organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-1-iodo-6-nitro­benzene

aThe University of Iowa, Department of Occupational and Environmental Health, UI Research Park, Iowa City, IA 52242-5000, USA, and bUniversity of Kentucky, Department of Chemistry, Lexington, KY 40506-0055, USA
*Correspondence e-mail: hans-joachim-lehmler@uiowa.edu

(Received 9 April 2014; accepted 17 April 2014; online 26 April 2014)

In the crystal structure of the title compound, C6H2Cl2INO2, there are weak C—H⋯Cl inter­actions and I⋯O [3.387 (4) Å] close contacts. These inter­actions form sheets in the ac plane, with the closest contact between adjacent planes occurring between inversion-related nitro O atoms [3.025 (8) Å]. The molecule possesses mirror symmetry, with the halogen, N and C atoms all lying in the mirror plane. Hence, the dihedral angle between the benzene ring and the nitro group is 90°.

Related literature

For crystal structures of similar substituted nitro­benzenes, see: Li et al. (2012[Li, X., Cao, L., Ruan, C., Ji, B. & Zhou, L. (2012). Acta Cryst. E68, o1500.]); Tahir et al. (2009[Tahir, M. N., Arshad, M. N., Khan, I. U. & Shafiq, M. (2009). Acta Cryst. E65, o535.]). For information about polychlorinated bi­phenyls (PCBs) and their synthesis, see: Joshi et al. (2011[Joshi, S. N., Vyas, S. M., Duffel, M. W., Parkin, S. & Lehmler, H.-J. (2011). Synthesis, pp. 1045-1054.]); Lehmler et al. (2010[Lehmler, H.-J., Harrad, S. J., Huhnerfuss, H., Kania-Korwel, I., Lee, C. M., Lu, Z. & Wong, C. S. (2010). Environ. Sci. Technol. 44, 2757-2766.]); Lehmler & Robertson (2001[Lehmler, H.-J. & Robertson, L. W. (2001). Chemosphere, 45, 137-143.]). For the synthesis of the title compound, see: Sohn et al. (2003[Sohn, J., Kiburz, B., Li, Z., Deng, L., Safi, A., Pirrung, M. C. & Rudolph, J. (2003). J. Med. Chem. 46, 2580-2588.]).

[Scheme 1]

Experimental

Crystal data
  • C6H2Cl2INO2

  • Mr = 317.89

  • Orthorhombic, P n m a

  • a = 8.7760 (5) Å

  • b = 6.8989 (4) Å

  • c = 14.3518 (8) Å

  • V = 868.93 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 34.30 mm−1

  • T = 90 K

  • 0.13 × 0.10 × 0.04 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008b[Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.]) Tmin = 0.052, Tmax = 0.216

  • 9625 measured reflections

  • 862 independent reflections

  • 827 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.12

  • 862 reflections

  • 71 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl2i 0.95 2.77 3.718 (7) 179
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006)[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2006)[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and CIFFIX (Parkin, 2013[Parkin, S. (2013). CIFFIX. http://xray.uky.edu/people/parkin/programs/ciffix .]).

Supporting information


Comment top

The title compound was synthesized as a precursor for the preparation of chiral polychlorinated biphenyl (PCB) derivatives (Lehmler et al., 2010) using the Suzuki-coupling reaction (Joshi et al., 2011; Lehmler & Robertson, 2001). There are C3—H3···Cl2 (x - 0.5, y, 0.5 - z) interactions [C3···Cl2 = 3.718 (7) Å] that link the molecules into flat ribbons along the a axis. Between adjacent ribbons there are close contacts between iodine atoms and the nitro group O atoms, with I···O distances of 3.387 (4) Å. Each iodine atom is the same distance from both oxygen atoms because they are equivalent by virtue of the mirror plane. The linking of adjacent ribbons in the crystal structure give sheets in the ac plane (since the mirror plane is perpendicular to b). The closest contact between adjacent planes occurs between inversion (1 - x, 1 - y, 1 - z) related nitro O atoms [3.025 (8) Å]. The distance between layers is simply half the b axis length. Viewed along the b axis, molecules appear to stack in an alternating fashion about a 21 screw (-x, 0.5 + y,-z), which places Cl1 of one molecule directly over the benzene ring of its screw-related counterpart.

As a result of the symmetrical interaction between the iodines and both nitro group O atoms, the molecular structure of the title compound displayed a 90° dihedral angle between the plane of the nitro group and the plane of the benzene ring (which lies on the mirror plane). Only a few solid state structures of structurally related molecules with a 1-iodo-2-nitrobenzene moiety have been reported previously. The molecular structures of 4-chloro-1-iodo-2-nitrobenzene, a structurally related halogenated nitrobenzene with one iodo substituent ortho to the nitro group, display smaller dihedral angles between benzene ring and nitro group [51.0 (3)° and 29.0 (2)°] in the solid state (Tahir et al., 2009). In contrast, 2,4-diiodo-3-nitroanisole, a nitrobenzene with two iodo substituents ortho to the nitro group, displayed dihedral angle of 88.0 (3)° (Li et al., 2012), probably due to the steric demand of the two ortho iodo substituents. These differences demonstrate that packing effects can make significant contributions to the molecular structure (i.e. the dihedral angle between benzene ring and nitro group) in the solid state.

Related literature top

For similar crystal structures of substituted nitrobenzenes, see: Li et al. (2012); Tahir et al. (2009). For information about polychlorinated biphenyls (PCBs) and their synthesis, see: Joshi et al. (2011); Lehmler et al. (2010); Lehmler & Robertson (2001). For the synthesis of the title compound, see: Sohn et al. (2003).

Experimental top

The title compound was synthesized from 2,4-dichloro-6-nitroaniline by sequential diazotization and iodonization with NaNO2–HCl–KI system (Sohn et al., 2003). Crystals of the title compound suitable for crystal structure analysis were obtained by slow evaporation of a solution of the title compound in hexane-ethyl acetate (10:1).

Refinement top

H atoms were found in difference Fourier maps, but subsequently included in the refinement using riding models, with constrained distances set to 0.95Å (Csp2H). Uiso(H) values were set to 1.2Ueq of the attached atom.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008a); molecular graphics: XP in SHELXTL (Sheldrick, 2008a); software used to prepare material for publication: SHELXTL (Sheldrick, 2008a) and CIFFIX (Parkin, 2013).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Symmetry code: (A) x, -y+1/2, z.
2,4-Dichloro-1-iodo-6-nitrobenzene top
Crystal data top
C6H2Cl2INO2Dx = 2.430 Mg m3
Mr = 317.89Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PnmaCell parameters from 6956 reflections
a = 8.7760 (5) Åθ = 5.9–67.7°
b = 6.8989 (4) ŵ = 34.30 mm1
c = 14.3518 (8) ÅT = 90 K
V = 868.93 (9) Å3Rounded block, pale yellow
Z = 40.13 × 0.10 × 0.04 mm
F(000) = 592
Data collection top
Bruker X8 Proteum
diffractometer
862 independent reflections
Radiation source: fine-focus rotating anode827 reflections with I > 2σ(I)
Detector resolution: 5.6 pixels mm-1Rint = 0.082
ϕ and ω scansθmax = 68.0°, θmin = 5.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
h = 107
Tmin = 0.052, Tmax = 0.216k = 88
9625 measured reflectionsl = 1317
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0668P)2 + 0.2013P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
862 reflectionsΔρmax = 0.67 e Å3
71 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (4)
Crystal data top
C6H2Cl2INO2V = 868.93 (9) Å3
Mr = 317.89Z = 4
Orthorhombic, PnmaCu Kα radiation
a = 8.7760 (5) ŵ = 34.30 mm1
b = 6.8989 (4) ÅT = 90 K
c = 14.3518 (8) Å0.13 × 0.10 × 0.04 mm
Data collection top
Bruker X8 Proteum
diffractometer
862 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
827 reflections with I > 2σ(I)
Tmin = 0.052, Tmax = 0.216Rint = 0.082
9625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.12Δρmax = 0.67 e Å3
862 reflectionsΔρmin = 0.68 e Å3
71 parameters
Special details top

Experimental. Diffraction data were collected with the crystal at 90 K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

A correction for radiation damage was included in the SADABS (Sheldrick, 2008b) run. This seems to have resulted in all the atomic displacement parameter ellipsoids looking more spherical than usual.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.10397 (4)0.25000.70325 (2)0.0776 (3)
Cl10.18714 (15)0.25000.54761 (10)0.0783 (4)
Cl20.16156 (18)0.25000.24439 (10)0.0807 (4)
N10.4037 (5)0.25000.5700 (4)0.0797 (14)
O10.4576 (4)0.4066 (6)0.5918 (2)0.0946 (9)
C10.1230 (7)0.25000.5590 (5)0.0739 (13)
C20.0053 (7)0.25000.5003 (5)0.0753 (13)
C30.0065 (7)0.25000.4060 (4)0.0754 (13)
H30.08280.25000.36860.090*
C40.1510 (8)0.25000.3637 (5)0.0740 (13)
C50.2811 (7)0.25000.4179 (5)0.0765 (13)
H50.37960.25000.39040.092*
C60.2624 (7)0.25000.5133 (4)0.0757 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0812 (4)0.0798 (4)0.0718 (4)0.0000.00182 (13)0.000
Cl10.0753 (8)0.0786 (8)0.0810 (8)0.0000.0026 (6)0.000
Cl20.0828 (9)0.0878 (9)0.0715 (8)0.0000.0000 (6)0.000
N10.079 (3)0.091 (4)0.070 (3)0.0000.003 (2)0.000
O10.0929 (19)0.097 (2)0.0936 (18)0.0143 (17)0.0113 (16)0.0056 (17)
C10.081 (3)0.071 (3)0.069 (3)0.0000.001 (2)0.000
C20.074 (3)0.067 (3)0.084 (3)0.0000.002 (3)0.000
C30.084 (3)0.065 (3)0.077 (3)0.0000.004 (3)0.000
C40.079 (3)0.069 (3)0.074 (3)0.0000.004 (3)0.000
C50.076 (3)0.073 (3)0.081 (3)0.0000.005 (3)0.000
C60.076 (3)0.073 (3)0.078 (3)0.0000.003 (3)0.000
Geometric parameters (Å, º) top
I1—C12.077 (7)C1—C21.406 (9)
Cl1—C21.734 (7)C2—C31.358 (9)
Cl2—C41.715 (7)C3—C41.406 (10)
N1—O11.220 (4)C3—H30.9500
N1—O1i1.220 (4)C4—C51.381 (9)
N1—C61.484 (8)C5—C61.379 (9)
C1—C61.388 (9)C5—H50.9500
O1—N1—O1i124.6 (6)C4—C3—H3120.0
O1—N1—C6117.7 (3)C5—C4—C3120.2 (6)
O1i—N1—C6117.7 (3)C5—C4—Cl2121.1 (5)
C6—C1—C2114.9 (6)C3—C4—Cl2118.7 (5)
C6—C1—I1122.9 (5)C6—C5—C4117.4 (6)
C2—C1—I1122.2 (5)C6—C5—H5121.3
C3—C2—C1122.4 (6)C4—C5—H5121.3
C3—C2—Cl1117.4 (5)C5—C6—C1125.1 (6)
C1—C2—Cl1120.2 (5)C5—C6—N1116.5 (5)
C2—C3—C4119.9 (6)C1—C6—N1118.4 (5)
C2—C3—H3120.0
C6—C1—C2—C30.000 (2)C4—C5—C6—C10.000 (2)
I1—C1—C2—C3180.000 (1)C4—C5—C6—N1180.000 (1)
C6—C1—C2—Cl1180.000 (1)C2—C1—C6—C50.000 (2)
I1—C1—C2—Cl10.000 (1)I1—C1—C6—C5180.000 (1)
C1—C2—C3—C40.000 (2)C2—C1—C6—N1180.000 (1)
Cl1—C2—C3—C4180.000 (1)I1—C1—C6—N10.000 (2)
C2—C3—C4—C50.000 (2)O1—N1—C6—C590.0 (5)
C2—C3—C4—Cl2180.000 (1)O1i—N1—C6—C590.0 (5)
C3—C4—C5—C60.000 (1)O1—N1—C6—C190.0 (5)
Cl2—C4—C5—C6180.000 (1)O1i—N1—C6—C190.0 (5)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl2ii0.952.773.718 (7)179
Symmetry code: (ii) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl2i0.952.773.718 (7)179
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

This work was supported by grants ES05605, ES013661 and ES017425 from the National Institute of Environmental Health Sciences, National Institutes of Health (NIEHS/NIH).

References

First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJoshi, S. N., Vyas, S. M., Duffel, M. W., Parkin, S. & Lehmler, H.-J. (2011). Synthesis, pp. 1045–1054.  Google Scholar
First citationLehmler, H.-J., Harrad, S. J., Huhnerfuss, H., Kania-Korwel, I., Lee, C. M., Lu, Z. & Wong, C. S. (2010). Environ. Sci. Technol. 44, 2757–2766.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLehmler, H.-J. & Robertson, L. W. (2001). Chemosphere, 45, 137–143.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, X., Cao, L., Ruan, C., Ji, B. & Zhou, L. (2012). Acta Cryst. E68, o1500.  CSD CrossRef IUCr Journals Google Scholar
First citationParkin, S. (2013). CIFFIX. http://xray.uky.edu/people/parkin/programs/ciffixGoogle Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSohn, J., Kiburz, B., Li, Z., Deng, L., Safi, A., Pirrung, M. C. & Rudolph, J. (2003). J. Med. Chem. 46, 2580–2588.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTahir, M. N., Arshad, M. N., Khan, I. U. & Shafiq, M. (2009). Acta Cryst. E65, o535.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds