1975 (2)0.47112 (16)0.0455 (4)
O1W0.5790 (2)0.7206 (2)0.85157 (16)0.0386 (3)
H1W10.671 (3)0.737 (4)0.859 (3)0.061 (9)*
H1W20.588 (4)0.737 (4)0.759 (2)0.056 (8)*
N30.2125 (2)0.6286 (2)0.9666 (2)0.0371 (3)
N10.5789 (2)0.38229 (19)0.78909 (16)0.0268 (3)
N20.2320 (3)0.1178 (2)0.73701 (18)0.0365 (3)
H2A0.14310.08010.72810.044*
H2B0.24390.11060.83270.044*
C70.0784 (3)0.7361 (2)0.92131 (19)0.0281 (3)
C10.4532 (2)0.3212 (2)0.76502 (18)0.0260 (3)
H1A0.32950.32780.84390.031*
C20.4940 (2)0.2486 (2)0.63092 (17)0.0246 (3)
C30.3476 (3)0.1854 (2)0.60664 (19)0.0279 (3)
C40.6734 (3)0.2419 (3)0.5151 (2)0.0327 (3)
H4A0.70510.19660.42020.039*
C50.8053 (3)0.3020 (3)0.5400 (2)0.0363 (4)
H5A0.93010.29680.46310.044*
C60.7533 (3)0.3700 (2)0.6787 (2)0.0314 (3)
H6A0.84570.40950.69560.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.02907 (15)0.03414 (16)0.02262 (14)0.01311 (12)0.00883 (11)0.00525 (11)
S10.0317 (2)0.0386 (2)0.0394 (2)0.01499 (18)0.01464 (18)0.00316 (18)
O10.0661 (10)0.0612 (9)0.0270 (6)0.0368 (8)0.0189 (6)0.0029 (6)
O1W0.0531 (8)0.0506 (8)0.0262 (6)0.0332 (7)0.0161 (6)0.0029 (5)
N30.0325 (7)0.0469 (9)0.0357 (8)0.0099 (7)0.0125 (6)0.0129 (7)
N10.0285 (6)0.0331 (6)0.0231 (5)0.0131 (5)0.0071 (5)0.0068 (5)
N20.0404 (8)0.0497 (9)0.0279 (7)0.0266 (7)0.0045 (6)0.0078 (6)
C70.0286 (7)0.0367 (8)0.0241 (6)0.0158 (6)0.0050 (6)0.0079 (6)
C10.0276 (7)0.0333 (7)0.0203 (6)0.0130 (6)0.0041 (5)0.0077 (5)
C20.0299 (7)0.0275 (6)0.0189 (6)0.0118 (6)0.0060 (5)0.0049 (5)
C30.0341 (8)0.0289 (7)0.0238 (6)0.0114 (6)0.0082 (6)0.0073 (5)
C40.0367 (8)0.0396 (9)0.0223 (6)0.0152 (7)0.0007 (6)0.0110 (6)
C50.0308 (8)0.0472 (10)0.0309 (8)0.0167 (8)0.0017 (7)0.0136 (7)
C60.0283 (7)0.0384 (8)0.0303 (7)0.0131 (7)0.0073 (6)0.0077 (7)
Geometric parameters (Å, º) top
Ni—O1W2.0876 (15)N2—H2A0.8800
Ni—N32.0899 (17)N2—H2B0.8800
Ni—N12.1776 (14)C1—C21.389 (2)
S1—C71.6377 (18)C1—H1A0.9500
O1—C31.228 (2)C2—C41.386 (2)
O1W—H1W10.79 (2)C2—C31.497 (2)
O1W—H1W20.79 (2)C4—C51.380 (3)
N3—C71.158 (2)C4—H4A0.9500
N1—C61.334 (2)C5—C61.387 (2)
N1—C11.340 (2)C5—H5A0.9500
N2—C31.322 (2)C6—H6A0.9500
O1Wi—Ni—O1W180.00 (6)C3—N2—H2A120.0
O1Wi—Ni—N3i88.85 (7)C3—N2—H2B120.0
O1W—Ni—N3i91.15 (7)H2A—N2—H2B120.0
O1Wi—Ni—N391.15 (7)N3—C7—S1178.30 (17)
O1W—Ni—N388.85 (7)N1—C1—C2123.52 (15)
N3i—Ni—N3180.0N1—C1—H1A118.2
O1Wi—Ni—N190.25 (6)C2—C1—H1A118.2
O1W—Ni—N189.75 (6)C4—C2—C1117.97 (16)
N3i—Ni—N192.52 (6)C4—C2—C3120.08 (14)
N3—Ni—N187.48 (6)C1—C2—C3121.91 (15)
O1Wi—Ni—N1i89.75 (6)O1—C3—N2121.81 (17)
O1W—Ni—N1i90.25 (6)O1—C3—C2121.07 (16)
N3i—Ni—N1i87.48 (6)N2—C3—C2117.12 (14)
N3—Ni—N1i92.52 (6)C5—C4—C2118.94 (15)
N1—Ni—N1i180.000 (1)C5—C4—H4A120.5
Ni—O1W—H1W1118 (2)C2—C4—H4A120.5
Ni—O1W—H1W2119 (2)C4—C5—C6119.16 (17)
H1W1—O1W—H1W2107 (2)C4—C5—H5A120.4
C7—N3—Ni160.38 (17)C6—C5—H5A120.4
C6—N1—C1117.68 (14)N1—C6—C5122.70 (17)
C6—N1—Ni121.18 (12)N1—C6—H6A118.7
C1—N1—Ni121.14 (11)C5—C6—H6A118.7
O1Wi—Ni—N3—C7179.4 (4)Ni—N1—C1—C2178.49 (12)
O1W—Ni—N3—C70.6 (4)N1—C1—C2—C41.0 (2)
N1—Ni—N3—C789.2 (4)N1—C1—C2—C3178.64 (14)
N1i—Ni—N3—C790.8 (4)C4—C2—C3—O130.6 (2)
O1Wi—Ni—N1—C6130.61 (14)C1—C2—C3—O1147.02 (17)
O1W—Ni—N1—C649.39 (14)C4—C2—C3—N2149.97 (17)
N3i—Ni—N1—C641.75 (14)C1—C2—C3—N232.4 (2)
N3—Ni—N1—C6138.25 (14)C1—C2—C4—C51.9 (3)
O1Wi—Ni—N1—C150.01 (13)C3—C2—C4—C5179.63 (16)
O1W—Ni—N1—C1129.99 (13)C2—C4—C5—C61.0 (3)
N3i—Ni—N1—C1138.87 (13)C1—N1—C6—C51.9 (3)
N3—Ni—N1—C141.13 (13)Ni—N1—C6—C5177.55 (14)
C6—N1—C1—C20.9 (2)C4—C5—C6—N10.9 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···S1ii0.79 (3)2.47 (3)3.224 (2)161 (3)
O1W—H1W2···O1iii0.79 (2)1.92 (2)2.686 (2)164 (3)
N2—H2A···S1iv0.882.673.459 (2)150
N2—H2B···S1v0.882.623.435 (2)154
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···S1i0.79 (3)2.47 (3)3.224 (2)161 (3)
O1W—H1W2···O1ii0.79 (2)1.92 (2)2.686 (2)164 (3)
N2—H2A···S1iii0.882.673.459 (2)150
N2—H2B···S1iv0.882.623.435 (2)154
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x, y+1, z+2.
 

Acknowledgements

The authors wish to extend their gratitude to Professor P. Chakrabarti, Director, MNNIT, Allahabad, for providing a Institute Research Fellowship to DP.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m481–m482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m768–m769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÖzbek, F. E., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m341–m342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, C.-G., Wang, F.-W. & Wei, Y.-J. (2006). Acta Cryst. E62, m1816–m1817.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds