organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl-2-chloro­quinazolin-4-amine

aDepartment of Chemistry, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada, and bSchool of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
*Correspondence e-mail: praopera@uwaterloo.ca

(Received 27 January 2014; accepted 26 March 2014; online 16 April 2014)

The asymmetric unit of the title compound, C15H12ClN3, contains two independent mol­ecules. The quinazoline ring system in each is essentially planar, with maximum deviations of 0.025 (16) and 0.0171 (16) Å. The dihedral angles between quinazoline ring systems and the phenyl rings are 88.25 (8) and 85.28 (16)° in the two independent mol­ecules. In the crystal, alternating independent mol­ecules are linked by N—H⋯N hydrogen bonds, forming chains along [001].

Related literature

For the biological activity of some quinazoline and related derivatives, see: Deng & Mani (2006[Deng, X. & Mani, N. S. (2006). Org. Lett. 8, 269-272.]); Lee et al. (1995[Lee, S. J., Konishi, Y., Yu, D. T., Miskowski, T. A., Riviello, C. M., Macina, O. T., Frierson, M. R., Kondo, K., Sugitani, M., Sircar, J. C. & Balzejewski, K. M. (1995). J. Med. Chem. 38, 3547-3557.]); Lopez et al. (2011[Lopez, C. O., Garcia, C. A., Nunez, M. C., Kimatrai, M., Rubino, G. M. E., Morales, F., Perez, G. V. & Campos, J. M. (2011). Curr. Med. Chem. 18, 943-963.]); Mohamed et al. (2011[Mohamed, T., Zhao, X., Habib, L. K., Yang, J. & Rao, P. P. N. (2011). Bioorg. Med. Chem. 19, 2269-2281.]); Wynne et al. (2009[Wynne, G. M., De Moor, O., Johnson, P. D. & Vickers, R. (2009). World Patent WO 2009/001060 A2.]); Yoshida & Taguchi (1992[Yoshida, K. & Taguchi, M. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 919-922.]); Zhang et al. (2009[Zhang, J., Yang, P. L. & Gray, N. S. (2009). Nat. Rev. Cancer, 9, 28-39.]); Zhou et al. (2011[Zhou, G., Wang, L., Ma, Y., Wang, L., Zhang, Y. & Jiang, W. (2011). Bioorg. Med. Chem. Lett. 21, 5905-5909.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12ClN3

  • Mr = 269.73

  • Triclinic, [P \overline 1]

  • a = 9.4018 (1) Å

  • b = 13.0108 (1) Å

  • c = 13.3035 (1) Å

  • α = 113.968 (1)°

  • β = 105.377 (1)°

  • γ = 100.213 (1)°

  • V = 1356.69 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.35 × 0.26 × 0.10 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.911, Tmax = 0.974

  • 22349 measured reflections

  • 6531 independent reflections

  • 5274 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 15 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.086

  • S = 1.13

  • 6531 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3AA⋯N1Bi 0.86 2.21 2.9954 (17) 152
N3B—H3BA⋯N1A 0.86 2.18 2.9482 (16) 149
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Introduction top

Quinazolines represent an important class of nitro­gen containing heterocycles that are present in a number of therapeutically useful small molecules such as tyrosine kinase inhibitors (Zhang et al., 2009; Lopez et al., 2011) and adrenergic antagonists (Zhou et al., 2011). In our study, we have used 2,4-di­chloro­quinazolines to explore the selectivity of nucleophilic displacement of halogens (Mohamed et al., 2011). It is known that the monocyclic compound 2,4-di­chloro­pyrimidine, generally favours C-4 substitution selectively or as the major regioisomer during simple SNAr reactions with amine nucleophiles (Deng et al., 2006). A similar effect is seen with the bicyclic 2,4-di­chloro­quinazoline (Yoshida et al., 1992). Reaction of 2,4-di­chloro­quinazoline with benzyl­amine provided selective substitution at C-4 position. The chemical structure was confirmed by determining the crystal structure of N-benzyl-2-chloro­quinazoline-4-amine (I).

Experimental top

The title compound was prepared by slowly adding 0.75 mL of benzyl­amine (6.53mmol) to a mixture of 2,4-di­chloro­quinazoline (1g, 5.02 mmol) in 20 mL of methanol on ice-bath while stirring. The solution was allowed to stir on ice for 5 minutes before drop wise addition of DIPEA (1.75 mL, 10.04 mmol). The reaction was allowed to stir on the ice-bath for an additional 5 minutes and then refluxed at 348–353K for 3 hours. After cooling to 298 K, the solvent was evaporated in vacuo and the residue was re-dissolved in EtOAc, washed with saturated NaHCO3 and NaCl solution (2 x 15 mL) respectively. Aqueous layer (pH 7.5-8.0) was washed with EtOAc (1 x 15 mL) and the combined organic layer was dried over anhydrous MgSO4, then filtered. The organic layer was evaporated in vacuo and the resulting yellowish solid was further purified by silica gel column chromatography using EtOAc:MeOH (5:1) as eluent to afford the desired product as a white solid (1.02 g, 75% yield). Mp: 442–444K. 1H-NMR (300MHz, DMSO-d6) d 9.24 (t, 6.0Hz 1H), d 8.27 (d, J = 6.0, 1H), d 7.75 (t, J = 9.0Hz, 1H), d 7.59 (d, J = 6.0, 1H), d 7.49 (t, J = 9.0Hz, 1H), d 7.20-7.34 (m, 5H), d 4.72 (d, J = 6.0, 2H). ESI-MS m/z: 270 [M+1]+ (Lee et al., 1995; Wynne et al., 2009). Crystal growth was carried out by dissolving 5mg of the product in 20mL of ethanol at room temperature and heating the solution to 353K to form a concentrated solution with a reduced volume of 10mL. The hot solution was transferred to a scintillation vial, capped and stored at 275-279K undisturbed for four days at which needle-like crystals were obtained which were suitable for X-ray diffraction.

Refinement top

All H-atoms were positioned in geometrically idealized positions and refined using a riding model with C—H = 0.93–1.00 Å and N—H = 0.86 Å and isotropic displacement parameters of Uiso(H) = 1.2Ueq(C).

Results and discussion top

The asymmetric unit of (I) is shown in Fig. 1. The quinazoline ring system [N1/N2/C1–8] in each independent molecule is essentially planar with maximum deviations of 0.025 (16) and 0.0171 (16) Å for C4A and C4B, repectively. The dihedral angles between quinazoline ring systems and the phenyl rings [C10–C15 ] are 88.25 (8)° and 85.28 (16) ° for molecules A and B, respectively. In the crystal, alternating independent molecules are linked by N—H···N hydrogen bonds forming chains along [001] (Fig .2).

Related literature top

For the biological activity of some quinazoline and related derivatives, see: Deng & Mani (2006); Lee et al. (1995); Lopez et al. (2011); Mohamed et al. (2011); Wynne et al. (2009); Yoshida & Taguchi (1992); Zhang et al. (2009); Zhou et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds (dashed lines) which connect molecules along [001].
N-Benzyl-2-chloroquinazolin-4-amine top
Crystal data top
C15H12ClN3Z = 4
Mr = 269.73F(000) = 560
Triclinic, P1Dx = 1.321 Mg m3
a = 9.4018 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.0108 (1) ÅCell parameters from 407 reflections
c = 13.3035 (1) Åθ = 1.5–30°
α = 113.968 (1)°µ = 0.27 mm1
β = 105.377 (1)°T = 296 K
γ = 100.213 (1)°Block, colourless
V = 1356.69 (2) Å30.35 × 0.26 × 0.10 mm
Data collection top
Bruker Kappa APEXII
diffractometer
5274 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 28.0°, θmin = 2.4°
ω and ϕ scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1717
Tmin = 0.911, Tmax = 0.974l = 1717
22349 measured reflections3 standard reflections every 15 min
6531 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0141P)2 + 0.4615P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.33 e Å3
6531 reflectionsΔρmin = 0.49 e Å3
344 parametersExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0041 (6)
Crystal data top
C15H12ClN3γ = 100.213 (1)°
Mr = 269.73V = 1356.69 (2) Å3
Triclinic, P1Z = 4
a = 9.4018 (1) ÅMo Kα radiation
b = 13.0108 (1) ŵ = 0.27 mm1
c = 13.3035 (1) ÅT = 296 K
α = 113.968 (1)°0.35 × 0.26 × 0.10 mm
β = 105.377 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
5274 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
Rint = 0.024
Tmin = 0.911, Tmax = 0.9743 standard reflections every 15 min
22349 measured reflections intensity decay: none
6531 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.13Δρmax = 0.33 e Å3
6531 reflectionsΔρmin = 0.49 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.80906 (7)0.05252 (4)0.09218 (4)0.07177 (16)
N1A0.75236 (15)0.23972 (11)0.09405 (10)0.0431 (3)
N2A0.81249 (15)0.11531 (11)0.06785 (10)0.0437 (3)
N3A0.81842 (15)0.15522 (12)0.21892 (11)0.0461 (3)
H3AA0.80490.19910.25220.055*
C1A0.78763 (18)0.14847 (13)0.03282 (13)0.0432 (3)
C2A0.74116 (16)0.31670 (12)0.04724 (12)0.0381 (3)
C3A0.76545 (16)0.29524 (13)0.05817 (12)0.0373 (3)
C4A0.79930 (16)0.18703 (13)0.11613 (12)0.0375 (3)
C5A0.7048 (2)0.41884 (15)0.10729 (14)0.0515 (4)
H5AA0.68800.43340.17690.062*
C6A0.6941 (2)0.49701 (16)0.06391 (16)0.0617 (5)
H6AA0.66970.56450.10420.074*
C7A0.7193 (2)0.47677 (16)0.04001 (17)0.0648 (5)
H7AA0.71210.53090.06850.078*
C8A0.7548 (2)0.37788 (15)0.10035 (15)0.0532 (4)
H8AA0.77180.36510.16960.064*
C9A0.86081 (18)0.05090 (14)0.27836 (13)0.0485 (4)
H9AA0.80070.01270.36290.058*
H9AB0.83370.00500.25020.058*
C10A1.03177 (17)0.07992 (12)0.25780 (12)0.0387 (3)
C11A1.14458 (19)0.16829 (14)0.15033 (14)0.0472 (4)
H11A1.11480.21270.08950.057*
C12A1.3005 (2)0.19105 (16)0.13271 (17)0.0594 (4)
H12A1.37530.25020.06000.071*
C13A1.3458 (2)0.12649 (18)0.2225 (2)0.0670 (5)
H13A1.45100.14190.21060.080*
C14A1.2353 (2)0.03958 (16)0.32935 (19)0.0638 (5)
H14A1.26560.00370.39030.077*
C15A1.0797 (2)0.01593 (14)0.34694 (15)0.0499 (4)
H15A1.00570.04380.41970.060*
Cl1B0.49469 (5)0.17163 (4)0.57865 (4)0.06102 (13)
N1B0.78003 (14)0.23433 (11)0.59600 (10)0.0413 (3)
N2B0.58069 (14)0.20758 (11)0.42357 (10)0.0416 (3)
N3B0.63353 (14)0.23214 (12)0.27581 (10)0.0442 (3)
H3BA0.70010.25220.24800.053*
C1B0.63823 (17)0.20955 (13)0.52713 (13)0.0402 (3)
C2B0.89177 (16)0.26517 (12)0.55393 (12)0.0378 (3)
C3B0.85120 (16)0.26871 (12)0.44613 (12)0.0369 (3)
C4B0.68648 (16)0.23599 (12)0.38078 (12)0.0375 (3)
C5B1.04922 (18)0.29186 (14)0.62032 (14)0.0487 (4)
H5BA1.07710.28970.69180.058*
C6B1.16159 (19)0.32102 (16)0.58031 (15)0.0569 (4)
H6BA1.26570.33810.62460.068*
C7B1.12207 (19)0.32550 (17)0.47386 (16)0.0593 (4)
H7BA1.19970.34570.44770.071*
C8B0.96948 (18)0.30032 (15)0.40786 (14)0.0497 (4)
H8BA0.94380.30410.33720.060*
C9B0.46910 (17)0.19581 (14)0.20594 (13)0.0460 (3)
H9BA0.41360.13130.21430.055*
H9BB0.45530.16520.12300.055*
C10B0.39638 (16)0.29301 (13)0.23906 (12)0.0404 (3)
C11B0.48004 (19)0.40835 (15)0.32662 (15)0.0537 (4)
H11B0.58600.42820.36800.064*
C12B0.4087 (2)0.49486 (16)0.35374 (17)0.0625 (5)
H12B0.46670.57210.41340.075*
C13B0.2534 (2)0.46736 (18)0.29325 (18)0.0626 (5)
H13B0.20540.52550.31120.075*
C14B0.1692 (2)0.35318 (19)0.20577 (19)0.0679 (5)
H14B0.06350.33410.16410.081*
C15B0.23929 (19)0.26642 (16)0.17885 (15)0.0558 (4)
H15B0.18030.18920.11960.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.1269 (4)0.0514 (3)0.0519 (3)0.0322 (3)0.0343 (3)0.0364 (2)
N1A0.0559 (7)0.0427 (7)0.0340 (6)0.0137 (6)0.0193 (6)0.0209 (5)
N2A0.0582 (8)0.0414 (7)0.0353 (6)0.0188 (6)0.0178 (6)0.0205 (5)
N3A0.0578 (8)0.0574 (8)0.0391 (7)0.0293 (6)0.0251 (6)0.0288 (6)
C1A0.0559 (9)0.0386 (8)0.0358 (7)0.0107 (7)0.0141 (7)0.0222 (6)
C2A0.0399 (7)0.0396 (7)0.0334 (7)0.0112 (6)0.0126 (6)0.0177 (6)
C3A0.0387 (7)0.0416 (8)0.0347 (7)0.0133 (6)0.0131 (6)0.0214 (6)
C4A0.0373 (7)0.0440 (8)0.0330 (7)0.0132 (6)0.0127 (6)0.0202 (6)
C5A0.0650 (10)0.0511 (9)0.0413 (8)0.0237 (8)0.0250 (8)0.0198 (7)
C6A0.0832 (13)0.0488 (10)0.0561 (10)0.0336 (9)0.0268 (9)0.0224 (8)
C7A0.0954 (14)0.0545 (10)0.0622 (11)0.0365 (10)0.0306 (10)0.0382 (9)
C8A0.0746 (11)0.0542 (10)0.0464 (9)0.0274 (9)0.0275 (8)0.0325 (8)
C9A0.0537 (9)0.0500 (9)0.0367 (8)0.0168 (7)0.0194 (7)0.0144 (7)
C10A0.0517 (8)0.0360 (7)0.0358 (7)0.0169 (6)0.0196 (6)0.0207 (6)
C11A0.0579 (9)0.0452 (9)0.0392 (8)0.0178 (7)0.0177 (7)0.0205 (7)
C12A0.0550 (10)0.0531 (10)0.0601 (11)0.0078 (8)0.0105 (8)0.0289 (9)
C13A0.0535 (10)0.0669 (12)0.0961 (15)0.0193 (9)0.0366 (11)0.0475 (12)
C14A0.0730 (12)0.0543 (10)0.0812 (13)0.0246 (9)0.0521 (11)0.0317 (10)
C15A0.0645 (10)0.0394 (8)0.0473 (9)0.0147 (7)0.0300 (8)0.0172 (7)
Cl1B0.0539 (2)0.0861 (3)0.0579 (3)0.0173 (2)0.0323 (2)0.0430 (2)
N1B0.0468 (7)0.0482 (7)0.0335 (6)0.0145 (6)0.0176 (5)0.0224 (6)
N2B0.0424 (6)0.0507 (7)0.0378 (6)0.0165 (6)0.0186 (5)0.0238 (6)
N3B0.0442 (7)0.0593 (8)0.0366 (6)0.0178 (6)0.0175 (5)0.0279 (6)
C1B0.0465 (8)0.0433 (8)0.0391 (7)0.0146 (6)0.0240 (6)0.0222 (6)
C2B0.0445 (8)0.0363 (7)0.0333 (7)0.0129 (6)0.0161 (6)0.0164 (6)
C3B0.0410 (7)0.0376 (7)0.0328 (7)0.0117 (6)0.0158 (6)0.0167 (6)
C4B0.0455 (8)0.0381 (7)0.0334 (7)0.0160 (6)0.0176 (6)0.0183 (6)
C5B0.0473 (8)0.0550 (9)0.0383 (8)0.0116 (7)0.0094 (7)0.0235 (7)
C6B0.0391 (8)0.0670 (11)0.0533 (10)0.0079 (8)0.0096 (7)0.0271 (9)
C7B0.0439 (9)0.0745 (12)0.0571 (10)0.0067 (8)0.0222 (8)0.0324 (9)
C8B0.0483 (9)0.0615 (10)0.0413 (8)0.0104 (7)0.0189 (7)0.0280 (8)
C9B0.0469 (8)0.0510 (9)0.0336 (7)0.0127 (7)0.0099 (6)0.0188 (7)
C10B0.0418 (7)0.0489 (8)0.0320 (7)0.0108 (6)0.0131 (6)0.0228 (6)
C11B0.0460 (9)0.0503 (9)0.0505 (9)0.0099 (7)0.0080 (7)0.0198 (8)
C12B0.0681 (12)0.0483 (10)0.0621 (11)0.0160 (9)0.0205 (9)0.0219 (9)
C13B0.0703 (12)0.0638 (12)0.0747 (12)0.0340 (10)0.0371 (10)0.0409 (10)
C14B0.0452 (9)0.0793 (14)0.0774 (13)0.0228 (9)0.0166 (9)0.0387 (11)
C15B0.0447 (9)0.0570 (10)0.0501 (9)0.0092 (7)0.0088 (7)0.0199 (8)
Geometric parameters (Å, º) top
Cl1A—C1A1.7403 (14)Cl1B—C1B1.7503 (14)
N1A—C1A1.2962 (19)N1B—C1B1.2964 (19)
N1A—C2A1.3826 (18)N1B—C2B1.3866 (17)
N2A—C1A1.3291 (18)N2B—C1B1.3275 (18)
N2A—C4A1.3359 (18)N2B—C4B1.3383 (17)
N3A—C4A1.3305 (17)N3B—C4B1.3289 (17)
N3A—C9A1.4537 (19)N3B—C9B1.4489 (18)
N3A—H3AA0.8600N3B—H3BA0.8600
C2A—C5A1.401 (2)C2B—C5B1.403 (2)
C2A—C3A1.4040 (18)C2B—C3B1.4051 (19)
C3A—C8A1.407 (2)C3B—C8B1.4047 (19)
C3A—C4A1.444 (2)C3B—C4B1.4446 (19)
C5A—C6A1.364 (2)C5B—C6B1.365 (2)
C5A—H5AA0.9300C5B—H5BA0.9300
C6A—C7A1.392 (3)C6B—C7B1.394 (2)
C6A—H6AA0.9300C6B—H6BA0.9300
C7A—C8A1.366 (2)C7B—C8B1.367 (2)
C7A—H7AA0.9300C7B—H7BA0.9300
C8A—H8AA0.9300C8B—H8BA0.9300
C9A—C10A1.506 (2)C9B—C10B1.508 (2)
C9A—H9AA0.9700C9B—H9BA0.9700
C9A—H9AB0.9700C9B—H9BB0.9700
C10A—C15A1.384 (2)C10B—C11B1.379 (2)
C10A—C11A1.385 (2)C10B—C15B1.382 (2)
C11A—C12A1.378 (2)C11B—C12B1.383 (2)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.377 (3)C12B—C13B1.365 (3)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.368 (3)C13B—C14B1.370 (3)
C13A—H13A0.9300C13B—H13B0.9300
C14A—C15A1.375 (2)C14B—C15B1.378 (3)
C14A—H14A0.9300C14B—H14B0.9300
C15A—H15A0.9300C15B—H15B0.9300
C1A—N1A—C2A114.20 (12)C1B—N1B—C2B113.92 (12)
C1A—N2A—C4A115.75 (12)C1B—N2B—C4B115.30 (12)
C4A—N3A—C9A124.03 (13)C4B—N3B—C9B123.18 (12)
C4A—N3A—H3AA118.0C4B—N3B—H3BA118.4
C9A—N3A—H3AA118.0C9B—N3B—H3BA118.4
N1A—C1A—N2A131.20 (13)N1B—C1B—N2B131.77 (13)
N1A—C1A—Cl1A115.28 (11)N1B—C1B—Cl1B114.95 (10)
N2A—C1A—Cl1A113.52 (11)N2B—C1B—Cl1B113.29 (11)
N1A—C2A—C5A118.76 (13)N1B—C2B—C5B118.87 (13)
N1A—C2A—C3A121.78 (13)N1B—C2B—C3B121.78 (13)
C5A—C2A—C3A119.46 (13)C5B—C2B—C3B119.35 (13)
C2A—C3A—C8A119.10 (13)C8B—C3B—C2B119.24 (13)
C2A—C3A—C4A116.21 (12)C8B—C3B—C4B124.64 (13)
C8A—C3A—C4A124.69 (13)C2B—C3B—C4B116.11 (12)
N3A—C4A—N2A117.73 (13)N3B—C4B—N2B117.24 (13)
N3A—C4A—C3A121.47 (13)N3B—C4B—C3B121.66 (12)
N2A—C4A—C3A120.80 (12)N2B—C4B—C3B121.10 (12)
C6A—C5A—C2A120.19 (15)C6B—C5B—C2B120.14 (14)
C6A—C5A—H5AA119.9C6B—C5B—H5BA119.9
C2A—C5A—H5AA119.9C2B—C5B—H5BA119.9
C5A—C6A—C7A120.63 (16)C5B—C6B—C7B120.74 (15)
C5A—C6A—H6AA119.7C5B—C6B—H6BA119.6
C7A—C6A—H6AA119.7C7B—C6B—H6BA119.6
C8A—C7A—C6A120.38 (16)C8B—C7B—C6B120.19 (15)
C8A—C7A—H7AA119.8C8B—C7B—H7BA119.9
C6A—C7A—H7AA119.8C6B—C7B—H7BA119.9
C7A—C8A—C3A120.23 (15)C7B—C8B—C3B120.34 (14)
C7A—C8A—H8AA119.9C7B—C8B—H8BA119.8
C3A—C8A—H8AA119.9C3B—C8B—H8BA119.8
N3A—C9A—C10A112.90 (13)N3B—C9B—C10B114.71 (12)
N3A—C9A—H9AA109.0N3B—C9B—H9BA108.6
C10A—C9A—H9AA109.0C10B—C9B—H9BA108.6
N3A—C9A—H9AB109.0N3B—C9B—H9BB108.6
C10A—C9A—H9AB109.0C10B—C9B—H9BB108.6
H9AA—C9A—H9AB107.8H9BA—C9B—H9BB107.6
C15A—C10A—C11A118.33 (14)C11B—C10B—C15B118.09 (15)
C15A—C10A—C9A119.91 (14)C11B—C10B—C9B122.94 (14)
C11A—C10A—C9A121.75 (13)C15B—C10B—C9B118.97 (14)
C12A—C11A—C10A120.64 (15)C10B—C11B—C12B120.99 (16)
C12A—C11A—H11A119.7C10B—C11B—H11B119.5
C10A—C11A—H11A119.7C12B—C11B—H11B119.5
C13A—C12A—C11A120.16 (17)C13B—C12B—C11B120.26 (17)
C13A—C12A—H12A119.9C13B—C12B—H12B119.9
C11A—C12A—H12A119.9C11B—C12B—H12B119.9
C14A—C13A—C12A119.70 (17)C12B—C13B—C14B119.29 (17)
C14A—C13A—H13A120.1C12B—C13B—H13B120.4
C12A—C13A—H13A120.1C14B—C13B—H13B120.4
C13A—C14A—C15A120.30 (17)C13B—C14B—C15B120.74 (17)
C13A—C14A—H14A119.9C13B—C14B—H14B119.6
C15A—C14A—H14A119.8C15B—C14B—H14B119.6
C14A—C15A—C10A120.86 (16)C14B—C15B—C10B120.61 (17)
C14A—C15A—H15A119.6C14B—C15B—H15B119.7
C10A—C15A—H15A119.6C10B—C15B—H15B119.7
C2A—N1A—C1A—N2A1.2 (2)C2B—N1B—C1B—N2B0.5 (2)
C2A—N1A—C1A—Cl1A177.92 (10)C2B—N1B—C1B—Cl1B179.43 (10)
C4A—N2A—C1A—N1A0.1 (3)C4B—N2B—C1B—N1B0.1 (2)
C4A—N2A—C1A—Cl1A179.20 (11)C4B—N2B—C1B—Cl1B179.97 (10)
C1A—N1A—C2A—C5A179.46 (14)C1B—N1B—C2B—C5B178.94 (14)
C1A—N1A—C2A—C3A0.4 (2)C1B—N1B—C2B—C3B0.2 (2)
N1A—C2A—C3A—C8A179.03 (14)N1B—C2B—C3B—C8B179.85 (14)
C5A—C2A—C3A—C8A0.8 (2)C5B—C2B—C3B—C8B0.8 (2)
N1A—C2A—C3A—C4A1.3 (2)N1B—C2B—C3B—C4B1.2 (2)
C5A—C2A—C3A—C4A178.80 (13)C5B—C2B—C3B—C4B177.84 (13)
C9A—N3A—C4A—N2A3.4 (2)C9B—N3B—C4B—N2B1.8 (2)
C9A—N3A—C4A—C3A176.58 (13)C9B—N3B—C4B—C3B177.81 (13)
C1A—N2A—C4A—N3A177.93 (13)C1B—N2B—C4B—N3B178.31 (13)
C1A—N2A—C4A—C3A2.1 (2)C1B—N2B—C4B—C3B1.3 (2)
C2A—C3A—C4A—N3A177.36 (13)C8B—C3B—C4B—N3B0.8 (2)
C8A—C3A—C4A—N3A2.3 (2)C2B—C3B—C4B—N3B177.75 (13)
C2A—C3A—C4A—N2A2.6 (2)C8B—C3B—C4B—N2B179.62 (14)
C8A—C3A—C4A—N2A177.74 (15)C2B—C3B—C4B—N2B1.9 (2)
N1A—C2A—C5A—C6A179.50 (15)N1B—C2B—C5B—C6B179.16 (15)
C3A—C2A—C5A—C6A0.4 (2)C3B—C2B—C5B—C6B0.0 (2)
C2A—C5A—C6A—C7A0.2 (3)C2B—C5B—C6B—C7B0.4 (3)
C5A—C6A—C7A—C8A0.2 (3)C5B—C6B—C7B—C8B0.2 (3)
C6A—C7A—C8A—C3A0.2 (3)C6B—C7B—C8B—C3B0.6 (3)
C2A—C3A—C8A—C7A0.8 (2)C2B—C3B—C8B—C7B1.0 (2)
C4A—C3A—C8A—C7A178.83 (16)C4B—C3B—C8B—C7B177.45 (16)
C4A—N3A—C9A—C10A99.54 (17)C4B—N3B—C9B—C10B83.98 (18)
N3A—C9A—C10A—C15A145.39 (14)N3B—C9B—C10B—C11B1.7 (2)
N3A—C9A—C10A—C11A35.9 (2)N3B—C9B—C10B—C15B178.82 (14)
C15A—C10A—C11A—C12A0.5 (2)C15B—C10B—C11B—C12B0.2 (2)
C9A—C10A—C11A—C12A178.29 (15)C9B—C10B—C11B—C12B179.71 (15)
C10A—C11A—C12A—C13A0.5 (3)C10B—C11B—C12B—C13B0.4 (3)
C11A—C12A—C13A—C14A0.0 (3)C11B—C12B—C13B—C14B0.2 (3)
C12A—C13A—C14A—C15A0.5 (3)C12B—C13B—C14B—C15B0.2 (3)
C13A—C14A—C15A—C10A0.6 (3)C13B—C14B—C15B—C10B0.4 (3)
C11A—C10A—C15A—C14A0.1 (2)C11B—C10B—C15B—C14B0.2 (2)
C9A—C10A—C15A—C14A178.87 (15)C9B—C10B—C15B—C14B179.30 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H3AA···N1Bi0.862.212.9954 (17)152
N3B—H3BA···N1A0.862.182.9482 (16)149
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H3AA···N1Bi0.862.212.9954 (17)151.9
N3B—H3BA···N1A0.862.182.9482 (16)148.5
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors would like to thank Faculty of Science, Office of Research, and the School of Pharmacy at the University of Waterloo and Ontario Mental Health Foundation (TM) for financial support of this research project.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, X. & Mani, N. S. (2006). Org. Lett. 8, 269–272.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, S. J., Konishi, Y., Yu, D. T., Miskowski, T. A., Riviello, C. M., Macina, O. T., Frierson, M. R., Kondo, K., Sugitani, M., Sircar, J. C. & Balzejewski, K. M. (1995). J. Med. Chem. 38, 3547–3557.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLopez, C. O., Garcia, C. A., Nunez, M. C., Kimatrai, M., Rubino, G. M. E., Morales, F., Perez, G. V. & Campos, J. M. (2011). Curr. Med. Chem. 18, 943–963.  CrossRef PubMed Google Scholar
First citationMohamed, T., Zhao, X., Habib, L. K., Yang, J. & Rao, P. P. N. (2011). Bioorg. Med. Chem. 19, 2269–2281.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWynne, G. M., De Moor, O., Johnson, P. D. & Vickers, R. (2009). World Patent WO 2009/001060 A2.  Google Scholar
First citationYoshida, K. & Taguchi, M. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 919–922.  CrossRef Web of Science Google Scholar
First citationZhang, J., Yang, P. L. & Gray, N. S. (2009). Nat. Rev. Cancer, 9, 28–39.  Web of Science CrossRef PubMed Google Scholar
First citationZhou, G., Wang, L., Ma, Y., Wang, L., Zhang, Y. & Jiang, W. (2011). Bioorg. Med. Chem. Lett. 21, 5905–5909.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds