organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Tri­methyl­aza­nium­yl)ethyl hydrogen phosphate (phospho­choline) mono­hydrate

aDepartment of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan, bFunctional Ionic liquid Laboratories, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Japan, cJapan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Chiyoda, Japan, and dInstrumentation Analysis Center, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: ohnoh@cc.tuat.ac.jp

(Received 22 February 2014; accepted 8 April 2014; online 12 April 2014)

In the crystal structure of the title compound, C5H14NO4P·H2O, the zwitterionic phospho­choline mol­ecules are connected by an O—H⋯O hydrogen bond between the phosphate groups, forming a zigzag chain along the b-axis direction. The chains are further connected through O—H⋯O hydrogen bonds involving water mol­ecules, forming a layer parallel to (101). Three and one C—H⋯O inter­actions are also observed in the layer and between the layers, respectively. The conformation of the N—C—C—O backbone is gauche with a torsion angle of −75.8 (2)°

Related literature

For related structures, see: Fujita et al. (2009[Fujita, K., MacFarlane, D. R., Noguchi, K. & Ohno, H. (2009). Acta Cryst. E65, o709.]); Pearson & Pascher (1979[Pearson, R. H. & Pascher, I. (1979). Nature, 281, 499-501.]); McAlister et al. (1979[McAlister, J., Fries, D. & Sundaralingam, M. (1979). Acta Cryst. B35, 2696-2699.]).

[Scheme 1]

Experimental

Crystal data
  • C5H14NO4P·H2O

  • Mr = 201.16

  • Monoclinic, P 21 /n

  • a = 10.4304 (2) Å

  • b = 6.8873 (1) Å

  • c = 13.4992 (3) Å

  • β = 105.800 (1)°

  • V = 933.11 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.59 mm−1

  • T = 193 K

  • 0.60 × 0.40 × 0.40 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.306, Tmax = 0.424

  • 16036 measured reflections

  • 1715 independent reflections

  • 1632 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.13

  • 1715 reflections

  • 121 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O4i 0.80 (3) 1.74 (3) 2.525 (2) 167 (3)
O5—H5OA⋯O3ii 0.77 (3) 1.99 (3) 2.764 (2) 175 (3)
O5—H5OB⋯O3iii 0.75 (3) 2.04 (3) 2.784 (2) 172 (3)
C2—H2A⋯O3iv 0.99 2.47 3.440 (2) 167
C3—H3B⋯O5v 0.98 2.52 3.479 (3) 167
C3—H3C⋯O3vi 0.98 2.51 3.388 (2) 149
C5—H5C⋯O4vii 0.98 2.36 3.219 (3) 146
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) -x, -y, -z+1; (vii) -x+1, -y, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 2004[Rigaku (2004). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Phosphocholine is similar to head groups of the phospholipid which is a major component of cell membranes. In past study, crystal structures of the compounds which have the phospholipid head group, such as 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine dihydrate (Pearson & Pascher, 1979), choline phosphate calcium chloride tetrahydrate (McAlister et al., 1979) and choline dihydrogen phosphate (Fujita et al., 2009), were observed. We report herein the crystal structure of phosphocholine monohydrate.

The molecular structures of the title compound are shown in Fig. 1. The phosphate groups form the hydrogen bonds of O2···H—O4 linked to two neighboring phosphate groups (Fig. 2). These hydrogen bonds create a hydrogen bonding chain of phosphate groups along the b axis. In addition, phosphate groups are connected to the other neighboring phosphate group via two hydrogen bonds of O3···H—O5, with two water molecules (Fig. 3). Due to these hydrogen bonding network, molecules are arranged in layers parallel to the (101) plane. Four C—H···O interactions also occur in these layered structure (Table 1).

Related literature top

For related structures, see: Fujita et al. (2009); Pearson & Pascher (1979); McAlister et al. (1979).

Experimental top

Phosphorylcholine calcium chloride tetrahydrate was dissolved in water. The aqueous solution was treated on an anion exchange resin (Amberlite IRN77) and a cation exchange resin (TULSION-93). The solvent evaporated and the product was dried in vacuo. White powder was crystallized from a methanol solution. Acetonitrile was used as the antisolvent. This crystallization was repeated twice. Final purification was achieved by recrystallization from a saturated aqueous solution at room temperature for X-ray measurements.

The title compound was identified using 1H NMR, electrospray mass spectrometry, and elementary analysis. Spectroscopic analysis: 1H NMR (D2O, δ, p.p.m.): 3.214(s, 9H), 3.653(t, 2H), 4.286(m, 2H), HRMS(ESI) (m/z) calcd for C5H14NO4P [M+H]+ 184.0739, found 184.0849. Elementary analysis calculated for C5H14NO4P: C 32.79, H 7.71, N 7.65% found: C 32.22, H 7.383, N 8.017%.

Refinement top

O-bound H atoms were located in a difference map and refined freely. H atoms of the CH2 and CH3 groups were subsequently refined as riding atoms, with C—H = 0.99 and 0.98 Å, respectively, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2004); cell refinement: PROCESS-AUTO (Rigaku, 2004); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot and atomic numbering scheme of the title compound. Ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) x - 1/2, -y + 1/2, z + 1/2.]
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed along the a axis. Dashed lines indicate intermolecular O—H···O and C—H···O hydrogen bonds. [Symmetry codes: (i) x - 1/2, -y + 1/2, z + 1/2; (ii) -x + 1/2, y + 1/2, -z + 1/2; (iii) -x + 1/2, y - 3/2, -z + 1/2; (vi) x, 1 + y, z.]
[Figure 3] Fig. 3. A packing diagram of the title compound, viewed along the b axis. Dashed lines indicate intermolecular O—H···O and C—H···O hydrogen bonds. [Symmetry codes: (i) x - 1/2, -y + 1/2, z + 1/2; (ii) -x + 1/2, y + 1/2, -z + 1/2; (iii) -x + 1/2, y - 3/2, -z + 1/2; (iv) 1 - x, -y, 1 - z; (v) -x, -y, 1 - z.]
2-(Trimethylazaniumyl)ethyl hydrogen phosphate monohydrate top
Crystal data top
C5H14NO4P·H2OF(000) = 432
Mr = 201.16Dx = 1.432 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ynCell parameters from 15511 reflections
a = 10.4304 (2) Åθ = 3.4–68.2°
b = 6.8873 (1) ŵ = 2.59 mm1
c = 13.4992 (3) ÅT = 193 K
β = 105.800 (1)°Block, colorless
V = 933.11 (3) Å30.60 × 0.40 × 0.40 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1715 independent reflections
Radiation source: rotating anode1632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 4.8°
ω scansh = 1212
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
k = 88
Tmin = 0.306, Tmax = 0.424l = 1516
16036 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.4329P]
where P = (Fo2 + 2Fc2)/3
1715 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C5H14NO4P·H2OV = 933.11 (3) Å3
Mr = 201.16Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.4304 (2) ŵ = 2.59 mm1
b = 6.8873 (1) ÅT = 193 K
c = 13.4992 (3) Å0.60 × 0.40 × 0.40 mm
β = 105.800 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1715 independent reflections
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
1632 reflections with I > 2σ(I)
Tmin = 0.306, Tmax = 0.424Rint = 0.037
16036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.21 e Å3
1715 reflectionsΔρmin = 0.50 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.19372 (4)0.29328 (6)0.34891 (3)0.02017 (18)
O10.26794 (11)0.11051 (17)0.41531 (9)0.0250 (3)
O20.11276 (14)0.2045 (2)0.24371 (10)0.0340 (4)
H2O0.149 (3)0.124 (4)0.219 (2)0.058 (8)*
O30.09520 (13)0.3768 (2)0.39911 (10)0.0316 (3)
O40.30448 (13)0.4207 (2)0.34008 (11)0.0341 (3)
N10.31816 (14)0.1794 (2)0.60363 (11)0.0216 (3)
C10.18974 (19)0.0567 (3)0.42416 (14)0.0304 (4)
H1A0.11860.01860.45610.036*
H1B0.14690.10910.35470.036*
C20.27544 (19)0.2105 (2)0.48844 (13)0.0264 (4)
H2A0.22660.33530.47460.032*
H2B0.35670.22450.46460.032*
C30.20152 (19)0.1449 (3)0.64541 (15)0.0340 (4)
H3A0.23100.14640.72080.041*
H3B0.16190.01840.62170.041*
H3C0.13510.24730.62110.041*
C40.4142 (2)0.0135 (3)0.63344 (15)0.0367 (5)
H4A0.37170.10620.60130.044*
H4B0.44010.00150.70850.044*
H4C0.49360.03990.61000.044*
C50.3865 (2)0.3617 (3)0.65134 (16)0.0355 (5)
H5A0.41930.34470.72610.043*
H5B0.32320.47010.63610.043*
H5C0.46160.38960.62300.043*
O50.58971 (16)0.8315 (2)0.10139 (12)0.0367 (4)
H5OA0.593 (3)0.838 (4)0.045 (2)0.043 (7)*
H5OB0.539 (3)0.905 (4)0.106 (2)0.046 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0221 (3)0.0191 (3)0.0200 (3)0.00203 (15)0.00695 (18)0.00011 (15)
O10.0229 (6)0.0223 (6)0.0273 (6)0.0025 (5)0.0025 (5)0.0048 (5)
O20.0380 (8)0.0316 (8)0.0263 (7)0.0155 (6)0.0015 (6)0.0066 (5)
O30.0314 (7)0.0330 (7)0.0341 (7)0.0039 (6)0.0151 (6)0.0046 (6)
O40.0311 (7)0.0313 (7)0.0423 (8)0.0002 (6)0.0141 (6)0.0127 (6)
N10.0195 (7)0.0220 (7)0.0227 (7)0.0027 (5)0.0046 (6)0.0014 (5)
C10.0308 (9)0.0274 (10)0.0276 (9)0.0099 (8)0.0012 (7)0.0058 (7)
C20.0348 (10)0.0208 (9)0.0230 (9)0.0030 (7)0.0067 (7)0.0025 (6)
C30.0297 (10)0.0397 (11)0.0357 (10)0.0025 (8)0.0144 (8)0.0026 (9)
C40.0380 (10)0.0382 (11)0.0292 (10)0.0194 (9)0.0013 (8)0.0007 (8)
C50.0308 (10)0.0356 (11)0.0397 (11)0.0083 (8)0.0087 (8)0.0147 (9)
O50.0415 (9)0.0374 (8)0.0321 (8)0.0114 (7)0.0115 (7)0.0050 (6)
Geometric parameters (Å, º) top
P1—O41.4812 (13)C2—H2A0.9900
P1—O31.4918 (13)C2—H2B0.9900
P1—O21.5655 (13)C3—H3A0.9800
P1—O11.6154 (12)C3—H3B0.9800
O1—C11.435 (2)C3—H3C0.9800
O2—H2O0.79 (3)C4—H4A0.9800
N1—C31.493 (2)C4—H4B0.9800
N1—C51.500 (2)C4—H4C0.9800
N1—C41.501 (2)C5—H5A0.9800
N1—C21.512 (2)C5—H5B0.9800
C1—C21.501 (2)C5—H5C0.9800
C1—H1A0.9900O5—H5OA0.77 (3)
C1—H1B0.9900O5—H5OB0.74 (3)
O4—P1—O3117.19 (8)C1—C2—H2B108.0
O4—P1—O2113.47 (8)N1—C2—H2B108.0
O3—P1—O2107.13 (8)H2A—C2—H2B107.2
O4—P1—O1103.88 (7)N1—C3—H3A109.5
O3—P1—O1109.49 (7)N1—C3—H3B109.5
O2—P1—O1104.93 (7)H3A—C3—H3B109.5
C1—O1—P1118.31 (10)N1—C3—H3C109.5
P1—O2—H2O117 (2)H3A—C3—H3C109.5
C3—N1—C5108.18 (14)H3B—C3—H3C109.5
C3—N1—C4109.31 (15)N1—C4—H4A109.5
C5—N1—C4108.53 (15)N1—C4—H4B109.5
C3—N1—C2111.65 (13)H4A—C4—H4B109.5
C5—N1—C2107.20 (14)N1—C4—H4C109.5
C4—N1—C2111.84 (14)H4A—C4—H4C109.5
O1—C1—C2110.62 (14)H4B—C4—H4C109.5
O1—C1—H1A109.5N1—C5—H5A109.5
C2—C1—H1A109.5N1—C5—H5B109.5
O1—C1—H1B109.5H5A—C5—H5B109.5
C2—C1—H1B109.5N1—C5—H5C109.5
H1A—C1—H1B108.1H5A—C5—H5C109.5
C1—C2—N1117.20 (15)H5B—C5—H5C109.5
C1—C2—H2A108.0H5OA—O5—H5OB105 (3)
N1—C2—H2A108.0
O4—P1—O1—C1170.10 (13)O1—C1—C2—N175.8 (2)
O3—P1—O1—C163.97 (14)C3—N1—C2—C154.4 (2)
O2—P1—O1—C150.72 (15)C5—N1—C2—C1172.72 (15)
P1—O1—C1—C2179.94 (12)C4—N1—C2—C168.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O4i0.80 (3)1.74 (3)2.525 (2)167 (3)
O5—H5OA···O3ii0.77 (3)1.99 (3)2.764 (2)175 (3)
O5—H5OB···O3iii0.75 (3)2.04 (3)2.784 (2)172 (3)
C2—H2A···O3iv0.992.473.440 (2)167
C3—H3B···O5v0.982.523.479 (3)167
C3—H3C···O3vi0.982.513.388 (2)149
C5—H5C···O4vii0.982.363.219 (3)146
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x, y+1, z; (v) x1/2, y+1/2, z+1/2; (vi) x, y, z+1; (vii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O4i0.80 (3)1.74 (3)2.525 (2)167 (3)
O5—H5OA···O3ii0.77 (3)1.99 (3)2.764 (2)175 (3)
O5—H5OB···O3iii0.75 (3)2.04 (3)2.784 (2)172 (3)
C2—H2A···O3iv0.992.473.440 (2)167
C3—H3B···O5v0.982.523.479 (3)167
C3—H3C···O3vi0.982.513.388 (2)149
C5—H5C···O4vii0.982.363.219 (3)146
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x, y+1, z; (v) x1/2, y+1/2, z+1/2; (vi) x, y, z+1; (vii) x+1, y, z+1.
 

Acknowledgements

This research was supported by a Grant-in-Aid for Scientific Research to HO (No. 21225007) and KF (No. 23750120) from the Japan Society for the Promotion of Science. KF is grateful to the Funds for Development of Human Resources in Science and Technology "Supporting positive activities for female researchers", the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFujita, K., MacFarlane, D. R., Noguchi, K. & Ohno, H. (2009). Acta Cryst. E65, o709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcAlister, J., Fries, D. & Sundaralingam, M. (1979). Acta Cryst. B35, 2696–2699.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPearson, R. H. & Pascher, I. (1979). Nature, 281, 499–501.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2004). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds