metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m187-m188

catena-Poly[[aqua­zinc(II)]-μ-N,N′-bis­­(2-cyano-3-eth­­oxy-3-oxoprop-1-en­yl)benzene-1,2-diaminido]

aIKFT, KIT-Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
*Correspondence e-mail: olaf.walter@ec.europa.eu

(Received 21 February 2014; accepted 14 April 2014; online 18 April 2014)

The slightly yellow-coloured title complex, [Zn(C18H16N4O4)(H2O)]n, crystallizes with one mol­ecule in the asymmetric unit. The structure clearly shows the mer-η4O,O,N,N-binding mode of the N,N′-bis-(2-cyano-ethyl­propeno­yl)-1,2-di­amido­benzene ligand stabilizing the Zn centre of a distorted octa­hedral environment. The fifth coordination site in one apical position is held by a coordinating solvent water mol­ecule whereas the complete octa­hedral coordination sphere is completed by coordination of one N atom from a CN group of a neighbouring mol­ecule, leading to the final polymeric structure consisting of zigzag staggered chains in parallel orientation along the c-axis direction. Between the coord­in­ated water solvent molecule and the N atoms of uncoord­in­ated cyano-groups of neighboured units, two H-bridge bonds are formed. One of these H-bridge bonds is of inter- whereas the other of intra-strand nature, leading to a two-dimensional network parallel to (110) stabilizing the supramolecular structure. Six Zn—O or Zn—N bonds are found with lengths ranging from 2.061 (1) to 2.185 (1) Å and bond angles about the Zn atom are clustered in the ranges 79.83 (4)–104.21 (4) and 167.05 (4)–170.28 (4)°.

Related literature

The structures of ZnII complexes with ligands stabilizing comparable complex geometries can be found in Barnard et al. (2009[Barnard, P. J., Holland, J. P., Bayly, S. R., Wadas, T. J., Anderson, C. J. & Dilworth, J. R. (2009). Inorg. Chem. 48, 7117-7126.]), Ryu et al. (2003[Ryu, J. Y., Lee, J. Y., Seo, J. S., Kim, C. & Kim, Y. (2003). Appl. Organomet. Chem. 17, 803-804.]) or Tanase et al. (2001[Tanase, T., Inukai, H., Onaka, T., Kato, M., Yano, S. & Lippard, S. J. (2001). Inorg. Chem. 40, 3943-3953.]). In Tanase et al. (2001[Tanase, T., Inukai, H., Onaka, T., Kato, M., Yano, S. & Lippard, S. J. (2001). Inorg. Chem. 40, 3943-3953.]), the ligands show comparable N,N,O,O-coordination with respect to a different ligand backbone whereas in Ryu et al. (2003[Ryu, J. Y., Lee, J. Y., Seo, J. S., Kim, C. & Kim, Y. (2003). Appl. Organomet. Chem. 17, 803-804.]) and Barnard et al. (2009[Barnard, P. J., Holland, J. P., Bayly, S. R., Wadas, T. J., Anderson, C. J. & Dilworth, J. R. (2009). Inorg. Chem. 48, 7117-7126.]), the ligands with N,N,N,N-coordination are di­amino­benzene derivatives. In Fuchs et al. (2014[Fuchs, M. A., Staudt, S., Altesleben, C., Walter, O., Zevaco, T. A. & Dinjus, E. (2014). Dalton Trans. 43, 2344-2347.]), a mononuclear Zn complex is presented with the same ligand but a dmso mol­ecule in the coordination sphere of the metal stabilizing a different complex geometry. For the synthesis, see: Jäger et al. (1985[Jäger, E.-G., Häussler, E., Rudolph, M. & Schneider, A. (1985). Z. Anorg. Allg. Chem. 525, 67-85.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C18H16N4O4)(H2O)]

  • Mr = 435.73

  • Orthorhombic, P b c a

  • a = 13.9312 (11) Å

  • b = 9.2315 (7) Å

  • c = 27.423 (2) Å

  • V = 3526.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 100 K

  • 0.10 × 0.09 × 0.07 mm

Data collection
  • Bruker APEXII Quazar diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.953

  • 60234 measured reflections

  • 4294 independent reflections

  • 3812 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.063

  • S = 1.04

  • 4294 reflections

  • 268 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯N4i 0.79 (2) 2.21 (2) 2.9823 (17) 168 (2)
O5—H52⋯N4ii 0.83 (2) 2.12 (2) 2.9405 (16) 174 (2)
Symmetry codes: (i) x, y-1, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The polymeric chain structure of title compound can be described by single units of to a Zn-centre mer-η4-O,O-N,N-coordinated N,N'-bis-(2-cyano-ethylpropenoyl)-1,2-diamidobenzene ligand with a water solvent molecule in one apical position over the coordination plane. The polymeric structure and completeness of the coordination sphere is obtained by intermolecular coordination of a N-atom of a neighboured molecule finally forming the polymeric catena-structure with Zn-atoms in distorted octahedral geometry. The Zn-O bond distances involving the ligand are accordingly determined to 2.061 (1) and 2.111 (1) Å and agree with the corresponding Zn-N bond lengths of 2.063 (1) and 2.075 (1) Å. The Zn-O bond distance to the coordinated water solvent molecule is elongated to 2.185 (1) Å but still shorter than the one to the N-atom of the cyano-group of a neighbour molecule (2.232 (1) Å) which finally leads to the formation of the polymeric catena structure. The four donor atoms of the ligand in its mer-coordination form a coordination plane, they deviate from this by in the mean 0.09 Å so that the position of the central Zn-atom with a deviation from this plane of 0.04 Å can be regarded as placed well within this plane. These findings are in agreement with its embedding in the centre of a distorted octahedron. With respect to the flexibility of Zn(ii) in the formation of different complex geometries the complex fits within Fuchs et al. (2014), Barnard et al. (2009), Ryu et al. (2003), or Tanase et al. (2001), even if for the latter case larger structural deviations are observed due to larger structural differences in the ligand constitution.

Related literature top

The structures of ZnII complexes with ligands stabilizing comparable complex geometries can be found in Barnard et al. (2009), Ryu et al. (2003) or Tanase et al. (2001). In Tanase et al. (2001), the ligands show comparable N,N,O,O-coordination with respect to a different ligand backbone whereas in Ryu et al. (2003) and Barnard et al. (2009), the ligands with N,N,N,N-coordination are diaminobenzene derivatives. In Fuchs et al. (2014), a mononuclear Zn complex is presented with the same ligand but a dmso molecule in the coordination sphere of the metal stabilizing a different complex geometry. For the synthesis, see: Jäger et al. (1985).

Experimental top

N,N'-Bis(2-cyano-2-ethoxycarbonylethenyl)benzene-1,2-diamine was synthesized from 1,2-diaminobenzene and 2-cyano-3-methoxypropanoic acid ethyl ester according to Jäger et al. (1985). Under an argon atmosphere 5.00 g (14.1 mmol) N,N'-bis(2-cyanoethylpropenoyl)-1,2-diaminobenzene is suspended in 75 ml thf. 14.1 ml diethyl zinc solution (1M in hexane, 14.1 mmol) is added under stirring. The reaction mixture is stirred overnight, the solvent is removed under reduced pressure leaving 2 as a deep yellow solid (5.88 g, 14.1 mmol, 99.8%). Single crystals are obtained by re-crystallization from dimethylsulfoxide in an open laboratory beaker glass.

Refinement top

The positions of the H atoms are calculated on geometrical positions according to the hybridization of the atoms they are bound to. The isotropic U values of these hydrogen atoms are refined in groups with respect to the hybridization of the atoms where they are bound to. A riding model was applied for the refinement of the H-atoms of the methyl-groups. The positions of H51 and H52 are located in the fourier map and refined together with their isotropic displacement parameter leading to O—H distances of 0.785 (24) and 0.826 (24) Å and a bond angle H—O—H of 111 (2)°.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View to the a part of the polymeric chain in the molecular structure of catena-Poly-{aqua-η4-N,N,O,O- µ-N'-cyano-[N,N'-bis-(2-cyano-ethylpropenoyl)- 1,2-diamidobenzene]zinc(II)}; ellipsoids at 50% probability level (Symmetry codes for atoms with suffix a: -x, -0.5 + y, 0.5 - z, -z + 1; with suffix b: -x, 0.5 + y, 0.5 - z; and with suffix c: x, y - 1, z. For the residues with suffix b, c there is only one atom of the unit represented in the drawing).
catena-Poly[[aquazinc(II)]-µ-N,N'-bis(2-cyano-3-ethoxy-3-oxoprop-1-enyl)benzene-1,2-diaminido] top
Crystal data top
[Zn(C18H16N4O4)(H2O)]Dx = 1.641 Mg m3
Mr = 435.73Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9786 reflections
a = 13.9312 (11) Åθ = 5.5–56.7°
b = 9.2315 (7) ŵ = 1.43 mm1
c = 27.423 (2) ÅT = 100 K
V = 3526.7 (5) Å3Quader, light yellow
Z = 80.10 × 0.09 × 0.07 mm
F(000) = 1792
Data collection top
Bruker APEXII Quazar
diffractometer
4294 independent reflections
Radiation source: microfocus sealed Iµs tube3812 reflections with I > 2σ(I)
Detector resolution: 66 pixels mm-1Rint = 0.025
combined ϕ– and ω–scansθmax = 28.6°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1818
Tmin = 0.928, Tmax = 0.953k = 1112
60234 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0305P)2 + 2.5256P]
where P = (Fo2 + 2Fc2)/3
4294 reflections(Δ/σ)max = 0.001
268 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Zn(C18H16N4O4)(H2O)]V = 3526.7 (5) Å3
Mr = 435.73Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.9312 (11) ŵ = 1.43 mm1
b = 9.2315 (7) ÅT = 100 K
c = 27.423 (2) Å0.10 × 0.09 × 0.07 mm
Data collection top
Bruker APEXII Quazar
diffractometer
4294 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3812 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.953Rint = 0.025
60234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.42 e Å3
4294 reflectionsΔρmin = 0.43 e Å3
268 parameters
Special details top

Experimental. Spectroscopic data: 1H NMR (400 MHz, dmso-d6): δ = 7.56, dd, 3JHH= 6.1 Hz, 4JHH= 3.1 Hz, 2H, H(arom); 7.05, dd, 3JHH= 6.1 Hz, 4JHH= 3.1 Hz, 2H, H(arom); 4.25, q, 3JHH= 7.1 Hz, 4H, OCH2; 1.29, t, 3JHH= 7.1 Hz, 3H, CH3. 13C NMR (100 MHz, dmso-d6): δ = 177.77; 156.27; 138.01; 124.39; 121.19; 114.89; 68.05; 60.24; 14.13. ESI-MS (m/z, %): 417 (100) [M]+, 418 (23) [M+H]+, 835 (15) [2M+H]+. IR (KBr, cm-1): 2203; 1625; 1023; 748. UV/VIS (CH2Cl2): λmax (ε) (nm, mol-1dm3cm-1): 241 (16522),

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50231 (2)0.19828 (2)0.37062 (2)0.00984 (6)
O10.36966 (7)0.12202 (11)0.28089 (3)0.0161 (2)
O20.41756 (7)0.03163 (10)0.34019 (3)0.01339 (19)
O30.34564 (7)0.50414 (11)0.45261 (4)0.0178 (2)
O40.40466 (7)0.31264 (10)0.41189 (3)0.01378 (19)
O50.51731 (9)0.06806 (12)0.43673 (4)0.0195 (2)
H510.5088 (13)0.014 (3)0.4428 (7)0.026 (5)*
H520.5083 (14)0.119 (3)0.4611 (9)0.035 (6)*
N10.61097 (8)0.33622 (12)0.39350 (4)0.0107 (2)
N20.61290 (8)0.12889 (12)0.32640 (4)0.0105 (2)
N30.53603 (9)0.15532 (13)0.19114 (4)0.0150 (2)
N40.50550 (9)0.76393 (14)0.47291 (4)0.0168 (2)
C10.70235 (10)0.29789 (13)0.37492 (4)0.0104 (2)
C20.79016 (10)0.35644 (14)0.38978 (5)0.0127 (2)
H20.79150.42710.41500.017 (2)*
C30.87537 (10)0.31270 (14)0.36822 (5)0.0131 (3)
H30.93420.35610.37790.017 (2)*
C40.87557 (10)0.20536 (14)0.33235 (5)0.0133 (3)
H40.93420.17600.31770.017 (2)*
C50.78987 (10)0.14213 (14)0.31837 (5)0.0129 (3)
H50.79000.06640.29490.017 (2)*
C60.70280 (10)0.18889 (14)0.33858 (4)0.0106 (2)
C70.60147 (10)0.06126 (13)0.28535 (4)0.0109 (2)
H70.65400.06110.26330.011 (3)*
C80.51716 (10)0.01222 (15)0.27076 (5)0.0117 (2)
C90.43345 (10)0.02889 (14)0.30044 (4)0.0116 (2)
C100.52453 (9)0.09216 (15)0.22679 (5)0.0117 (2)
C110.29041 (10)0.17030 (16)0.31142 (5)0.0173 (3)
H11A0.23810.20800.29060.027 (2)*
H11B0.26500.08720.33030.027 (2)*
C120.32314 (12)0.28751 (16)0.34613 (6)0.0219 (3)
H12A0.35350.36600.32760.027 (2)*
H12B0.26770.32560.36400.027 (2)*
H12C0.36950.24700.36930.027 (2)*
C130.59711 (10)0.46053 (14)0.41516 (4)0.0111 (2)
H130.65100.52260.41880.011 (3)*
C140.50756 (10)0.51032 (15)0.43377 (5)0.0121 (3)
C160.50610 (9)0.64963 (16)0.45565 (5)0.0132 (3)
C150.41851 (10)0.43285 (14)0.43127 (4)0.0126 (3)
C170.25169 (11)0.43452 (17)0.45179 (5)0.0218 (3)
H17A0.24350.38210.42060.037 (2)*
H17B0.20100.50930.45390.037 (2)*
C180.24101 (12)0.32972 (19)0.49360 (5)0.0272 (4)
H18A0.29450.26090.49320.037 (2)*
H18B0.18030.27700.49030.037 (2)*
H18C0.24120.38320.52450.037 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01164 (9)0.00914 (9)0.00874 (8)0.00053 (5)0.00045 (5)0.00140 (5)
O10.0152 (5)0.0196 (5)0.0134 (4)0.0059 (4)0.0007 (3)0.0042 (4)
O20.0143 (5)0.0136 (5)0.0122 (4)0.0016 (4)0.0011 (3)0.0024 (3)
O30.0141 (5)0.0166 (5)0.0226 (5)0.0008 (4)0.0038 (4)0.0058 (4)
O40.0156 (5)0.0132 (5)0.0126 (4)0.0006 (4)0.0013 (4)0.0028 (3)
O50.0387 (7)0.0089 (5)0.0110 (5)0.0003 (4)0.0024 (4)0.0005 (4)
N10.0131 (5)0.0096 (5)0.0095 (5)0.0002 (4)0.0000 (4)0.0002 (4)
N20.0121 (5)0.0092 (5)0.0102 (5)0.0003 (4)0.0010 (4)0.0007 (4)
N30.0143 (6)0.0172 (6)0.0136 (5)0.0040 (5)0.0001 (4)0.0026 (4)
N40.0218 (7)0.0124 (6)0.0161 (6)0.0003 (5)0.0043 (4)0.0015 (5)
C10.0134 (6)0.0088 (6)0.0092 (5)0.0013 (5)0.0007 (4)0.0015 (4)
C20.0163 (7)0.0097 (6)0.0120 (6)0.0008 (5)0.0023 (5)0.0005 (4)
C30.0138 (6)0.0111 (6)0.0142 (6)0.0024 (5)0.0030 (5)0.0020 (5)
C40.0122 (6)0.0136 (6)0.0140 (6)0.0007 (5)0.0015 (5)0.0016 (5)
C50.0153 (6)0.0116 (6)0.0120 (6)0.0004 (5)0.0004 (5)0.0018 (5)
C60.0137 (6)0.0086 (6)0.0097 (5)0.0005 (5)0.0010 (4)0.0013 (4)
C70.0130 (6)0.0095 (6)0.0101 (5)0.0006 (5)0.0006 (4)0.0004 (4)
C80.0140 (6)0.0113 (6)0.0098 (6)0.0011 (5)0.0008 (5)0.0012 (5)
C90.0137 (6)0.0095 (6)0.0116 (5)0.0001 (5)0.0022 (5)0.0006 (4)
C100.0106 (6)0.0118 (6)0.0126 (6)0.0026 (5)0.0014 (5)0.0021 (5)
C110.0121 (6)0.0193 (7)0.0205 (6)0.0047 (5)0.0026 (5)0.0045 (5)
C120.0253 (8)0.0162 (7)0.0243 (7)0.0028 (6)0.0065 (6)0.0015 (5)
C130.0147 (6)0.0103 (6)0.0085 (5)0.0008 (5)0.0014 (5)0.0003 (4)
C140.0165 (7)0.0095 (6)0.0105 (6)0.0014 (5)0.0005 (4)0.0012 (5)
C160.0156 (7)0.0137 (7)0.0103 (6)0.0005 (5)0.0021 (4)0.0016 (5)
C150.0151 (7)0.0131 (6)0.0096 (5)0.0024 (5)0.0008 (5)0.0009 (5)
C170.0116 (7)0.0269 (8)0.0268 (7)0.0002 (6)0.0006 (5)0.0103 (6)
C180.0210 (8)0.0365 (9)0.0242 (7)0.0136 (7)0.0030 (6)0.0085 (7)
Geometric parameters (Å, º) top
Zn1—O42.0606 (9)C3—H30.9500
Zn1—N22.0626 (11)C4—C51.3831 (19)
Zn1—N12.0754 (11)C4—H40.9500
Zn1—O22.1112 (9)C5—C61.4016 (18)
Zn1—O52.1852 (11)C5—H50.9500
Zn1—N3i2.2317 (11)C7—C81.4141 (18)
O1—C91.3476 (16)C7—H70.9500
O1—C111.4555 (16)C8—C101.4175 (18)
O2—C91.2447 (15)C8—C91.4304 (18)
O3—C151.3440 (16)C11—C121.511 (2)
O3—C171.4582 (18)C11—H11A0.9900
O4—C151.2455 (16)C11—H11B0.9900
O5—H510.79 (2)C12—H12A0.9800
O5—H520.83 (2)C12—H12B0.9800
N1—C131.3064 (16)C12—H12C0.9800
N1—C11.4161 (17)C13—C141.4242 (18)
N2—C71.2970 (16)C13—H130.9500
N2—C61.4097 (17)C14—C161.4192 (19)
N3—C101.1493 (17)C14—C151.4336 (19)
N3—Zn1ii2.2317 (11)C17—C181.508 (2)
N4—C161.157 (2)C17—H17A0.9900
C1—C21.3982 (18)C17—H17B0.9900
C1—C61.4163 (17)C18—H18A0.9800
C2—C31.3862 (19)C18—H18B0.9800
C2—H20.9500C18—H18C0.9800
C3—C41.3962 (18)
O4—Zn1—N2167.20 (4)N2—C6—C1116.22 (12)
O4—Zn1—N190.06 (4)N2—C7—C8125.34 (12)
N2—Zn1—N179.83 (4)N2—C7—H7117.3
O4—Zn1—O2102.78 (4)C8—C7—H7117.3
N2—Zn1—O287.65 (4)C7—C8—C10115.48 (12)
N1—Zn1—O2167.05 (4)C7—C8—C9124.60 (12)
O4—Zn1—O583.64 (4)C10—C8—C9119.15 (12)
N2—Zn1—O5104.21 (4)O2—C9—O1121.16 (12)
N1—Zn1—O590.97 (4)O2—C9—C8126.50 (12)
O2—Zn1—O588.89 (4)O1—C9—C8112.33 (11)
O4—Zn1—N3i87.06 (4)N3—C10—C8176.10 (14)
N2—Zn1—N3i85.45 (4)O1—C11—C12110.65 (12)
N1—Zn1—N3i91.86 (4)O1—C11—H11A109.5
O2—Zn1—N3i90.43 (4)C12—C11—H11A109.5
O5—Zn1—N3i170.28 (4)O1—C11—H11B109.5
C9—O1—C11117.81 (10)C12—C11—H11B109.5
C9—O2—Zn1125.02 (9)H11A—C11—H11B108.1
C15—O3—C17117.09 (11)C11—C12—H12A109.5
C15—O4—Zn1126.05 (9)C11—C12—H12B109.5
Zn1—O5—H51133.8 (15)H12A—C12—H12B109.5
Zn1—O5—H52110.0 (16)C11—C12—H12C109.5
H51—O5—H52111 (2)H12A—C12—H12C109.5
C13—N1—C1121.06 (11)H12B—C12—H12C109.5
C13—N1—Zn1124.65 (9)N1—C13—C14125.16 (12)
C1—N1—Zn1113.18 (8)N1—C13—H13117.4
C7—N2—C6120.25 (11)C14—C13—H13117.4
C7—N2—Zn1124.61 (9)C16—C14—C13117.16 (12)
C6—N2—Zn1113.73 (8)C16—C14—C15117.38 (12)
C10—N3—Zn1ii156.83 (11)C13—C14—C15125.44 (12)
C2—C1—N1125.81 (11)N4—C16—C14179.05 (15)
C2—C1—C6118.41 (12)O4—C15—O3120.33 (12)
N1—C1—C6115.77 (12)O4—C15—C14126.80 (12)
C3—C2—C1120.83 (12)O3—C15—C14112.87 (11)
C3—C2—H2119.6O3—C17—C18111.08 (12)
C1—C2—H2119.6O3—C17—H17A109.4
C2—C3—C4120.58 (13)C18—C17—H17A109.4
C2—C3—H3119.7O3—C17—H17B109.4
C4—C3—H3119.7C18—C17—H17B109.4
C5—C4—C3119.55 (13)H17A—C17—H17B108.0
C5—C4—H4120.2C17—C18—H18A109.5
C3—C4—H4120.2C17—C18—H18B109.5
C4—C5—C6120.49 (12)H18A—C18—H18B109.5
C4—C5—H5119.8C17—C18—H18C109.5
C6—C5—H5119.8H18A—C18—H18C109.5
C5—C6—N2123.66 (11)H18B—C18—H18C109.5
C5—C6—C1120.06 (12)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···N4iii0.79 (2)2.21 (2)2.9823 (17)168 (2)
O5—H52···N4iv0.83 (2)2.12 (2)2.9405 (16)174 (2)
Symmetry codes: (iii) x, y1, z; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···N4i0.79 (2)2.21 (2)2.9823 (17)168 (2)
O5—H52···N4ii0.83 (2)2.12 (2)2.9405 (16)174 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1.
 

Footnotes

present address: European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Acknowledgements

The authors gratefully acknowledge financial support for their work from the Karlsruhe Institute for Technology.

References

First citationBarnard, P. J., Holland, J. P., Bayly, S. R., Wadas, T. J., Anderson, C. J. & Dilworth, J. R. (2009). Inorg. Chem. 48, 7117–7126.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFuchs, M. A., Staudt, S., Altesleben, C., Walter, O., Zevaco, T. A. & Dinjus, E. (2014). Dalton Trans. 43, 2344–2347.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJäger, E.-G., Häussler, E., Rudolph, M. & Schneider, A. (1985). Z. Anorg. Allg. Chem. 525, 67–85.  Google Scholar
First citationRyu, J. Y., Lee, J. Y., Seo, J. S., Kim, C. & Kim, Y. (2003). Appl. Organomet. Chem. 17, 803–804.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanase, T., Inukai, H., Onaka, T., Kato, M., Yano, S. & Lippard, S. J. (2001). Inorg. Chem. 40, 3943–3953.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m187-m188
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds