metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m185-m186

A new polymorph of aqua­bis­­(1,10-phenanthroline-κ2N,N′)copper(II) dinitrate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université de Constantine 1, 25000 Constantine, Algeria
*Correspondence e-mail: a_beghidja@yahoo.fr

(Received 29 March 2014; accepted 11 April 2014; online 18 April 2014)

The title mol­ecule, [Cu(C12H8N2)2(H2O)](NO3)2, is a new polymorph of a compound which up to now has been reported to crystallize space groups in C2/c and Cc. The crystal studied was twinned by non-merohedry (final BASF factor of 0.40043) with the structure being solved and refined in P-1. The CuII atom is coordinated by four N atoms from two 1,10-phenanthroline ligands and an O atom from a water mol­ecule in an approximate trigonal–bipyramidal geometry. Discrete entities of one cation and two nitrate anions are formed by water–nitrate O—H⋯O hydrogen bonds. The components are further assembled into a three-dimensional network by C—H⋯O hydrogen bonds.

Related literature

For structural analyses of the other polymorphs, see: Nakai & Deguchi (1975[Nakai, H. & Deguchi, Y. (1975). Bull. Chem. Soc. Jpn, 48, 2557-2560.]); Catalan et al. (1995[Catalan, K. J., Jackson, S., Zubkowski, J. D., Perry, D. L., Valente, E. J., Feliu, L. A. & Polanco, A. (1995). Polyhedron, 14, 2165-2171.]); Szpakolski et al. (2010[Szpakolski, K. B., Latham, K., Rix, C. J., White, J. M., Moubaraki, B. & Murray, K. S. (2010). Chem. Eur. J. 16, 1691-1696.]); Zhou (2011[Zhou, Y. H. (2011). Huaibei Shifan Daxue Xuebao (Ziran Kexueban), 32, 33. ]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H8N2)2(H2O)](NO3)2

  • Mr = 565.99

  • Triclinic, [P \overline 1]

  • a = 7.0836 (3) Å

  • b = 11.7898 (3) Å

  • c = 14.2951 (4) Å

  • α = 78.079 (2)°

  • β = 79.862 (3)°

  • γ = 73.782 (3)°

  • V = 1112.68 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 150 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 17314 measured reflections

  • 11903 independent reflections

  • 10562 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.172

  • S = 1.17

  • 11903 reflections

  • 344 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2i 0.79 1.92 2.709 (5) 176
O1W—H2W⋯O6 0.87 1.89 2.718 (5) 159
C2—H2⋯O1ii 0.93 2.57 3.313 (5) 137
C5—H5⋯O5iii 0.93 2.40 3.271 (5) 156
C6—H6⋯O6iv 0.93 2.56 3.417 (6) 154
C8—H8⋯O3v 0.93 2.50 3.194 (5) 131
C17—H17⋯O2vi 0.93 2.49 3.363 (5) 157
C18—H18⋯O1vii 0.93 2.50 3.406 (5) 166
C20—H20⋯O3vii 0.93 2.49 3.357 (5) 155
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y, -z; (iii) x, y-1, z; (iv) -x+2, -y, -z+1; (v) -x+1, -y, -z+1; (vi) -x+1, -y+1, -z; (vii) x, y+1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 1995[Dowty, E. (1995). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The reported structure of complex (I) is a polymorph of previously reported material. It crystallizes as a non-merohedral twin in the triclinic system with the space group P1, contrary to what has been observed in other structural analyses which three times report the crystal symmetry to correspond to the space group C2/c (Nakai & Deguchi (1975); Szpakolski et al. (2010); Zhou (2011)), while the fourth crystal structure was reported in the space group Cc (Catalan et al., 1995).

Compound (I) has a discrete structure containing monomeric [Cu(H2O)(1,10'-phen)]2+ cations and two counter-balanced nitrate anions which are connected to the cation via O–H···O hydrogen bonds. The Cu(II) ion is coordinated by two 1,10'-phenantroline molecules each acting as a bidentate ligand (through the four nitrogen atoms (N1,N2, N4,N3)) and one water molecule O1w (Fig. 1). The geometry around the metal is of distorted trigonal bipyramidal geometry and all distances are in a normal range. The dihedral angle between the two 1,10'-phenantroline molecules is 34.92 (3)°, while the dihedral angle varies in its analogous between 37.89 (3)° and 53.46 (3)°. In the crystal, molecules are linked by extensive hydrogen bonds involving the nitrate anions and phenantroline and water molecules, producing a three-dimensional network (Fig 2).

Related literature top

For structural analyses of the other polymorphs , see: Nakai & Deguchi (1975); Catalan et al. (1995); Szpakolski et al. (2010); Zhou (2011).

Experimental top

A methanolic solution containing Cu(NO3)2 × 3 H2O (0.1208 g, 0.5 mmol) was added with stirring to a methanolic solution containing 1,10'-phenantroline (0.9 g, 0.5 mmol). After a few minutes a blue green precipitate appears and was filtrated. The blue green filtrate was kept for several weeks at room temperature. Green crystals suitable for X-ray analysis were obtained (yield: 0.20 g, 70% on the basis of Cu(NO3)2.3H2O).

Refinement top

Water hydrogen atoms were tentatively found in the difference density Fourier map and were refined with an isotropic displacement parameter of Uiso(H) = 1.5 Ueq(O1W). O—H distances were restrained to be 0.9 Å within a standard deviation of 0.01 and the H···H contacts were restraint to 1.40 Å with a standard deviation of 0.02. A l l other hydrogen atoms were placed in calculated positions with C —H distances of 0.93–0.96 Å for aromatic H atoms with Uiso(H) =1.2 Ueq(C).

The presence of a non-merohedral twin was identified using TwinRotMat within PLATON (Spek, 2009) (twin law: (0.958 0.013 0.071), (0.979 -0.994 0.036), (0.979 0.006 -0.964)) reducing the conventional R-factor from 0.11 to 0.057, with a final BASF factor (HKLF 5 format) of 0.40043. Maximum and minimum residual electron densities were 0.98 eÅ-3 (0.95 Å from Cu01) and -0.63 eÅ-3 (0.93 Å from Cu01 ), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1995); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial view of the crystal structure of the title compound showing the hydrogen bonds.
Aquabis(1,10-phenanthroline-κ2N,N')copper(II) dinitrate top
Crystal data top
[Cu(C12H8N2)2(H2O)](NO3)2Z = 2
Mr = 565.99F(000) = 578
Triclinic, P1Dx = 1.689 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0836 (3) ÅCell parameters from 11062 reflections
b = 11.7898 (3) Åθ = 1.8–34.6°
c = 14.2951 (4) ŵ = 1.05 mm1
α = 78.079 (2)°T = 150 K
β = 79.862 (3)°Block, green
γ = 73.782 (3)°0.12 × 0.10 × 0.08 mm
V = 1112.68 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
10562 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.041
Graphite monochromatorθmax = 27.9°, θmin = 2.1°
Detector resolution: 18.4 pixels mm-1h = 99
ϕ and ω scansk = 1515
17314 measured reflectionsl = 1818
11903 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.172 w = 1/[Σ2(FO2) + (0.0916P)2 + 1.1415P]
where P = (FO2 + 2FC2)/3
S = 1.17(Δ/σ)max = 0.001
11903 reflectionsΔρmax = 0.98 e Å3
344 parametersΔρmin = 0.63 e Å3
Crystal data top
[Cu(C12H8N2)2(H2O)](NO3)2γ = 73.782 (3)°
Mr = 565.99V = 1112.68 (7) Å3
Triclinic, P1Z = 2
a = 7.0836 (3) ÅMo Kα radiation
b = 11.7898 (3) ŵ = 1.05 mm1
c = 14.2951 (4) ÅT = 150 K
α = 78.079 (2)°0.12 × 0.10 × 0.08 mm
β = 79.862 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
10562 reflections with I > 2σ(I)
17314 measured reflectionsRint = 0.041
11903 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0583 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.17Δρmax = 0.98 e Å3
11903 reflectionsΔρmin = 0.63 e Å3
344 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu010.88124 (7)0.26741 (4)0.24554 (3)0.0110 (1)
O1W1.1790 (4)0.2580 (3)0.2736 (2)0.0211 (9)
N10.9959 (5)0.0992 (3)0.2189 (2)0.0107 (8)
N20.7695 (5)0.1813 (3)0.3734 (2)0.0102 (8)
N30.8143 (5)0.3546 (3)0.1125 (2)0.0108 (8)
N40.8066 (5)0.4349 (3)0.2743 (2)0.0106 (8)
C11.1142 (6)0.0599 (3)0.1420 (3)0.0138 (10)
C21.2069 (6)0.0618 (4)0.1400 (3)0.0166 (11)
C31.1773 (6)0.1452 (3)0.2200 (3)0.0157 (11)
C41.0526 (6)0.1077 (3)0.3020 (3)0.0123 (10)
C51.0093 (6)0.1886 (3)0.3887 (3)0.0158 (11)
C60.8865 (6)0.1471 (4)0.4654 (3)0.0165 (11)
C70.8004 (6)0.0215 (3)0.4637 (3)0.0130 (10)
C80.6764 (6)0.0268 (4)0.5424 (3)0.0165 (11)
C90.6022 (6)0.1487 (4)0.5337 (3)0.0159 (11)
C100.6507 (6)0.2242 (4)0.4478 (3)0.0144 (10)
C110.9666 (5)0.0160 (3)0.2980 (3)0.0106 (10)
C120.8408 (5)0.0607 (3)0.3808 (3)0.0102 (9)
C130.8086 (6)0.3120 (3)0.0336 (3)0.0129 (10)
C140.7705 (6)0.3877 (4)0.0548 (3)0.0147 (11)
C150.7352 (6)0.5097 (4)0.0617 (3)0.0143 (10)
C160.7332 (5)0.5576 (3)0.0216 (3)0.0115 (10)
C170.6900 (6)0.6839 (3)0.0236 (3)0.0146 (10)
C180.6955 (6)0.7250 (3)0.1053 (3)0.0143 (10)
C190.7375 (5)0.6431 (3)0.1932 (3)0.0120 (10)
C200.7436 (6)0.6794 (3)0.2806 (3)0.0133 (10)
C210.7790 (6)0.5936 (3)0.3618 (3)0.0145 (11)
C220.8106 (6)0.4717 (3)0.3562 (3)0.0125 (10)
C230.7737 (5)0.4760 (3)0.1066 (3)0.0099 (9)
C240.7716 (5)0.5196 (3)0.1939 (3)0.0103 (10)
O10.6976 (6)0.0152 (3)0.0982 (2)0.0341 (11)
O20.5277 (5)0.1630 (3)0.1717 (2)0.0251 (9)
O30.5629 (5)0.0219 (3)0.2460 (2)0.0229 (9)
N50.5964 (5)0.0505 (3)0.1718 (2)0.0143 (9)
O41.2876 (6)0.5301 (3)0.2707 (2)0.0291 (10)
O51.3245 (5)0.5481 (3)0.4138 (2)0.0242 (9)
O61.2436 (5)0.3916 (3)0.3929 (2)0.0204 (8)
N61.2854 (5)0.4914 (3)0.3584 (2)0.0143 (9)
H11.136000.115600.087500.0170*
H1W1.282000.233000.243600.0220*
H21.287400.085500.085100.0200*
H2W1.195900.315200.299000.0220*
H31.239100.226000.220000.0190*
H51.066400.270400.392100.0190*
H60.857800.201200.519900.0200*
H80.645700.023200.599100.0200*
H90.519400.181700.584700.0190*
H100.598100.306500.443200.0170*
H130.830600.229800.037200.0150*
H140.769200.355100.108500.0180*
H150.713000.560000.120200.0170*
H170.657700.738400.031800.0180*
H180.671800.806900.104200.0170*
H200.723900.760000.283400.0160*
H210.782000.616300.420000.0170*
H220.835100.414900.411300.0150*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu010.0172 (3)0.0060 (2)0.0083 (2)0.0009 (2)0.0024 (2)0.0000 (2)
O1W0.0146 (14)0.0201 (15)0.0317 (16)0.0024 (12)0.0021 (12)0.0148 (13)
N10.0125 (15)0.0102 (15)0.0102 (14)0.0040 (12)0.0032 (11)0.0002 (11)
N20.0110 (15)0.0111 (15)0.0096 (14)0.0031 (12)0.0049 (11)0.0010 (11)
N30.0130 (15)0.0092 (14)0.0099 (14)0.0026 (12)0.0022 (11)0.0005 (11)
N40.0115 (15)0.0081 (14)0.0108 (14)0.0005 (12)0.0027 (11)0.0002 (11)
C10.0154 (18)0.0138 (18)0.0122 (17)0.0034 (15)0.0023 (14)0.0022 (14)
C20.0155 (19)0.0184 (19)0.0164 (19)0.0011 (15)0.0027 (15)0.0077 (15)
C30.0165 (19)0.0092 (17)0.022 (2)0.0004 (15)0.0066 (15)0.0054 (14)
C40.0140 (18)0.0093 (17)0.0161 (18)0.0052 (14)0.0070 (14)0.0000 (13)
C50.0183 (19)0.0083 (17)0.023 (2)0.0062 (15)0.0109 (16)0.0033 (14)
C60.020 (2)0.0142 (18)0.0170 (19)0.0097 (16)0.0078 (15)0.0058 (14)
C70.0124 (17)0.0143 (18)0.0148 (18)0.0077 (14)0.0068 (14)0.0025 (14)
C80.0141 (18)0.027 (2)0.0106 (17)0.0117 (17)0.0031 (14)0.0020 (15)
C90.0128 (18)0.025 (2)0.0106 (17)0.0062 (16)0.0013 (14)0.0027 (15)
C100.0130 (17)0.0174 (19)0.0133 (17)0.0031 (15)0.0032 (14)0.0034 (14)
C110.0109 (17)0.0102 (17)0.0113 (16)0.0029 (14)0.0047 (13)0.0003 (13)
C120.0094 (16)0.0114 (17)0.0108 (16)0.0042 (14)0.0038 (13)0.0003 (13)
C130.0138 (18)0.0114 (17)0.0137 (18)0.0034 (14)0.0022 (14)0.0022 (14)
C140.0154 (18)0.020 (2)0.0095 (17)0.0039 (16)0.0043 (14)0.0026 (14)
C150.0150 (18)0.0174 (19)0.0100 (17)0.0040 (15)0.0044 (14)0.0014 (14)
C160.0084 (16)0.0144 (18)0.0107 (17)0.0031 (14)0.0033 (13)0.0023 (13)
C170.0138 (18)0.0118 (18)0.0149 (18)0.0025 (15)0.0031 (14)0.0054 (14)
C180.0116 (17)0.0097 (17)0.0188 (19)0.0003 (14)0.0023 (14)0.0007 (14)
C190.0092 (16)0.0096 (17)0.0148 (17)0.0001 (14)0.0005 (13)0.0010 (13)
C200.0129 (17)0.0083 (17)0.0188 (19)0.0026 (14)0.0006 (14)0.0039 (14)
C210.0178 (19)0.0132 (18)0.0137 (18)0.0031 (15)0.0019 (14)0.0058 (14)
C220.0146 (18)0.0098 (17)0.0118 (17)0.0024 (14)0.0029 (14)0.0009 (13)
C230.0080 (16)0.0094 (16)0.0116 (17)0.0018 (13)0.0019 (13)0.0004 (13)
C240.0086 (16)0.0098 (17)0.0117 (17)0.0008 (14)0.0033 (13)0.0001 (13)
O10.050 (2)0.0320 (19)0.0223 (16)0.0173 (17)0.0127 (15)0.0140 (14)
O20.0237 (16)0.0130 (14)0.0312 (17)0.0005 (12)0.0022 (13)0.0023 (12)
O30.0301 (17)0.0167 (15)0.0186 (15)0.0072 (13)0.0020 (12)0.0053 (11)
N50.0136 (16)0.0152 (16)0.0143 (15)0.0048 (13)0.0033 (12)0.0003 (12)
O40.044 (2)0.0313 (18)0.0126 (14)0.0133 (16)0.0072 (13)0.0035 (12)
O50.0317 (17)0.0230 (16)0.0228 (16)0.0091 (14)0.0097 (13)0.0067 (12)
O60.0288 (16)0.0150 (14)0.0193 (14)0.0079 (13)0.0094 (12)0.0014 (11)
N60.0125 (15)0.0132 (16)0.0156 (16)0.0001 (13)0.0039 (12)0.0016 (12)
Geometric parameters (Å, º) top
Cu01—O1W2.184 (3)C9—C101.410 (6)
Cu01—N12.010 (3)C11—C121.448 (6)
Cu01—N22.042 (3)C13—C141.409 (6)
Cu01—N32.034 (3)C14—C151.375 (6)
Cu01—N42.006 (3)C15—C161.416 (6)
O1W—H1W0.7900C16—C171.439 (5)
O1W—H2W0.8700C16—C231.404 (6)
O1—N51.242 (4)C17—C181.364 (6)
O2—N51.279 (5)C18—C191.439 (6)
O3—N51.249 (4)C19—C241.406 (5)
O4—N61.241 (4)C19—C201.413 (6)
O5—N61.245 (5)C20—C211.382 (6)
O6—N61.272 (5)C21—C221.408 (5)
N1—C11.340 (5)C23—C241.441 (6)
N1—C111.363 (5)C1—H10.9300
N2—C121.358 (5)C2—H20.9300
N2—C101.328 (5)C3—H30.9300
N3—C131.337 (5)C5—H50.9300
N3—C231.366 (5)C6—H60.9300
N4—C221.337 (5)C8—H80.9300
N4—C241.367 (5)C9—H90.9300
C1—C21.405 (6)C10—H100.9300
C2—C31.373 (6)C13—H130.9300
C3—C41.408 (6)C14—H140.9300
C4—C111.408 (5)C15—H150.9300
C4—C51.443 (6)C17—H170.9300
C5—C61.359 (6)C18—H180.9300
C6—C71.432 (6)C20—H200.9300
C7—C81.414 (6)C21—H210.9300
C7—C121.409 (6)C22—H220.9300
C8—C91.373 (6)
O1W—Cu01—N185.46 (14)C13—C14—C15120.1 (4)
O1W—Cu01—N2101.65 (13)C14—C15—C16119.0 (4)
O1W—Cu01—N3114.86 (13)C15—C16—C23117.3 (3)
O1W—Cu01—N486.34 (14)C15—C16—C17123.7 (4)
N1—Cu01—N282.61 (13)C17—C16—C23119.0 (4)
N1—Cu01—N3100.51 (13)C16—C17—C18121.2 (4)
N1—Cu01—N4171.78 (15)C17—C18—C19120.8 (3)
N2—Cu01—N3143.48 (15)C18—C19—C20123.8 (3)
N2—Cu01—N499.69 (13)C18—C19—C24118.9 (4)
N3—Cu01—N482.40 (13)C20—C19—C24117.3 (4)
Cu01—O1W—H2W118.00C19—C20—C21119.2 (3)
H1W—O1W—H2W105.00C20—C21—C22119.8 (4)
Cu01—O1W—H1W129.00N4—C22—C21122.2 (4)
C1—N1—C11117.5 (3)C16—C23—C24119.8 (3)
Cu01—N1—C1129.8 (3)N3—C23—C16123.5 (3)
Cu01—N1—C11112.0 (2)N3—C23—C24116.7 (3)
Cu01—N2—C10130.8 (3)C19—C24—C23120.2 (4)
Cu01—N2—C12111.1 (3)N4—C24—C19123.4 (4)
C10—N2—C12118.1 (3)N4—C24—C23116.3 (3)
C13—N3—C23117.9 (3)N1—C1—H1119.00
Cu01—N3—C13130.6 (3)C2—C1—H1119.00
Cu01—N3—C23111.5 (2)C1—C2—H2120.00
Cu01—N4—C24112.6 (2)C3—C2—H2120.00
Cu01—N4—C22128.8 (3)C4—C3—H3120.00
C22—N4—C24118.1 (3)C2—C3—H3120.00
O2—N5—O3119.6 (3)C4—C5—H5119.00
O1—N5—O2119.2 (3)C6—C5—H5120.00
O1—N5—O3121.1 (3)C7—C6—H6119.00
O4—N6—O6119.8 (3)C5—C6—H6119.00
O4—N6—O5121.3 (4)C7—C8—H8121.00
O5—N6—O6118.9 (3)C9—C8—H8121.00
N1—C1—C2122.9 (4)C8—C9—H9120.00
C1—C2—C3119.3 (4)C10—C9—H9120.00
C2—C3—C4119.6 (3)C9—C10—H10119.00
C3—C4—C11117.4 (4)N2—C10—H10119.00
C5—C4—C11118.9 (4)N3—C13—H13119.00
C3—C4—C5123.7 (3)C14—C13—H13119.00
C4—C5—C6121.0 (3)C13—C14—H14120.00
C5—C6—C7121.1 (4)C15—C14—H14120.00
C6—C7—C8123.4 (4)C16—C15—H15121.00
C6—C7—C12119.7 (4)C14—C15—H15121.00
C8—C7—C12116.8 (3)C16—C17—H17119.00
C7—C8—C9118.9 (4)C18—C17—H17119.00
C8—C9—C10120.3 (4)C17—C18—H18120.00
N2—C10—C9122.0 (4)C19—C18—H18120.00
N1—C11—C4123.3 (4)C21—C20—H20120.00
C4—C11—C12120.1 (4)C19—C20—H20120.00
N1—C11—C12116.6 (3)C20—C21—H21120.00
N2—C12—C7123.9 (3)C22—C21—H21120.00
N2—C12—C11117.0 (3)C21—C22—H22119.00
C7—C12—C11119.1 (3)N4—C22—H22119.00
N3—C13—C14122.1 (3)
O1W—Cu01—N1—C175.3 (4)C22—N4—C24—C23178.4 (4)
O1W—Cu01—N1—C1195.0 (3)N1—C1—C2—C30.4 (7)
N2—Cu01—N1—C1177.7 (4)C1—C2—C3—C40.9 (7)
N2—Cu01—N1—C117.4 (3)C2—C3—C4—C5178.8 (4)
N3—Cu01—N1—C139.2 (4)C2—C3—C4—C111.3 (6)
N3—Cu01—N1—C11150.6 (3)C3—C4—C5—C6179.5 (4)
O1W—Cu01—N2—C1099.2 (4)C11—C4—C5—C60.5 (6)
O1W—Cu01—N2—C1277.6 (3)C3—C4—C11—N11.1 (6)
N1—Cu01—N2—C10177.0 (4)C3—C4—C11—C12178.5 (4)
N1—Cu01—N2—C126.2 (3)C5—C4—C11—N1178.9 (4)
N3—Cu01—N2—C1079.3 (4)C5—C4—C11—C121.5 (6)
N3—Cu01—N2—C12103.9 (3)C4—C5—C6—C71.7 (7)
N4—Cu01—N2—C1011.0 (4)C5—C6—C7—C8178.1 (4)
N4—Cu01—N2—C12165.8 (3)C5—C6—C7—C121.0 (7)
O1W—Cu01—N3—C13101.9 (4)C6—C7—C8—C9179.6 (4)
O1W—Cu01—N3—C2376.7 (3)C12—C7—C8—C90.5 (6)
N1—Cu01—N3—C1312.1 (4)C6—C7—C12—N2178.5 (4)
N1—Cu01—N3—C23166.5 (3)C6—C7—C12—C111.0 (6)
N2—Cu01—N3—C1379.7 (4)C8—C7—C12—N20.6 (6)
N2—Cu01—N3—C23101.8 (3)C8—C7—C12—C11179.9 (4)
N4—Cu01—N3—C13175.7 (4)C7—C8—C9—C100.5 (7)
N4—Cu01—N3—C235.7 (3)C8—C9—C10—N20.6 (7)
O1W—Cu01—N4—C2262.0 (4)N1—C11—C12—N22.3 (5)
O1W—Cu01—N4—C24109.3 (3)N1—C11—C12—C7178.1 (4)
N2—Cu01—N4—C2239.2 (4)C4—C11—C12—N2177.3 (4)
N2—Cu01—N4—C24149.6 (3)C4—C11—C12—C72.2 (6)
N3—Cu01—N4—C22177.7 (4)N3—C13—C14—C150.8 (7)
N3—Cu01—N4—C246.4 (3)C13—C14—C15—C161.5 (7)
Cu01—N1—C1—C2170.0 (3)C14—C15—C16—C17177.4 (4)
C11—N1—C1—C20.2 (6)C14—C15—C16—C231.8 (6)
Cu01—N1—C11—C4172.1 (3)C15—C16—C17—C18178.2 (4)
Cu01—N1—C11—C127.5 (4)C23—C16—C17—C182.6 (6)
C1—N1—C11—C40.6 (6)C15—C16—C23—N30.0 (6)
C1—N1—C11—C12179.0 (4)C15—C16—C23—C24179.3 (4)
Cu01—N2—C10—C9174.9 (3)C17—C16—C23—N3179.3 (4)
C12—N2—C10—C91.7 (6)C17—C16—C23—C240.1 (6)
Cu01—N2—C12—C7175.5 (3)C16—C17—C18—C192.4 (7)
Cu01—N2—C12—C114.0 (4)C17—C18—C19—C20179.3 (4)
C10—N2—C12—C71.7 (6)C17—C18—C19—C240.4 (6)
C10—N2—C12—C11178.7 (4)C18—C19—C20—C21177.9 (4)
Cu01—N3—C13—C14175.9 (3)C24—C19—C20—C211.0 (6)
C23—N3—C13—C142.6 (6)C18—C19—C24—N4177.9 (4)
Cu01—N3—C23—C16176.5 (3)C18—C19—C24—C233.0 (6)
Cu01—N3—C23—C244.1 (4)C20—C19—C24—N41.1 (6)
C13—N3—C23—C162.2 (6)C20—C19—C24—C23178.1 (4)
C13—N3—C23—C24177.1 (4)C19—C20—C21—C220.7 (6)
Cu01—N4—C22—C21171.3 (3)C20—C21—C22—N40.4 (7)
C24—N4—C22—C210.4 (6)N3—C23—C24—N41.3 (5)
Cu01—N4—C24—C19173.1 (3)N3—C23—C24—C19177.9 (4)
Cu01—N4—C24—C236.1 (4)C16—C23—C24—N4178.1 (4)
C22—N4—C24—C190.7 (6)C16—C23—C24—C192.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.791.922.709 (5)176
O1W—H2W···O60.871.892.718 (5)159
C2—H2···O1ii0.932.573.313 (5)137
C5—H5···O5iii0.932.403.271 (5)156
C6—H6···O6iv0.932.563.417 (6)154
C8—H8···O3v0.932.503.194 (5)131
C10—H10···O6vi0.932.603.131 (6)117
C14—H14···O4vii0.932.473.102 (5)125
C15—H15···O4vii0.932.593.157 (5)120
C17—H17···O2viii0.932.493.363 (5)157
C18—H18···O1ix0.932.503.406 (5)166
C20—H20···O3ix0.932.493.357 (5)155
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x, y1, z; (iv) x+2, y, z+1; (v) x+1, y, z+1; (vi) x1, y, z; (vii) x+2, y+1, z; (viii) x+1, y+1, z; (ix) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.79001.92002.709 (5)176.00
O1W—H2W···O60.87001.89002.718 (5)159.00
C2—H2···O1ii0.93002.57003.313 (5)137.00
C5—H5···O5iii0.93002.40003.271 (5)156.00
C6—H6···O6iv0.93002.56003.417 (6)154.00
C8—H8···O3v0.93002.50003.194 (5)131.00
C17—H17···O2vi0.93002.49003.363 (5)157.00
C18—H18···O1vii0.93002.50003.406 (5)166.00
C20—H20···O3vii0.93002.49003.357 (5)155.00
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x, y1, z; (iv) x+2, y, z+1; (v) x+1, y, z+1; (vi) x+1, y+1, z; (vii) x, y+1, z.
 

Acknowledgements

The authors thank the MESRS (Algeria) for financial support. AL also thanks the DG–RSDT and ANDRU (Direction Générale de la Recherche Scientifique et du Dévelopement Technologique et l'Agence Nationale pour le Développement de la Recherche Universitaire, Algeria) for support through the PNR project.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatalan, K. J., Jackson, S., Zubkowski, J. D., Perry, D. L., Valente, E. J., Feliu, L. A. & Polanco, A. (1995). Polyhedron, 14, 2165–2171.  CSD CrossRef CAS Web of Science Google Scholar
First citationDowty, E. (1995). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNakai, H. & Deguchi, Y. (1975). Bull. Chem. Soc. Jpn, 48, 2557–2560.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzpakolski, K. B., Latham, K., Rix, C. J., White, J. M., Moubaraki, B. & Murray, K. S. (2010). Chem. Eur. J. 16, 1691–1696.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhou, Y. H. (2011). Huaibei Shifan Daxue Xuebao (Ziran Kexueban), 32, 33.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m185-m186
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds