organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Cyanona­phthalen-2-yl 4-hexyl­benzo­ate

aUniversity Malaysia Pahang, Faculty of Industrial Sciences and Technology, 26300 Gambang, Kuantan, Pahang, Malaysia, bRaman Research Institute, C.V. Raman Avenue, Sadashivanagar, Bangalore 560080, India, cSchool of Chemistry Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: lutfor73@gmail.com

(Received 11 April 2014; accepted 22 April 2014; online 30 April 2014)

In the title compound, C24H23NO2, a whole mol­ecule is disordered over two sets of sites with occupancies in a ratio of 0.692 (6):0.308 (6). In the major disorder component, the naphthalene ring system forms a dihedral angle of 68.6 (5)° with the benzene ring. The corresponding angle in the minor component is 81.6 (10)°. In the crystal, mol­ecules are linked into chains propagating along the b-axis direction via weak C—H⋯O hydrogen bonds. The crystal packing is further consolidated by weak C—H⋯π inter­actions.

Related literature

For features of electro-optical display devices, see: Cox & Clecak (1976[Cox, R. J. & Clecak, N. J. (1976). Mol. Cryst. Liq. Cryst. 37, 263-267.]); Reddy & Tschierske (2006[Reddy, R. A. & Tschierske, C. (2006). J. Mater. Chem. 16, 907-961.]); Hanasaki et al. (2011[Hanasaki, T., Kamei, Y., Mandai, A., Uno, K. & Kaneko, K. (2011). Liq. Cryst. 38, 785-792.]) For applications of cyano groups in liquid crystal displays, see: Coates & Gray (1976[Coates, D. & Gray, G. W. (1976). Mol. Cryst. Liq. Cryst. 37, 249-262.]); Klingbiel et al. (1974[Klingbiel, R. T., Genova, D. J., Crisewell, T. R. & Vanmeter, J. P. (1974). J. Am. Chem. Soc, 96, 7625-7631.]); Takezoe & Takanishi (2006[Takezoe, H. & Takanishi, Y. (2006). Jpn. J. Appl. Phys. 45, 597-625.]). For related structures, see: Kuzmina et al. (2010[Kuzmina, L. G., Pestov, S. M., Kochetov, A. N., Churakov, A. V. & Lermontova, E. K. (2010). Crystallogr. Rep. 55, 786-792.]); Blake et al. (1995[Blake, A. J., Fallis, I. A., Parsons, S., Schröder, M. & Bruce, D. W. (1995). Acta Cryst. C51, 2666-2668.]); Li (2006[Li, Y.-H. (2006). Acta Cryst. E62, o5935-o5936.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H23NO2

  • Mr = 357.43

  • Monoclinic, C 2/c

  • a = 14.4712 (2) Å

  • b = 9.5592 (2) Å

  • c = 29.5386 (5) Å

  • β = 98.898 (1)°

  • V = 4036.99 (12) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.59 mm−1

  • T = 298 K

  • 0.29 × 0.11 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.848, Tmax = 0.954

  • 15700 measured reflections

  • 3574 independent reflections

  • 2344 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.268

  • S = 1.10

  • 3574 reflections

  • 348 parameters

  • 73 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2A–C5A/C10A/C11A and C13B–C18B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4A—H4AA⋯O2Ai 0.95 2.44 3.303 (11) 149
C9B—H9BA⋯O2Bii 0.95 2.59 3.352 (11) 138
C14B—H14BCg1iii 0.95 2.85 3.708 (14) 151
C20A—H20ACg2iv 0.99 2.91 3.819 (14) 152
C19B—H19CCg2iv 0.99 2.88 3.746 (19) 146
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y, -z+{\script{3\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Electro-optical display devices require certain desirable features such as large positive dielectric anisotropy, nematic phase, low melting point, stability and lack of color (Cox & Clecak, 1976; Reddy & Tschierske, 2006; Hanasaki et al., 2011). To obtain such properties, a highly polar terminal cyano group can be incorporated to give a large dipole moment. Maximum dipole moment (90 degrees) indicates that the dipole moment is exactly parallel to the molecular short axis, which acts along the long axis of the molecule and helps to give the proper alignment for liquid crystal displays (Coates & Gray, 1976; Klingbiel et al., 1974; Takezoe & Takanishi, 2006). Here we report the synthesis and single-crystal X-ray study of an unsymmetrical naphthalene liquid crystal molecule. The shows a nematic phase after 379 K then a stable phase until an isotropic state at 411 K on a heating cycle. Upon cooling from the isotropic state, the nematic phase was reformed at 410 K, the phase is stabilized before crystallizes at 321 K.

The molecular structure of the title compound is shown in Fig 1. The whole molecule of the title compound is disordered over two positions with a refined site-occupancy ratio of 0.692 (6): 0.308 (6). For the major component, the naphthalene ring system (C2A—C11A) makes a dihedral angle of 68.6 (5)° with the benzene ring (C13A—C18A). In the minor component, the dihedral angle formed between the naphthalene ring system (C2B—C11B) and the benzene ring (C13B—C18B) is 81.6 (10)°. All the bond lengths (Allen et al., 1987) and angles are in normal ranges and compared with the closely related structures (Kuzmina et al., 2010; Blake et al., 1995; Li, 2006)

In the crystal, molecules are linked into chains propagating along the b-axis via weak C—H···O hydrogen bonds. Weak C—H···π interactions are also observed (see Table 1).

Related literature top

For features of electro-optical display devices, see: Cox & Clecak (1976); Reddy & Tschierske (2006); Hanasaki et al. (2011) For applications of cyano groups in liquid crystal displays, see: Coates & Gray (1976); Klingbiel et al. (1974); Takezoe & Takanishi (2006). For related structures, see: Kuzmina et al. (2010); Blake et al. (1995); Li (2006). For standard bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 4-hexylbenzoic acid (1.0 mmol), 2-cyano-6-hydroxy-naphthalene (1.0 mmol), dicyclohexylcarbodiimide (1.2 mmol) and catalytic quantity of N,N-dimethylaminopyridine in 5 ml of dry dichloromethane was stirred at room temperature for 1 h. Progress of the reaction was monitored by TLC (ethyl acetate: pet ether 2:8). After completion of the reaction, the reaction mass was diluted with water and extracted into dichloromethane (25 ml). The organic layer was washed with diluted acetic acid and water. The organic layer was dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The crude product was purified by column chromatography by using ethyl acetate: petroleum ether (2:8) as eluent and the product was recrystallization from chloroform. Yield = 70% as colourless block crystals. IR(KBr): v = 2920, 2856, 2224, 1724, 1454, 1066, 902 cm-1; 1H NMR (400 MHz, CDCl3): δ = 8.11–6.98 (m, 10H, Ar—H), 2.54 (t, J = 1.37 Hz, 2H, Ar—CH2–), 1.47–1.44 (m, 8H, alkyl-CH2–), 0.91 (m, 3H, alkyl-CH3) p.p.m.; Elemental analysis calcd for C24H23NO2 (%): C 80.64, H 6.49, N 3.92; found. C 80.69, H 6.54, N 4.07.

Refinement top

The title compound is disordered over two positions with a refined site-occupancy ratio of 0.692 (6): 0.308 (6) and the minor disordered component was refined isotropically. All H atoms were positioned geometrically [C—H = 0.95–0.99 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The restraints of same geometries were applied to all disordered components. Identical anisotropic displacement and distance restraint were used in the final refinement. Similarity were applied to the disordered atoms. DFIX restraints of 1.50 (1) Å were used for the long-disordered alkyl chains such as C19B—C20B, C21B—C22B, C22B—C23B, C23B—C24B and C23A—C24A distances. Same Uij parameters restraints were used for C22A/C23A and C22B/C23B atom pairs. One outlier (1 1 10) was omitted from the reflection data.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound showing 30% probability displacement ellipsoids for the major component of disorder. Open bonds show the minor disordered component.
[Figure 2] Fig. 2. : The crystal packing of the title compound. Dashed lines represent the intermolecular hydrogen bonds. Only major disordered component is shown.
6-Cyanonaphthalen-2-yl 4-hexylbenzoate top
Crystal data top
C24H23NO2F(000) = 1520
Mr = 357.43Dx = 1.176 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 5436 reflections
a = 14.4712 (2) Åθ = 3.0–59.5°
b = 9.5592 (2) ŵ = 0.59 mm1
c = 29.5386 (5) ÅT = 298 K
β = 98.898 (1)°Block, colourless
V = 4036.99 (12) Å30.29 × 0.11 × 0.08 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3574 independent reflections
Radiation source: fine-focus sealed tube2344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 67.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.848, Tmax = 0.954k = 1110
15700 measured reflectionsl = 3534
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.268H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1621P)2 + 0.4013P]
where P = (Fo2 + 2Fc2)/3
3574 reflections(Δ/σ)max = 0.001
348 parametersΔρmax = 0.25 e Å3
73 restraintsΔρmin = 0.22 e Å3
Crystal data top
C24H23NO2V = 4036.99 (12) Å3
Mr = 357.43Z = 8
Monoclinic, C2/cCu Kα radiation
a = 14.4712 (2) ŵ = 0.59 mm1
b = 9.5592 (2) ÅT = 298 K
c = 29.5386 (5) Å0.29 × 0.11 × 0.08 mm
β = 98.898 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3574 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2344 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.954Rint = 0.026
15700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06973 restraints
wR(F2) = 0.268H-atom parameters constrained
S = 1.10Δρmax = 0.25 e Å3
3574 reflectionsΔρmin = 0.22 e Å3
348 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.4778 (8)0.1930 (11)0.99962 (18)0.145 (3)0.692 (6)
C1A0.4583 (9)0.1754 (13)0.9609 (2)0.161 (4)0.692 (6)
C2A0.4351 (12)0.1379 (10)0.9130 (2)0.121 (5)0.692 (6)
C3A0.4307 (11)0.0035 (9)0.8995 (3)0.125 (5)0.692 (6)
H3AA0.44150.07580.92180.150*0.692 (6)
C4A0.4110 (9)0.0350 (9)0.8543 (3)0.130 (4)0.692 (6)
H4AA0.40450.13040.84530.156*0.692 (6)
C5A0.3996 (15)0.0695 (7)0.8201 (2)0.095 (5)0.692 (6)
C6A0.3754 (5)0.0381 (5)0.77329 (15)0.090 (2)0.692 (6)
H6AA0.37070.05660.76350.108*0.692 (6)
C7A0.3590 (10)0.1417 (10)0.7424 (2)0.113 (5)0.692 (6)
C8A0.3659 (11)0.2835 (11)0.7551 (3)0.154 (5)0.692 (6)
H8AA0.35570.35500.73250.185*0.692 (6)
C9A0.3874 (10)0.3163 (8)0.8002 (3)0.146 (5)0.692 (6)
H9AA0.38950.41170.80930.175*0.692 (6)
C10A0.4066 (15)0.2110 (8)0.8340 (2)0.109 (4)0.692 (6)
C11A0.4239 (8)0.2407 (9)0.8809 (3)0.137 (4)0.692 (6)
H11A0.42800.33560.89060.164*0.692 (6)
O1A0.3432 (3)0.1110 (9)0.69588 (13)0.116 (3)0.692 (6)
O2A0.1939 (3)0.1789 (6)0.69048 (16)0.1168 (13)0.692 (6)
C12A0.2548 (5)0.1298 (13)0.6719 (2)0.122 (4)0.692 (6)
C13A0.2471 (4)0.0879 (13)0.62349 (17)0.099 (2)0.692 (6)
C14A0.3195 (3)0.0298 (8)0.60548 (14)0.1111 (15)0.692 (6)
H14A0.37770.01330.62450.133*0.692 (6)
C15A0.3080 (3)0.0047 (8)0.55975 (13)0.1260 (17)0.692 (6)
H15A0.35900.04490.54770.151*0.692 (6)
C16A0.2256 (3)0.0168 (8)0.53108 (13)0.1217 (16)0.692 (6)
C17A0.1539 (5)0.0786 (19)0.5497 (2)0.134 (4)0.692 (6)
H17A0.09620.09770.53060.161*0.692 (6)
C18A0.1643 (5)0.1128 (14)0.5950 (2)0.137 (4)0.692 (6)
H18A0.11370.15440.60700.164*0.692 (6)
C19A0.2169 (5)0.0254 (9)0.48135 (16)0.171 (3)0.692 (6)
H19A0.28020.02360.47260.206*0.692 (6)
H19B0.19480.12350.47870.206*0.692 (6)
C20A0.1562 (6)0.0569 (8)0.44850 (17)0.198 (3)0.692 (6)
H20A0.17380.15630.45360.237*0.692 (6)
H20B0.09160.04650.45530.237*0.692 (6)
C21A0.1545 (5)0.0258 (10)0.39913 (17)0.181 (3)0.692 (6)
H21A0.10730.08790.38150.218*0.692 (6)
H21B0.21610.05240.39120.218*0.692 (6)
C22A0.1342 (9)0.1186 (11)0.3829 (2)0.250 (4)0.692 (6)
H22A0.08630.16300.39870.300*0.692 (6)
H22B0.19140.17700.38720.300*0.692 (6)
C23A0.0965 (9)0.0943 (9)0.3306 (2)0.250 (4)0.692 (6)
H23A0.02770.08300.32500.300*0.692 (6)
H23B0.12610.01170.31850.300*0.692 (6)
C24A0.1261 (7)0.2275 (10)0.3103 (3)0.231 (4)0.692 (6)
H24A0.11770.21880.27680.347*0.692 (6)
H24B0.08790.30500.31870.347*0.692 (6)
H24C0.19210.24580.32200.347*0.692 (6)
N1B0.459 (2)0.187 (4)1.0011 (6)0.194 (12)*0.308 (6)
C1B0.4572 (10)0.1627 (15)0.9629 (3)0.087 (3)*0.308 (6)
C2B0.441 (2)0.1329 (12)0.9143 (3)0.088 (6)*0.308 (6)
C3B0.4330 (17)0.0078 (13)0.8999 (4)0.090 (7)*0.308 (6)
H3BA0.44090.08130.92180.108*0.308 (6)
C4B0.4144 (10)0.0374 (12)0.8545 (3)0.077 (4)*0.308 (6)
H4BA0.41560.13160.84440.092*0.308 (6)
C5B0.393 (4)0.0715 (14)0.8222 (4)0.095 (12)*0.308 (6)
C6B0.379 (2)0.0423 (19)0.7750 (4)0.149 (11)*0.308 (6)
H6BA0.37770.05180.76470.179*0.308 (6)
C7B0.366 (2)0.1472 (15)0.7444 (4)0.099 (9)*0.308 (6)
C8B0.3689 (13)0.2883 (13)0.7582 (4)0.094 (5)*0.308 (6)
H8BA0.35700.36080.73600.112*0.308 (6)
C9B0.3894 (12)0.3195 (13)0.8036 (4)0.093 (5)*0.308 (6)
H9BA0.39700.41440.81290.112*0.308 (6)
C10B0.399 (3)0.2120 (13)0.8370 (4)0.088 (6)*0.308 (6)
C11B0.4239 (11)0.2405 (12)0.8838 (3)0.080 (4)*0.308 (6)
H11B0.42890.33460.89430.096*0.308 (6)
O1B0.3470 (9)0.116 (2)0.6980 (4)0.148 (9)*0.308 (6)
O2B0.1958 (7)0.1460 (11)0.6993 (3)0.103 (3)*0.308 (6)
C12B0.2563 (6)0.1302 (17)0.6760 (3)0.068 (3)*0.308 (6)
C13B0.2474 (8)0.111 (3)0.6263 (3)0.085 (5)*0.308 (6)
C14B0.3233 (8)0.0828 (13)0.6055 (3)0.110 (5)*0.308 (6)
H14B0.38380.07510.62310.132*0.308 (6)
C15B0.3109 (8)0.0656 (17)0.5587 (4)0.144 (6)*0.308 (6)
H15B0.36360.04360.54440.173*0.308 (6)
C16B0.2255 (8)0.0793 (15)0.5321 (3)0.122 (5)*0.308 (6)
C17B0.1482 (10)0.092 (4)0.5540 (5)0.131 (9)*0.308 (6)
H17B0.08710.08620.53690.157*0.308 (6)
C18B0.1600 (7)0.1134 (19)0.6002 (4)0.084 (4)*0.308 (6)
H18B0.10680.13020.61470.101*0.308 (6)
C19B0.2193 (12)0.0783 (14)0.4804 (4)0.176 (6)*0.308 (6)
H19C0.18460.16240.46780.211*0.308 (6)
H19D0.28320.08410.47260.211*0.308 (6)
C20B0.1719 (10)0.0493 (14)0.4583 (4)0.150 (4)*0.308 (6)
H20C0.10420.04350.45990.180*0.308 (6)
H20D0.19690.13290.47580.180*0.308 (6)
C21B0.1845 (9)0.068 (2)0.4092 (4)0.197 (7)*0.308 (6)
H21C0.21720.01700.40050.237*0.308 (6)
H21D0.22800.14700.40830.237*0.308 (6)
C22B0.1034 (8)0.0921 (19)0.3719 (4)0.169 (5)*0.308 (6)
H22C0.06460.00660.36650.202*0.308 (6)
H22D0.06380.16920.38040.202*0.308 (6)
C23B0.1438 (8)0.130 (2)0.3296 (4)0.169 (5)*0.308 (6)
H23D0.18180.05160.32040.202*0.308 (6)
H23E0.18360.21400.33490.202*0.308 (6)
C24B0.0605 (9)0.157 (2)0.2937 (4)0.180 (6)*0.308 (6)
H24D0.08150.18980.26560.270*0.308 (6)
H24G0.02470.07010.28730.270*0.308 (6)
H24E0.02080.22810.30480.270*0.308 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.162 (5)0.174 (5)0.093 (3)0.048 (4)0.003 (2)0.042 (2)
C1A0.165 (6)0.177 (8)0.137 (5)0.058 (5)0.011 (4)0.031 (4)
C2A0.112 (6)0.146 (7)0.104 (4)0.031 (3)0.011 (2)0.025 (3)
C3A0.132 (7)0.131 (6)0.105 (4)0.023 (3)0.000 (2)0.005 (2)
C4A0.143 (6)0.111 (4)0.131 (5)0.009 (3)0.004 (3)0.014 (2)
C5A0.080 (4)0.103 (6)0.100 (6)0.0027 (15)0.011 (2)0.0106 (19)
C6A0.082 (2)0.097 (3)0.091 (3)0.0071 (14)0.0105 (14)0.0054 (15)
C7A0.095 (5)0.146 (8)0.098 (5)0.012 (3)0.0154 (19)0.001 (2)
C8A0.161 (7)0.145 (6)0.155 (6)0.005 (3)0.018 (4)0.038 (4)
C9A0.173 (7)0.106 (4)0.156 (7)0.017 (3)0.015 (4)0.008 (3)
C10A0.097 (6)0.106 (5)0.125 (5)0.015 (2)0.019 (3)0.011 (2)
C11A0.140 (5)0.119 (4)0.149 (6)0.038 (3)0.016 (3)0.036 (3)
O1A0.0883 (19)0.176 (5)0.084 (2)0.0302 (17)0.0133 (10)0.0084 (14)
O2A0.110 (2)0.135 (3)0.108 (2)0.0322 (19)0.0273 (16)0.014 (2)
C12A0.113 (4)0.118 (4)0.140 (6)0.019 (2)0.034 (3)0.027 (3)
C13A0.104 (3)0.091 (5)0.103 (4)0.017 (2)0.0192 (19)0.018 (2)
C14A0.111 (3)0.125 (4)0.099 (3)0.027 (3)0.0207 (18)0.013 (2)
C15A0.127 (3)0.153 (5)0.100 (3)0.041 (3)0.022 (2)0.008 (2)
C16A0.142 (4)0.122 (4)0.100 (3)0.028 (3)0.015 (2)0.003 (2)
C17A0.126 (5)0.152 (7)0.114 (4)0.033 (3)0.018 (3)0.002 (3)
C18A0.125 (4)0.144 (5)0.140 (6)0.034 (3)0.018 (3)0.000 (4)
C19A0.177 (5)0.216 (8)0.113 (4)0.050 (5)0.004 (3)0.025 (4)
C20A0.286 (9)0.192 (7)0.111 (4)0.000 (6)0.015 (4)0.012 (4)
C21A0.174 (5)0.251 (9)0.115 (4)0.001 (6)0.011 (3)0.006 (4)
C22A0.297 (9)0.307 (10)0.127 (4)0.007 (7)0.028 (4)0.004 (4)
C23A0.297 (9)0.307 (10)0.127 (4)0.007 (7)0.028 (4)0.004 (4)
C24A0.258 (9)0.285 (11)0.156 (6)0.028 (8)0.048 (6)0.035 (6)
Geometric parameters (Å, º) top
N1A—C1A1.146 (6)N1B—C1B1.148 (9)
C1A—C2A1.449 (5)C1B—C2B1.446 (7)
C2A—C11A1.358 (6)C2B—C11B1.364 (7)
C2A—C3A1.408 (6)C2B—C3B1.411 (8)
C3A—C4A1.356 (5)C3B—C4B1.356 (7)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.411 (6)C4B—C5B1.415 (8)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.406 (5)C5B—C6B1.405 (8)
C5A—C10A1.413 (5)C5B—C10B1.412 (7)
C6A—C7A1.343 (5)C6B—C7B1.342 (8)
C6A—H6AA0.9500C6B—H6BA0.9500
C7A—O1A1.389 (5)C7B—O1B1.388 (8)
C7A—C8A1.406 (6)C7B—C8B1.407 (8)
C8A—C9A1.358 (6)C8B—C9B1.361 (8)
C8A—H8AA0.9500C8B—H8BA0.9500
C9A—C10A1.414 (6)C9B—C10B1.417 (8)
C9A—H9AA0.9500C9B—H9BA0.9500
C10A—C11A1.397 (6)C10B—C11B1.399 (8)
C11A—H11A0.9500C11B—H11B0.9500
O1A—C12A1.375 (5)O1B—C12B1.377 (8)
O2A—C12A1.204 (5)O2B—C12B1.204 (7)
C12A—C13A1.473 (6)C12B—C13B1.465 (8)
C13A—C14A1.365 (5)C13B—C14B1.366 (8)
C13A—C18A1.374 (5)C13B—C18B1.375 (7)
C14A—C15A1.375 (5)C14B—C15B1.377 (8)
C14A—H14A0.9500C14B—H14B0.9500
C15A—C16A1.367 (5)C15B—C16B1.365 (9)
C15A—H15A0.9500C15B—H15B0.9500
C16A—C17A1.380 (7)C16B—C17B1.382 (10)
C16A—C19A1.510 (6)C16B—C19B1.513 (9)
C17A—C18A1.363 (7)C17B—C18B1.366 (9)
C17A—H17A0.9500C17B—H17B0.9500
C18A—H18A0.9500C18B—H18B0.9500
C19A—C20A1.438 (7)C19B—C20B1.4992 (11)
C19A—H19A0.9900C19B—H19C0.9900
C19A—H19B0.9900C19B—H19D0.9900
C20A—C21A1.485 (6)C20B—C21B1.4998 (11)
C20A—H20A0.9900C20B—H20C0.9900
C20A—H20B0.9900C20B—H20D0.9900
C21A—C22A1.476 (8)C21B—C22B1.4990 (11)
C21A—H21A0.9900C21B—H21C0.9900
C21A—H21B0.9900C21B—H21D0.9900
C22A—C23A1.574 (7)C22B—C23B1.5011 (11)
C22A—H22A0.9900C22B—H22C0.9900
C22A—H22B0.9900C22B—H22D0.9900
C23A—C24A1.4984 (11)C23B—C24B1.4995 (11)
C23A—H23A0.9900C23B—H23D0.9900
C23A—H23B0.9900C23B—H23E0.9900
C24A—H24A0.9800C24B—H24D0.9800
C24A—H24B0.9800C24B—H24G0.9800
C24A—H24C0.9800C24B—H24E0.9800
N1A—C1A—C2A174.0 (11)C3B—C2B—C1B118.7 (8)
C11A—C2A—C3A120.1 (5)C4B—C3B—C2B119.4 (8)
C11A—C2A—C1A119.2 (6)C4B—C3B—H3BA120.3
C3A—C2A—C1A120.5 (6)C2B—C3B—H3BA120.3
C4A—C3A—C2A119.1 (5)C3B—C4B—C5B120.3 (8)
C4A—C3A—H3AA120.5C3B—C4B—H4BA119.9
C2A—C3A—H3AA120.5C5B—C4B—H4BA119.9
C3A—C4A—C5A122.0 (6)C6B—C5B—C10B119.3 (8)
C3A—C4A—H4AA119.0C6B—C5B—C4B120.6 (10)
C5A—C4A—H4AA119.0C10B—C5B—C4B119.5 (8)
C6A—C5A—C4A122.4 (5)C7B—C6B—C5B120.2 (10)
C6A—C5A—C10A119.1 (4)C7B—C6B—H6BA119.9
C4A—C5A—C10A118.4 (5)C5B—C6B—H6BA119.9
C7A—C6A—C5A120.1 (4)C6B—C7B—O1B119.5 (10)
C7A—C6A—H6AA119.9C6B—C7B—C8B121.8 (9)
C5A—C6A—H6AA119.9O1B—C7B—C8B118.8 (9)
C6A—C7A—O1A120.0 (6)C9B—C8B—C7B119.1 (8)
C6A—C7A—C8A122.2 (5)C9B—C8B—H8BA120.4
O1A—C7A—C8A117.5 (5)C7B—C8B—H8BA120.4
C9A—C8A—C7A118.7 (6)C8B—C9B—C10B120.7 (8)
C9A—C8A—H8AA120.6C8B—C9B—H9BA119.6
C7A—C8A—H8AA120.6C10B—C9B—H9BA119.6
C8A—C9A—C10A121.2 (6)C11B—C10B—C5B119.1 (7)
C8A—C9A—H9AA119.4C11B—C10B—C9B122.0 (9)
C10A—C9A—H9AA119.4C5B—C10B—C9B118.6 (7)
C11A—C10A—C5A118.4 (5)C2B—C11B—C10B119.9 (8)
C11A—C10A—C9A122.7 (6)C2B—C11B—H11B120.1
C5A—C10A—C9A118.6 (5)C10B—C11B—H11B120.1
C2A—C11A—C10A121.9 (5)C12B—O1B—C7B118.1 (13)
C2A—C11A—H11A119.0O2B—C12B—O1B117.8 (9)
C10A—C11A—H11A119.0O2B—C12B—C13B129.0 (8)
C12A—O1A—C7A118.6 (6)O1B—C12B—C13B113.0 (7)
O2A—C12A—O1A120.4 (5)C14B—C13B—C18B119.0 (7)
O2A—C12A—C13A126.7 (5)C14B—C13B—C12B121.6 (7)
O1A—C12A—C13A112.9 (5)C18B—C13B—C12B119.3 (8)
C14A—C13A—C18A118.7 (5)C13B—C14B—C15B119.2 (9)
C14A—C13A—C12A122.8 (4)C13B—C14B—H14B120.4
C18A—C13A—C12A118.4 (5)C15B—C14B—H14B120.4
C13A—C14A—C15A119.8 (4)C16B—C15B—C14B122.1 (9)
C13A—C14A—H14A120.1C16B—C15B—H15B118.9
C15A—C14A—H14A120.1C14B—C15B—H15B118.9
C16A—C15A—C14A122.3 (4)C15B—C16B—C17B117.7 (8)
C16A—C15A—H15A118.8C15B—C16B—C19B119.1 (9)
C14A—C15A—H15A118.8C17B—C16B—C19B123.1 (9)
C15A—C16A—C17A117.1 (4)C18B—C17B—C16B119.8 (10)
C15A—C16A—C19A119.8 (4)C18B—C17B—H17B120.1
C17A—C16A—C19A123.1 (4)C16B—C17B—H17B120.1
C18A—C17A—C16A121.1 (5)C17B—C18B—C13B121.3 (9)
C18A—C17A—H17A119.4C17B—C18B—H18B119.4
C16A—C17A—H17A119.4C13B—C18B—H18B119.4
C17A—C18A—C13A120.9 (6)C20B—C19B—C16B113.4 (9)
C17A—C18A—H18A119.5C20B—C19B—H19C108.9
C13A—C18A—H18A119.5C16B—C19B—H19C108.9
C20A—C19A—C16A117.4 (5)C20B—C19B—H19D108.9
C20A—C19A—H19A107.9C16B—C19B—H19D108.9
C16A—C19A—H19A107.9H19C—C19B—H19D107.7
C20A—C19A—H19B107.9C19B—C20B—C21B113.6 (9)
C16A—C19A—H19B107.9C19B—C20B—H20C108.8
H19A—C19A—H19B107.2C21B—C20B—H20C108.8
C19A—C20A—C21A118.0 (6)C19B—C20B—H20D108.8
C19A—C20A—H20A107.8C21B—C20B—H20D108.8
C21A—C20A—H20A107.8H20C—C20B—H20D107.7
C19A—C20A—H20B107.8C22B—C21B—C20B122.1 (10)
C21A—C20A—H20B107.8C22B—C21B—H21C106.8
H20A—C20A—H20B107.2C20B—C21B—H21C106.8
C22A—C21A—C20A118.6 (6)C22B—C21B—H21D106.8
C22A—C21A—H21A107.7C20B—C21B—H21D106.8
C20A—C21A—H21A107.7H21C—C21B—H21D106.7
C22A—C21A—H21B107.7C21B—C22B—C23B106.7 (8)
C20A—C21A—H21B107.7C21B—C22B—H22C110.4
H21A—C21A—H21B107.1C23B—C22B—H22C110.4
C21A—C22A—C23A101.6 (6)C21B—C22B—H22D110.4
C21A—C22A—H22A111.4C23B—C22B—H22D110.4
C23A—C22A—H22A111.4H22C—C22B—H22D108.6
C21A—C22A—H22B111.4C24B—C23B—C22B104.8 (8)
C23A—C22A—H22B111.4C24B—C23B—H23D110.8
H22A—C22A—H22B109.3C22B—C23B—H23D110.8
C24A—C23A—C22A101.0 (6)C24B—C23B—H23E110.8
C24A—C23A—H23A111.6C22B—C23B—H23E110.8
C22A—C23A—H23A111.6H23D—C23B—H23E108.9
C24A—C23A—H23B111.6C23B—C24B—H24D109.5
C22A—C23A—H23B111.6C23B—C24B—H24G109.5
H23A—C23A—H23B109.4H24D—C24B—H24G109.5
N1B—C1B—C2B172 (2)C23B—C24B—H24E109.5
C11B—C2B—C3B121.5 (8)H24D—C24B—H24E109.5
C11B—C2B—C1B119.5 (8)H24G—C24B—H24E109.5
C11A—C2A—C3A—C4A3 (2)C11B—C2B—C3B—C4B4 (4)
C1A—C2A—C3A—C4A178.5 (13)C1B—C2B—C3B—C4B178 (2)
C2A—C3A—C4A—C5A3 (2)C2B—C3B—C4B—C5B7 (4)
C3A—C4A—C5A—C6A177.4 (15)C3B—C4B—C5B—C6B177 (3)
C3A—C4A—C5A—C10A2 (3)C3B—C4B—C5B—C10B6 (6)
C4A—C5A—C6A—C7A175.3 (16)C10B—C5B—C6B—C7B4 (6)
C10A—C5A—C6A—C7A0 (3)C4B—C5B—C6B—C7B175 (3)
C5A—C6A—C7A—O1A174.3 (13)C5B—C6B—C7B—O1B177 (3)
C5A—C6A—C7A—C8A1 (2)C5B—C6B—C7B—C8B2 (5)
C6A—C7A—C8A—C9A2 (2)C6B—C7B—C8B—C9B3 (4)
O1A—C7A—C8A—C9A175.7 (12)O1B—C7B—C8B—C9B178.5 (19)
C7A—C8A—C9A—C10A3 (2)C7B—C8B—C9B—C10B5 (4)
C6A—C5A—C10A—C11A175.4 (16)C6B—C5B—C10B—C11B173 (4)
C4A—C5A—C10A—C11A0 (3)C4B—C5B—C10B—C11B2 (7)
C6A—C5A—C10A—C9A1 (3)C6B—C5B—C10B—C9B1 (7)
C4A—C5A—C10A—C9A174.6 (16)C4B—C5B—C10B—C9B172 (3)
C8A—C9A—C10A—C11A176.5 (16)C8B—C9B—C10B—C11B178 (3)
C8A—C9A—C10A—C5A2 (3)C8B—C9B—C10B—C5B4 (5)
C3A—C2A—C11A—C10A1 (3)C3B—C2B—C11B—C10B1 (4)
C1A—C2A—C11A—C10A176.5 (15)C1B—C2B—C11B—C10B174 (3)
C5A—C10A—C11A—C2A1 (3)C5B—C10B—C11B—C2B0 (5)
C9A—C10A—C11A—C2A174.8 (16)C9B—C10B—C11B—C2B174 (3)
C6A—C7A—O1A—C12A110.0 (13)C6B—C7B—O1B—C12B103 (3)
C8A—C7A—O1A—C12A76.0 (16)C8B—C7B—O1B—C12B75 (3)
C7A—O1A—C12A—O2A3.8 (16)C7B—O1B—C12B—O2B12 (2)
C7A—O1A—C12A—C13A177.7 (9)C7B—O1B—C12B—C13B173.2 (17)
O2A—C12A—C13A—C14A178.4 (11)O2B—C12B—C13B—C14B174.5 (18)
O1A—C12A—C13A—C14A3.2 (17)O1B—C12B—C13B—C14B0 (3)
O2A—C12A—C13A—C18A4 (2)O2B—C12B—C13B—C18B2 (4)
O1A—C12A—C13A—C18A174.6 (11)O1B—C12B—C13B—C18B176 (2)
C18A—C13A—C14A—C15A1.2 (15)C18B—C13B—C14B—C15B4 (3)
C12A—C13A—C14A—C15A178.9 (10)C12B—C13B—C14B—C15B180.0 (18)
C13A—C14A—C15A—C16A0.1 (12)C13B—C14B—C15B—C16B2 (2)
C14A—C15A—C16A—C17A1.6 (13)C14B—C15B—C16B—C17B9 (3)
C14A—C15A—C16A—C19A179.1 (7)C14B—C15B—C16B—C19B171.8 (12)
C15A—C16A—C17A—C18A2 (2)C15B—C16B—C17B—C18B10 (4)
C19A—C16A—C17A—C18A178.8 (12)C19B—C16B—C17B—C18B170 (2)
C16A—C17A—C18A—C13A1 (2)C16B—C17B—C18B—C13B5 (5)
C14A—C13A—C18A—C17A1 (2)C14B—C13B—C18B—C17B2 (4)
C12A—C13A—C18A—C17A178.7 (14)C12B—C13B—C18B—C17B178 (3)
C15A—C16A—C19A—C20A148.2 (8)C15B—C16B—C19B—C20B111.4 (16)
C17A—C16A—C19A—C20A31.1 (15)C17B—C16B—C19B—C20B68 (3)
C16A—C19A—C20A—C21A173.8 (6)C16B—C19B—C20B—C21B166.8 (12)
C19A—C20A—C21A—C22A54.9 (12)C19B—C20B—C21B—C22B129.0 (19)
C20A—C21A—C22A—C23A156.5 (8)C20B—C21B—C22B—C23B170.5 (17)
C21A—C22A—C23A—C24A149.9 (9)C21B—C22B—C23B—C24B178.6 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2A–C5A/C10A/C11A and C13B–C18B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4A—H4AA···O2Ai0.952.443.303 (11)149
C9B—H9BA···O2Bii0.952.593.352 (11)138
C14B—H14B···Cg1iii0.952.853.708 (14)151
C20A—H20A···Cg2iv0.992.913.819 (14)152
C19B—H19C···Cg2iv0.992.883.746 (19)146
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y, z+3/2; (iv) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2A–C5A/C10A/C11A and C13B–C18B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4A—H4AA···O2Ai0.952.443.303 (11)149
C9B—H9BA···O2Bii0.952.593.352 (11)138
C14B—H14B···Cg1iii0.952.853.708 (14)151
C20A—H20A···Cg2iv0.992.913.819 (14)152
C19B—H19C···Cg2iv0.992.883.746 (19)146
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y, z+3/2; (iv) x+1/2, y+1/2, z+1.
 

Acknowledgements

This research was supported by a PRGS Research Grant (No. RDU 130803).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBlake, A. J., Fallis, I. A., Parsons, S., Schröder, M. & Bruce, D. W. (1995). Acta Cryst. C51, 2666–2668.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoates, D. & Gray, G. W. (1976). Mol. Cryst. Liq. Cryst. 37, 249–262.  CrossRef CAS Google Scholar
First citationCox, R. J. & Clecak, N. J. (1976). Mol. Cryst. Liq. Cryst. 37, 263–267.  CrossRef CAS Google Scholar
First citationHanasaki, T., Kamei, Y., Mandai, A., Uno, K. & Kaneko, K. (2011). Liq. Cryst. 38, 785–792.  CrossRef Google Scholar
First citationKlingbiel, R. T., Genova, D. J., Crisewell, T. R. & Vanmeter, J. P. (1974). J. Am. Chem. Soc, 96, 7625–7631.  CrossRef Google Scholar
First citationKuzmina, L. G., Pestov, S. M., Kochetov, A. N., Churakov, A. V. & Lermontova, E. K. (2010). Crystallogr. Rep. 55, 786–792.  CAS Google Scholar
First citationLi, Y.-H. (2006). Acta Cryst. E62, o5935–o5936.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReddy, R. A. & Tschierske, C. (2006). J. Mater. Chem. 16, 907–961.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakezoe, H. & Takanishi, Y. (2006). Jpn. J. Appl. Phys. 45, 597–625.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds