organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl [(4-nitrobenzamido)(phen­yl)meth­yl]phospho­nate

aThe Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, People's Republic of China, bSchool of Pharmaceutical Sciences, Xiamen University, Xiang-An South Road, Xiamen 361100, People's Republic of China, and cThe Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005, People's Republic of China
*Correspondence e-mail: hfang@tio.org.cn

(Received 24 March 2014; accepted 8 April 2014; online 12 April 2014)

In the title compound, C18H21N2O6P, the dihedral angle between the benzene and phenyl rings is 85.1 (2)°. In the crystal, mol­ecules are linked via pairs of N—H⋯O(=P) hydrogen bonds, forming inversion dimers with graph-set notation R22(10). One of the ethyl groups is disordered over two sets of sites, with occupancies 0.746 (11) and 0.254 (11).

Related literature

For the synthesis, see: Takahashi et al. (1994[Takahashi, H., Yoshioka, M., Imai, N. & Onimura, K. (1994). Synthesis, 9, 763-764.]). For a related structure, see: Fang et al. (2004[Fang, H., Wang, J.-F., Liu, X.-X., Zhao, Y.-F. & Ng, S. W. (2004). Acta Cryst. E60, o153-o154.]). For hydrogen bond graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21N2O6P

  • Mr = 392.34

  • Triclinic, [P \overline 1]

  • a = 8.112 (3) Å

  • b = 10.378 (4) Å

  • c = 12.583 (5) Å

  • α = 106.321 (7)°

  • β = 90.188 (8)°

  • γ = 106.035 (7)°

  • V = 973.3 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.42 × 0.28 × 0.23 mm

Data collection
  • Bruker APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.929, Tmax = 0.960

  • 4948 measured reflections

  • 3375 independent reflections

  • 2719 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.200

  • S = 1.09

  • 3375 reflections

  • 259 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.78 (4) 2.15 (4) 2.909 (4) 164 (4)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I) was synthesized for a study of its antimicrobial activity against Bacillus subtilis. This aminophosphonate derivative was found to have weak antimicrobial activity (inhibition zone = 7 mm). The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the benzene (C2–C7) ring and phenyl (C9–C14) ring is 85.1 (2)°. In the crystal, molecules are linked via pairs of N—H···O(P) hydrogen bonds forming inversion dimers with with graph-set notation R22(10) (Bernstein et al., 1995). One of the ethyl groups (C17/C18) is disordered over two sets of sites with occupancies 0.746 (11) and 0.254 (11). Bond lenths and angles in (I) are in agreement with the values reported for a similar structure (Fang et al., 2004).

Related literature top

For the synthesis, see: Takahashi et al. (1994). For a related structure, see: Fang et al. (2004). For hydrogen bond graph-set notation, see: Bernstein et al. (1995).

Experimental top

The hydrochloride of diethyl amino(phenyl)methylphosphonate was prepared according to the literature procedure (Takahashi et al., 1994). This ester (1.08 g, 5 mmol) was dissolved in dry tetrahydrofuran (20 ml) to which triethylamine (0.7 ml) was added, and the solution was added dropwise to 4-nitrobenzoyl chloride (0.9 g, 5 mmol) in the same solvent (10 ml) (see Fig. 1). After completion of the reaction, the precipitate was separated and the filtrate was extracted with ethyl acetate, dried over anhydrous MgSO4 and concentrated under vacuum. The residual liquid was purified by column chromatography to give the title compound. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a petroleum ether - ethyl acetate solution (3:1 v/v) of the title compound.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and were included in the refinement in the riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The H atom bonded to the N atom was refined independently with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The reaction scheme.
[Figure 2] Fig. 2. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are drawn as spheres of arbitrary radii and the open bonds indicate the minor component of disorder.
Diethyl [(4-nitrobenzamido)(phenyl)methyl]phosphonate top
Crystal data top
C18H21N2O6PZ = 2
Mr = 392.34F(000) = 412
Triclinic, P1Dx = 1.339 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.112 (3) ÅCell parameters from 1770 reflections
b = 10.378 (4) Åθ = 1.3–26.6°
c = 12.583 (5) ŵ = 0.18 mm1
α = 106.321 (7)°T = 293 K
β = 90.188 (8)°Block, colorless
γ = 106.035 (7)°0.42 × 0.28 × 0.23 mm
V = 973.3 (6) Å3
Data collection top
Bruker APEX
diffractometer
3375 independent reflections
Radiation source: fine-focus sealed tube2719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scanθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.929, Tmax = 0.960k = 1212
4948 measured reflectionsl = 814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.200H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1021P)2 + 0.2844P]
where P = (Fo2 + 2Fc2)/3
3375 reflections(Δ/σ)max = 0.013
259 parametersΔρmax = 0.48 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C18H21N2O6Pγ = 106.035 (7)°
Mr = 392.34V = 973.3 (6) Å3
Triclinic, P1Z = 2
a = 8.112 (3) ÅMo Kα radiation
b = 10.378 (4) ŵ = 0.18 mm1
c = 12.583 (5) ÅT = 293 K
α = 106.321 (7)°0.42 × 0.28 × 0.23 mm
β = 90.188 (8)°
Data collection top
Bruker APEX
diffractometer
3375 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2719 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.960Rint = 0.028
4948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0751 restraint
wR(F2) = 0.200H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.48 e Å3
3375 reflectionsΔρmin = 0.23 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.32681 (11)0.73988 (8)0.39408 (7)0.0472 (3)
O10.5803 (4)0.6502 (2)0.6389 (2)0.0749 (8)
O20.3346 (3)0.8870 (2)0.41776 (19)0.0576 (6)
O30.2957 (3)0.6646 (2)0.26662 (18)0.0591 (7)
O40.1843 (3)0.6511 (3)0.4480 (2)0.0675 (7)
O50.8608 (8)1.1843 (7)1.1263 (4)0.195 (3)
O60.6792 (9)1.2811 (5)1.0861 (4)0.172 (3)
N10.5688 (4)0.8136 (3)0.5566 (2)0.0510 (8)
H1N0.576 (5)0.893 (4)0.567 (3)0.061*
N20.7490 (9)1.1926 (6)1.0645 (4)0.124 (2)
C10.5887 (4)0.7714 (3)0.6449 (3)0.0504 (8)
C20.6243 (4)0.8826 (3)0.7554 (3)0.0513 (8)
C30.7279 (5)0.8703 (5)0.8364 (3)0.0724 (11)
H3A0.77160.79380.82190.087*
C40.7674 (6)0.9689 (6)0.9376 (4)0.0849 (13)
H4A0.83710.95990.99230.102*
C50.7041 (6)1.0796 (5)0.9574 (3)0.0797 (14)
C60.5969 (6)1.0951 (4)0.8798 (3)0.0790 (13)
H6A0.55231.17120.89570.095*
C70.5574 (5)0.9937 (4)0.7773 (3)0.0633 (10)
H7A0.48521.00140.72320.076*
C80.5261 (4)0.7180 (3)0.4444 (2)0.0469 (8)
H8A0.50150.62200.44930.056*
C90.6651 (4)0.7392 (3)0.3678 (3)0.0470 (8)
C100.6906 (5)0.6247 (4)0.2896 (3)0.0609 (9)
H10A0.62270.53510.28630.073*
C110.8151 (6)0.6411 (5)0.2164 (4)0.0807 (13)
H11A0.83040.56300.16380.097*
C120.9163 (6)0.7726 (5)0.2213 (4)0.0899 (14)
H12A1.00090.78450.17220.108*
C130.8918 (6)0.8858 (5)0.2989 (4)0.0892 (14)
H13A0.96050.97520.30240.107*
C140.7690 (5)0.8704 (4)0.3711 (3)0.0676 (10)
H14A0.75480.94920.42340.081*
C150.2262 (6)0.5160 (4)0.2178 (3)0.0771 (12)
H15A0.10590.48630.23120.092*
H15B0.28810.46700.25080.092*
C160.2434 (10)0.4827 (5)0.0984 (4)0.127 (2)
H16A0.19710.38340.06470.191*
H16B0.36280.51160.08570.191*
H16C0.18140.53120.06630.191*
C170.0434 (8)0.6943 (7)0.5001 (5)0.077 (2)0.746 (11)
H17A0.03830.78020.48560.092*0.746 (11)
H17B0.06410.62250.46970.092*0.746 (11)
C180.0671 (14)0.7168 (8)0.6179 (5)0.114 (3)0.746 (11)
H18A0.03350.73440.65170.171*0.746 (11)
H18B0.16550.79610.64910.171*0.746 (11)
H18C0.08510.63500.63140.171*0.746 (11)
C17A0.1513 (16)0.7129 (17)0.5723 (15)0.060 (5)*0.254 (11)
H17C0.17230.65630.61750.072*0.254 (11)
H17D0.22360.80860.60330.072*0.254 (11)
C18A0.0275 (17)0.707 (2)0.565 (2)0.082 (7)*0.254 (11)
H18D0.05260.76770.63160.123*0.254 (11)
H18E0.09730.61270.55460.123*0.254 (11)
H18F0.05210.73730.50230.123*0.254 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0631 (6)0.0300 (5)0.0477 (5)0.0161 (4)0.0095 (4)0.0075 (3)
O10.130 (2)0.0410 (14)0.0592 (15)0.0318 (15)0.0001 (15)0.0164 (12)
O20.0741 (15)0.0361 (12)0.0650 (15)0.0244 (11)0.0064 (12)0.0104 (11)
O30.0810 (17)0.0402 (13)0.0496 (14)0.0137 (11)0.0008 (12)0.0066 (10)
O40.0772 (17)0.0490 (15)0.0789 (18)0.0217 (13)0.0268 (14)0.0190 (13)
O50.184 (5)0.208 (6)0.104 (3)0.025 (4)0.043 (4)0.058 (4)
O60.290 (8)0.074 (3)0.094 (3)0.009 (4)0.056 (4)0.024 (2)
N10.085 (2)0.0280 (13)0.0423 (15)0.0223 (14)0.0062 (13)0.0075 (12)
N20.149 (5)0.095 (4)0.063 (3)0.031 (3)0.013 (3)0.013 (3)
C10.069 (2)0.0373 (17)0.0475 (19)0.0213 (15)0.0079 (16)0.0103 (14)
C20.063 (2)0.0424 (18)0.0457 (18)0.0104 (16)0.0098 (16)0.0135 (15)
C30.083 (3)0.074 (3)0.057 (2)0.026 (2)0.002 (2)0.012 (2)
C40.089 (3)0.091 (3)0.058 (2)0.012 (3)0.007 (2)0.008 (2)
C50.092 (3)0.067 (3)0.045 (2)0.019 (2)0.016 (2)0.0007 (19)
C60.119 (4)0.043 (2)0.065 (3)0.015 (2)0.037 (3)0.0082 (18)
C70.093 (3)0.048 (2)0.049 (2)0.0206 (19)0.0153 (19)0.0135 (16)
C80.072 (2)0.0264 (15)0.0436 (17)0.0201 (15)0.0071 (15)0.0066 (13)
C90.0592 (19)0.0405 (17)0.0454 (17)0.0242 (15)0.0042 (15)0.0093 (14)
C100.073 (2)0.046 (2)0.058 (2)0.0202 (17)0.0117 (18)0.0023 (16)
C110.097 (3)0.065 (3)0.071 (3)0.031 (2)0.027 (2)0.001 (2)
C120.090 (3)0.087 (3)0.093 (3)0.032 (3)0.045 (3)0.021 (3)
C130.094 (3)0.060 (3)0.115 (4)0.024 (2)0.045 (3)0.026 (3)
C140.083 (3)0.0388 (19)0.082 (3)0.0241 (18)0.029 (2)0.0121 (18)
C150.112 (3)0.041 (2)0.068 (3)0.021 (2)0.009 (2)0.0017 (18)
C160.230 (7)0.070 (3)0.058 (3)0.031 (4)0.006 (4)0.007 (2)
C170.072 (4)0.077 (4)0.093 (5)0.030 (3)0.024 (4)0.033 (3)
C180.160 (9)0.101 (6)0.080 (5)0.033 (5)0.055 (6)0.028 (4)
Geometric parameters (Å, º) top
P1—O21.454 (2)C9—C101.379 (5)
P1—O41.553 (3)C10—C111.377 (5)
P1—O31.559 (2)C10—H10A0.9300
P1—C81.829 (3)C11—C121.369 (6)
O1—C11.222 (4)C11—H11A0.9300
O3—C151.435 (4)C12—C131.364 (6)
O4—C171.435 (6)C12—H12A0.9300
O4—C17A1.569 (18)C13—C141.358 (6)
O5—N21.229 (9)C13—H13A0.9300
O6—N21.178 (9)C14—H14A0.9300
N1—C11.328 (4)C15—C161.460 (6)
N1—C81.454 (4)C15—H15A0.9700
N1—H1N0.78 (4)C15—H15B0.9700
N2—C51.482 (6)C16—H16A0.9600
C1—C21.503 (5)C16—H16B0.9600
C2—C71.367 (5)C16—H16C0.9600
C2—C31.374 (5)C17—C181.437 (8)
C3—C41.363 (6)C17—H17A0.9700
C3—H3A0.9300C17—H17B0.9700
C4—C51.345 (7)C18—H18A0.9600
C4—H4A0.9300C18—H18B0.9600
C5—C61.377 (7)C18—H18C0.9600
C6—C71.387 (5)C17A—C18A1.437 (8)
C6—H6A0.9300C17A—H17C0.9700
C7—H7A0.9300C17A—H17D0.9700
C8—C91.497 (5)C18A—H18D0.9600
C8—H8A0.9800C18A—H18E0.9600
C9—C141.379 (5)C18A—H18F0.9600
O2—P1—O4115.90 (15)C11—C10—C9121.0 (4)
O2—P1—O3111.00 (13)C11—C10—H10A119.5
O4—P1—O3105.86 (14)C9—C10—H10A119.5
O2—P1—C8111.80 (13)C12—C11—C10119.8 (4)
O4—P1—C8103.95 (15)C12—C11—H11A120.1
O3—P1—C8107.74 (14)C10—C11—H11A120.1
C15—O3—P1124.6 (2)C13—C12—C11119.2 (4)
C17—O4—P1125.5 (3)C13—C12—H12A120.4
C17—O4—C17A46.7 (5)C11—C12—H12A120.4
P1—O4—C17A119.6 (6)C14—C13—C12121.3 (4)
C1—N1—C8122.9 (3)C14—C13—H13A119.4
C1—N1—H1N118 (3)C12—C13—H13A119.4
C8—N1—H1N119 (3)C13—C14—C9120.7 (4)
O6—N2—O5124.5 (5)C13—C14—H14A119.7
O6—N2—C5120.8 (7)C9—C14—H14A119.7
O5—N2—C5114.8 (7)O3—C15—C16108.7 (4)
O1—C1—N1123.2 (3)O3—C15—H15A110.0
O1—C1—C2120.7 (3)C16—C15—H15A110.0
N1—C1—C2116.1 (3)O3—C15—H15B110.0
C7—C2—C3119.6 (3)C16—C15—H15B110.0
C7—C2—C1122.4 (3)H15A—C15—H15B108.3
C3—C2—C1118.0 (3)C15—C16—H16A109.5
C4—C3—C2120.8 (4)C15—C16—H16B109.5
C4—C3—H3A119.6H16A—C16—H16B109.5
C2—C3—H3A119.6C15—C16—H16C109.5
C5—C4—C3119.1 (4)H16A—C16—H16C109.5
C5—C4—H4A120.5H16B—C16—H16C109.5
C3—C4—H4A120.5C18—C17—O4109.3 (6)
C4—C5—C6122.3 (4)C18—C17—H17A109.8
C4—C5—N2121.2 (6)O4—C17—H17A109.8
C6—C5—N2116.5 (6)C18—C17—H17B109.8
C5—C6—C7118.0 (4)O4—C17—H17B109.8
C5—C6—H6A121.0H17A—C17—H17B108.3
C7—C6—H6A121.0C18A—C17A—O4102.9 (15)
C2—C7—C6120.2 (4)C18A—C17A—H17C111.2
C2—C7—H7A119.9O4—C17A—H17C111.2
C6—C7—H7A119.9C18A—C17A—H17D111.2
N1—C8—C9114.6 (3)O4—C17A—H17D111.2
N1—C8—P1105.6 (2)H17C—C17A—H17D109.1
C9—C8—P1112.3 (2)C17A—C18A—H18D109.5
N1—C8—H8A108.1C17A—C18A—H18E109.5
C9—C8—H8A108.1H18D—C18A—H18E109.5
P1—C8—H8A108.1C17A—C18A—H18F109.5
C14—C9—C10118.0 (3)H18D—C18A—H18F109.5
C14—C9—C8122.3 (3)H18E—C18A—H18F109.5
C10—C9—C8119.7 (3)
O2—P1—O3—C15158.4 (3)C1—C2—C7—C6178.7 (3)
O4—P1—O3—C1531.9 (3)C5—C6—C7—C20.1 (6)
C8—P1—O3—C1578.9 (3)C1—N1—C8—C9113.4 (3)
O2—P1—O4—C1712.4 (4)C1—N1—C8—P1122.6 (3)
O3—P1—O4—C17111.2 (4)O2—P1—C8—N146.0 (2)
C8—P1—O4—C17135.5 (4)O4—P1—C8—N179.8 (2)
O2—P1—O4—C17A43.3 (6)O3—P1—C8—N1168.18 (18)
O3—P1—O4—C17A166.8 (6)O2—P1—C8—C979.5 (2)
C8—P1—O4—C17A79.8 (6)O4—P1—C8—C9154.8 (2)
C8—N1—C1—O13.3 (6)O3—P1—C8—C942.7 (2)
C8—N1—C1—C2177.2 (3)N1—C8—C9—C1437.0 (4)
O1—C1—C2—C7147.5 (4)P1—C8—C9—C1483.4 (4)
N1—C1—C2—C732.9 (5)N1—C8—C9—C10143.8 (3)
O1—C1—C2—C332.3 (5)P1—C8—C9—C1095.8 (3)
N1—C1—C2—C3147.2 (3)C14—C9—C10—C110.5 (6)
C7—C2—C3—C41.2 (6)C8—C9—C10—C11178.6 (3)
C1—C2—C3—C4178.9 (4)C9—C10—C11—C120.4 (7)
C2—C3—C4—C50.3 (7)C10—C11—C12—C130.1 (8)
C3—C4—C5—C61.7 (7)C11—C12—C13—C140.1 (8)
C3—C4—C5—N2177.5 (4)C12—C13—C14—C90.1 (8)
O6—N2—C5—C4171.8 (5)C10—C9—C14—C130.4 (6)
O5—N2—C5—C47.7 (7)C8—C9—C14—C13178.8 (4)
O6—N2—C5—C69.0 (7)P1—O3—C15—C16170.5 (4)
O5—N2—C5—C6171.6 (5)P1—O4—C17—C18110.7 (5)
C4—C5—C6—C71.5 (6)C17A—O4—C17—C1811.4 (9)
N2—C5—C6—C7177.7 (3)C17—O4—C17A—C18A10.2 (11)
C3—C2—C7—C61.4 (5)P1—O4—C17A—C18A122.7 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.78 (4)2.15 (4)2.909 (4)164 (4)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.78 (4)2.15 (4)2.909 (4)164 (4)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the National Science Foundation of China (No. 81302652) and the special financial fund of the innovative development of marine economic demonstration project, GD2012-D01–001.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, H., Wang, J.-F., Liu, X.-X., Zhao, Y.-F. & Ng, S. W. (2004). Acta Cryst. E60, o153–o154.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, H., Yoshioka, M., Imai, N. & Onimura, K. (1994). Synthesis, 9, 763–764.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds