organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2,7-di­methyl-3-(3-methyl­phenyl­sulfon­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 1 April 2014; accepted 9 April 2014; online 16 April 2014)

In the title compound, C17H15ClO3S, the dihedral angle between the mean planes of the benzo­furan and 3-methyl­phenyl rings is 76.99 (4)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into chains along the b-axis direction. These chains are linked by ππ inter­actions between the benzene and furan rings of neighbouring mol­ecules [centroid–centroid distance = 3.976 (2) Å].

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2011[Choi, H. D., Seo, P. J. & Lee, U. (2011). Acta Cryst. E67, o2385.], 2013[Choi, H. D., Seo, P. J. & Lee, U. (2013). Acta Cryst. E69, o745.]). For the pharmacological activity of benzo­furan compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15ClO3S

  • Mr = 334.80

  • Monoclinic, P 21 /c

  • a = 8.8707 (2) Å

  • b = 6.5281 (2) Å

  • c = 26.3574 (6) Å

  • β = 96.998 (1)°

  • V = 1514.96 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 173 K

  • 0.39 × 0.37 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.379, Tmax = 0.746

  • 25926 measured reflections

  • 3785 independent reflections

  • 3252 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.04

  • 3785 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10C⋯O2i 0.98 2.49 3.297 (2) 139
C17—H17A⋯O3ii 0.98 2.41 3.369 (2) 165
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds involving a benzofuran moiety have attracted much attention due to their valuable pharmacological activities such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009) and antimicrobial (Khan et al., 2005) properties.

As a part of our ongoing study of 5-chloro-2,7-dimethyl-1-benzofuran derivatives containing cyclohexylsulfinyl (Choi et al., 2011) and 4-bromophenylsulfinyl (Choi et al., 2013) substituents in the 3-position, we report here on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran ring system is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The 3-methylphenyl ring also is essentially planar, with a mean deviation of 0.004 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 3-methylphenyl ring is 76.99 (4)°. In the crystal structure (Fig. 2), molecules are linked by C—H···O hydrogen bonds (Table 1) into chains along the b-axis direction. These chains are further connected by π···π interactions between the benzene and furan rings of neighbouring molecules, with a Cg1···Cg2iii distance of 3.976 (2) Å and an interplanar distance of 3.470 (2) Å resulting in a slippage of 1.941 (2) Å (Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2011, 2013). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005).

Experimental top

3-Chloroperoxybenzoic acid (77%, 448 mg, 2.0 mmol) was added in small portions to a stirred solution of 5-chloro-2,7-dimethyl-3-(3-methylphenylsulfanyl)-1-benzofuran (272 mg, 0.9 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (benzene) to afford the title compound as a colorless solid [yield 71%, m.p. 426–427 K; Rf = 0.52 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, respectively. Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL-97's command AFIX 137 (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H..O and π···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x, y + 1, z; (ii) x + 1, y, z; (iii) - x, - y + 1, - z + 1; (iv) x, y - 1, z; (v) x - 1, y, z.]
5-Chloro-2,7-dimethyl-3-(3-methylphenylsulfonyl)-1-benzofuran top
Crystal data top
C17H15ClO3SF(000) = 696
Mr = 334.80Dx = 1.468 Mg m3
Monoclinic, P21/cMelting point = 427–426 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.8707 (2) ÅCell parameters from 9774 reflections
b = 6.5281 (2) Åθ = 2.3–28.2°
c = 26.3574 (6) ŵ = 0.40 mm1
β = 96.998 (1)°T = 173 K
V = 1514.96 (7) Å3Block, colourless
Z = 40.39 × 0.37 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3785 independent reflections
Radiation source: rotating anode3252 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.033
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 1.6°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 88
Tmin = 0.379, Tmax = 0.746l = 3535
25926 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.5625P]
where P = (Fo2 + 2Fc2)/3
3785 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C17H15ClO3SV = 1514.96 (7) Å3
Mr = 334.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8707 (2) ŵ = 0.40 mm1
b = 6.5281 (2) ÅT = 173 K
c = 26.3574 (6) Å0.39 × 0.37 × 0.18 mm
β = 96.998 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3785 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3252 reflections with I > 2σ(I)
Tmin = 0.379, Tmax = 0.746Rint = 0.033
25926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
3785 reflectionsΔρmin = 0.36 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46121 (5)0.19905 (8)0.429671 (15)0.04483 (13)
S10.26452 (4)0.26977 (6)0.640843 (13)0.02803 (11)
O10.10204 (12)0.71057 (17)0.54903 (4)0.0332 (2)
O20.28126 (13)0.07207 (17)0.61832 (4)0.0362 (3)
O30.16362 (12)0.29082 (19)0.67929 (4)0.0375 (3)
C10.20875 (16)0.4421 (2)0.59217 (5)0.0287 (3)
C20.25155 (16)0.4327 (2)0.54104 (5)0.0293 (3)
C30.33886 (17)0.3021 (3)0.51474 (5)0.0319 (3)
H30.38650.18360.53030.038*
C40.35222 (18)0.3548 (3)0.46470 (6)0.0341 (3)
C50.28443 (18)0.5286 (3)0.44089 (6)0.0372 (4)
H50.29890.55790.40650.045*
C60.19629 (18)0.6592 (3)0.46656 (6)0.0349 (4)
C70.18327 (17)0.6027 (3)0.51659 (5)0.0312 (3)
C80.11908 (17)0.6100 (2)0.59483 (5)0.0309 (3)
C90.1233 (2)0.8500 (3)0.44321 (7)0.0446 (4)
H9A0.01900.85980.45160.067*
H9B0.12210.84480.40600.067*
H9C0.18130.97000.45670.067*
C100.0382 (2)0.7033 (3)0.63504 (6)0.0372 (4)
H10A0.04650.61310.66500.056*
H10B0.06910.72200.62190.056*
H10C0.08370.83650.64480.056*
C110.44638 (16)0.3512 (2)0.66842 (5)0.0278 (3)
C120.56259 (17)0.2089 (3)0.67374 (5)0.0311 (3)
H120.54680.07590.65950.037*
C130.70350 (17)0.2617 (3)0.70020 (6)0.0367 (4)
C140.72140 (19)0.4592 (3)0.71960 (6)0.0439 (4)
H140.81650.49800.73760.053*
C150.6050 (2)0.6008 (3)0.71351 (6)0.0429 (4)
H150.62110.73490.72710.052*
C160.46468 (19)0.5483 (3)0.68772 (6)0.0351 (3)
H160.38370.64430.68340.042*
C170.82931 (19)0.1065 (4)0.70778 (7)0.0511 (5)
H17A0.92680.17450.70570.077*
H17B0.81280.00130.68120.077*
H17C0.83040.04240.74150.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0518 (3)0.0524 (3)0.0326 (2)0.0124 (2)0.01411 (17)0.00595 (18)
S10.02839 (18)0.0322 (2)0.02295 (17)0.00829 (14)0.00096 (13)0.00455 (13)
O10.0371 (6)0.0327 (6)0.0284 (5)0.0061 (5)0.0012 (4)0.0043 (4)
O20.0403 (6)0.0312 (6)0.0350 (6)0.0092 (5)0.0041 (4)0.0018 (5)
O30.0322 (5)0.0509 (7)0.0306 (5)0.0060 (5)0.0078 (4)0.0114 (5)
C10.0315 (7)0.0314 (8)0.0224 (6)0.0078 (6)0.0004 (5)0.0034 (6)
C20.0317 (7)0.0327 (8)0.0224 (6)0.0120 (6)0.0007 (5)0.0025 (6)
C30.0352 (7)0.0346 (8)0.0255 (7)0.0095 (6)0.0010 (6)0.0012 (6)
C40.0354 (8)0.0416 (9)0.0252 (7)0.0142 (7)0.0035 (6)0.0027 (6)
C50.0414 (8)0.0472 (10)0.0220 (7)0.0186 (7)0.0006 (6)0.0044 (6)
C60.0381 (8)0.0377 (9)0.0266 (7)0.0159 (7)0.0054 (6)0.0065 (6)
C70.0327 (7)0.0339 (8)0.0256 (7)0.0106 (6)0.0022 (5)0.0011 (6)
C80.0327 (7)0.0331 (8)0.0257 (7)0.0099 (6)0.0008 (5)0.0034 (6)
C90.0520 (10)0.0433 (10)0.0357 (8)0.0131 (8)0.0065 (7)0.0141 (8)
C100.0398 (8)0.0368 (9)0.0351 (8)0.0045 (7)0.0045 (6)0.0006 (7)
C110.0291 (7)0.0374 (8)0.0171 (6)0.0102 (6)0.0031 (5)0.0007 (6)
C120.0312 (7)0.0407 (9)0.0218 (6)0.0072 (6)0.0057 (5)0.0023 (6)
C130.0288 (7)0.0585 (11)0.0236 (7)0.0089 (7)0.0058 (5)0.0071 (7)
C140.0363 (8)0.0699 (13)0.0248 (7)0.0221 (9)0.0005 (6)0.0006 (8)
C150.0510 (10)0.0486 (10)0.0291 (8)0.0212 (9)0.0045 (7)0.0085 (7)
C160.0407 (8)0.0394 (9)0.0257 (7)0.0081 (7)0.0063 (6)0.0026 (6)
C170.0306 (8)0.0782 (14)0.0450 (10)0.0011 (9)0.0062 (7)0.0143 (10)
Geometric parameters (Å, º) top
Cl1—C41.7432 (17)C9—H9B0.9800
S1—O21.4358 (12)C9—H9C0.9800
S1—O31.4381 (11)C10—H10A0.9800
S1—C11.7323 (15)C10—H10B0.9800
S1—C111.7684 (14)C10—H10C0.9800
O1—C81.3663 (17)C11—C121.382 (2)
O1—C71.3770 (19)C11—C161.386 (2)
C1—C81.361 (2)C12—C131.398 (2)
C1—C21.4453 (19)C12—H120.9500
C2—C71.385 (2)C13—C141.389 (3)
C2—C31.393 (2)C13—C171.503 (3)
C3—C41.382 (2)C14—C151.380 (3)
C3—H30.9500C14—H140.9500
C4—C51.396 (2)C15—C161.386 (2)
C5—C61.387 (3)C15—H150.9500
C5—H50.9500C16—H160.9500
C6—C71.387 (2)C17—H17A0.9800
C6—C91.501 (2)C17—H17B0.9800
C8—C101.481 (2)C17—H17C0.9800
C9—H9A0.9800
O2—S1—O3118.80 (7)C6—C9—H9C109.5
O2—S1—C1108.19 (7)H9A—C9—H9C109.5
O3—S1—C1108.28 (7)H9B—C9—H9C109.5
O2—S1—C11107.75 (7)C8—C10—H10A109.5
O3—S1—C11107.25 (7)C8—C10—H10B109.5
C1—S1—C11105.85 (7)H10A—C10—H10B109.5
C8—O1—C7107.04 (12)C8—C10—H10C109.5
C8—C1—C2107.67 (13)H10A—C10—H10C109.5
C8—C1—S1126.92 (11)H10B—C10—H10C109.5
C2—C1—S1125.41 (12)C12—C11—C16122.28 (14)
C7—C2—C3119.83 (13)C12—C11—S1118.15 (12)
C7—C2—C1104.51 (14)C16—C11—S1119.34 (12)
C3—C2—C1135.67 (14)C11—C12—C13119.72 (16)
C4—C3—C2116.10 (15)C11—C12—H12120.1
C4—C3—H3122.0C13—C12—H12120.1
C2—C3—H3122.0C14—C13—C12117.86 (16)
C3—C4—C5123.30 (16)C14—C13—C17121.82 (16)
C3—C4—Cl1118.52 (14)C12—C13—C17120.31 (17)
C5—C4—Cl1118.18 (11)C15—C14—C13121.88 (15)
C6—C5—C4121.16 (14)C15—C14—H14119.1
C6—C5—H5119.4C13—C14—H14119.1
C4—C5—H5119.4C14—C15—C16120.38 (17)
C5—C6—C7114.67 (15)C14—C15—H15119.8
C5—C6—C9123.41 (14)C16—C15—H15119.8
C7—C6—C9121.90 (16)C11—C16—C15117.87 (17)
O1—C7—C2110.66 (12)C11—C16—H16121.1
O1—C7—C6124.40 (15)C15—C16—H16121.1
C2—C7—C6124.94 (16)C13—C17—H17A109.5
C1—C8—O1110.12 (13)C13—C17—H17B109.5
C1—C8—C10134.83 (14)H17A—C17—H17B109.5
O1—C8—C10115.05 (14)C13—C17—H17C109.5
C6—C9—H9A109.5H17A—C17—H17C109.5
C6—C9—H9B109.5H17B—C17—H17C109.5
H9A—C9—H9B109.5
O2—S1—C1—C8148.58 (13)C9—C6—C7—O11.2 (2)
O3—S1—C1—C818.60 (15)C5—C6—C7—C20.7 (2)
C11—S1—C1—C896.14 (14)C9—C6—C7—C2177.79 (15)
O2—S1—C1—C232.04 (14)C2—C1—C8—O10.48 (16)
O3—S1—C1—C2162.03 (12)S1—C1—C8—O1178.99 (11)
C11—S1—C1—C283.23 (14)C2—C1—C8—C10179.12 (16)
C8—C1—C2—C70.71 (16)S1—C1—C8—C101.4 (3)
S1—C1—C2—C7178.77 (11)C7—O1—C8—C10.05 (16)
C8—C1—C2—C3179.82 (16)C7—O1—C8—C10179.64 (13)
S1—C1—C2—C30.7 (3)O2—S1—C11—C1212.65 (13)
C7—C2—C3—C40.6 (2)O3—S1—C11—C12116.33 (12)
C1—C2—C3—C4178.85 (15)C1—S1—C11—C12128.22 (12)
C2—C3—C4—C50.4 (2)O2—S1—C11—C16172.73 (11)
C2—C3—C4—Cl1179.49 (11)O3—S1—C11—C1658.29 (13)
C3—C4—C5—C60.9 (2)C1—S1—C11—C1657.16 (13)
Cl1—C4—C5—C6179.97 (12)C16—C11—C12—C131.2 (2)
C4—C5—C6—C70.3 (2)S1—C11—C12—C13173.25 (11)
C4—C5—C6—C9178.77 (15)C11—C12—C13—C141.0 (2)
C8—O1—C7—C20.43 (16)C11—C12—C13—C17177.98 (14)
C8—O1—C7—C6178.69 (14)C12—C13—C14—C150.3 (2)
C3—C2—C7—O1179.73 (13)C17—C13—C14—C15178.72 (15)
C1—C2—C7—O10.69 (16)C13—C14—C15—C160.4 (2)
C3—C2—C7—C61.2 (2)C12—C11—C16—C150.6 (2)
C1—C2—C7—C6178.42 (14)S1—C11—C16—C15173.82 (11)
C5—C6—C7—O1179.67 (13)C14—C15—C16—C110.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10C···O2i0.982.493.297 (2)139
C17—H17A···O3ii0.982.413.369 (2)165
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10C···O2i0.982.493.297 (2)139.0
C17—H17A···O3ii0.982.413.369 (2)164.6
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

References

First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2011). Acta Cryst. E67, o2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2013). Acta Cryst. E69, o745.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds