metal-organic compounds
catena-Poly[[aquazinc(II)]-μ-N,N′-bis(2-cyano-3-ethoxy-3-oxoprop-1-enyl)benzene-1,2-diaminido]
aIKFT, KIT-Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
*Correspondence e-mail: olaf.walter@ec.europa.eu
The slightly yellow-coloured title complex, [Zn(C18H16N4O4)(H2O)]n, crystallizes with one molecule in the The structure clearly shows the mer-η4O,O,N,N-binding mode of the N,N′-bis-(2-cyano-ethylpropenoyl)-1,2-diamidobenzene ligand stabilizing the Zn centre of a distorted octahedral environment. The fifth coordination site in one apical position is held by a coordinating solvent water molecule whereas the complete octahedral coordination sphere is completed by coordination of one N atom from a CN group of a neighbouring molecule, leading to the final polymeric structure consisting of zigzag staggered chains in parallel orientation along the c-axis direction. Between the coordinated water solvent molecule and the N atoms of uncoordinated cyano-groups of neighboured units, two H-bridge bonds are formed. One of these H-bridge bonds is of inter- whereas the other of intra-strand nature, leading to a two-dimensional network parallel to (110) stabilizing the supramolecular structure. Six Zn—O or Zn—N bonds are found with lengths ranging from 2.061 (1) to 2.185 (1) Å and bond angles about the Zn atom are clustered in the ranges 79.83 (4)–104.21 (4) and 167.05 (4)–170.28 (4)°.
CCDC reference: 992382
Related literature
The structures of ZnII complexes with ligands stabilizing comparable complex geometries can be found in Barnard et al. (2009), Ryu et al. (2003) or Tanase et al. (2001). In Tanase et al. (2001), the ligands show comparable N,N,O,O-coordination with respect to a different ligand backbone whereas in Ryu et al. (2003) and Barnard et al. (2009), the ligands with N,N,N,N-coordination are diaminobenzene derivatives. In Fuchs et al. (2014), a mononuclear Zn complex is presented with the same ligand but a dmso molecule in the coordination sphere of the metal stabilizing a different complex geometry. For the synthesis, see: Jäger et al. (1985).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 992382
10.1107/S1600536814008381/nk2220sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814008381/nk2220Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814008381/nk2220Isup3.cdx
N,N'-Bis(2-cyano-2-ethoxycarbonylethenyl)benzene-1,2-diamine was synthesized from 1,2-diaminobenzene and 2-cyano-3-methoxypropanoic acid ethyl ester according to Jäger et al. (1985). Under an argon atmosphere 5.00 g (14.1 mmol) N,N'-bis(2-cyanoethylpropenoyl)-1,2-diaminobenzene is suspended in 75 ml thf. 14.1 ml diethyl zinc solution (1M in hexane, 14.1 mmol) is added under stirring. The reaction mixture is stirred overnight, the solvent is removed under reduced pressure leaving 2 as a deep yellow solid (5.88 g, 14.1 mmol, 99.8%). Single crystals are obtained by re-crystallization from dimethylsulfoxide in an open laboratory beaker glass.
The positions of the H atoms are calculated on geometrical positions according to the
of the atoms they are bound to. The isotropic U values of these hydrogen atoms are refined in groups with respect to the of the atoms where they are bound to. A riding model was applied for the of the H-atoms of the methyl-groups. The positions of H51 and H52 are located in the fourier map and refined together with their isotropic displacement parameter leading to O—H distances of 0.785 (24) and 0.826 (24) Å and a bond angle H—O—H of 111 (2)°.Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).[Zn(C18H16N4O4)(H2O)] | Dx = 1.641 Mg m−3 |
Mr = 435.73 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9786 reflections |
a = 13.9312 (11) Å | θ = 5.5–56.7° |
b = 9.2315 (7) Å | µ = 1.43 mm−1 |
c = 27.423 (2) Å | T = 100 K |
V = 3526.7 (5) Å3 | Quader, light yellow |
Z = 8 | 0.10 × 0.09 × 0.07 mm |
F(000) = 1792 |
Bruker APEXII Quazar diffractometer | 4294 independent reflections |
Radiation source: microfocus sealed Iµs tube | 3812 reflections with I > 2σ(I) |
Detector resolution: 66 pixels mm-1 | Rint = 0.025 |
combined ϕ– and ω–scans | θmax = 28.6°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −18→18 |
Tmin = 0.928, Tmax = 0.953 | k = −11→12 |
60234 measured reflections | l = −36→36 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.063 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0305P)2 + 2.5256P] where P = (Fo2 + 2Fc2)/3 |
4294 reflections | (Δ/σ)max = 0.001 |
268 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
[Zn(C18H16N4O4)(H2O)] | V = 3526.7 (5) Å3 |
Mr = 435.73 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 13.9312 (11) Å | µ = 1.43 mm−1 |
b = 9.2315 (7) Å | T = 100 K |
c = 27.423 (2) Å | 0.10 × 0.09 × 0.07 mm |
Bruker APEXII Quazar diffractometer | 4294 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 3812 reflections with I > 2σ(I) |
Tmin = 0.928, Tmax = 0.953 | Rint = 0.025 |
60234 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 0 restraints |
wR(F2) = 0.063 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.42 e Å−3 |
4294 reflections | Δρmin = −0.43 e Å−3 |
268 parameters |
Experimental. Spectroscopic data: 1H NMR (400 MHz, dmso-d6): δ = 7.56, dd, 3JHH= 6.1 Hz, 4JHH= 3.1 Hz, 2H, H(arom); 7.05, dd, 3JHH= 6.1 Hz, 4JHH= 3.1 Hz, 2H, H(arom); 4.25, q, 3JHH= 7.1 Hz, 4H, OCH2; 1.29, t, 3JHH= 7.1 Hz, 3H, CH3. 13C NMR (100 MHz, dmso-d6): δ = 177.77; 156.27; 138.01; 124.39; 121.19; 114.89; 68.05; 60.24; 14.13. ESI-MS (m/z, %): 417 (100) [M]+, 418 (23) [M+H]+, 835 (15) [2M+H]+. IR (KBr, cm-1): 2203; 1625; 1023; 748. UV/VIS (CH2Cl2): λmax (ε) (nm, mol-1dm3cm-1): 241 (16522), |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.50231 (2) | 0.19828 (2) | 0.37062 (2) | 0.00984 (6) | |
O1 | 0.36966 (7) | −0.12202 (11) | 0.28089 (3) | 0.0161 (2) | |
O2 | 0.41756 (7) | 0.03163 (10) | 0.34019 (3) | 0.01339 (19) | |
O3 | 0.34564 (7) | 0.50414 (11) | 0.45261 (4) | 0.0178 (2) | |
O4 | 0.40466 (7) | 0.31264 (10) | 0.41189 (3) | 0.01378 (19) | |
O5 | 0.51731 (9) | 0.06806 (12) | 0.43673 (4) | 0.0195 (2) | |
H51 | 0.5088 (13) | −0.014 (3) | 0.4428 (7) | 0.026 (5)* | |
H52 | 0.5083 (14) | 0.119 (3) | 0.4611 (9) | 0.035 (6)* | |
N1 | 0.61097 (8) | 0.33622 (12) | 0.39350 (4) | 0.0107 (2) | |
N2 | 0.61290 (8) | 0.12889 (12) | 0.32640 (4) | 0.0105 (2) | |
N3 | 0.53603 (9) | −0.15532 (13) | 0.19114 (4) | 0.0150 (2) | |
N4 | 0.50550 (9) | 0.76393 (14) | 0.47291 (4) | 0.0168 (2) | |
C1 | 0.70235 (10) | 0.29789 (13) | 0.37492 (4) | 0.0104 (2) | |
C2 | 0.79016 (10) | 0.35644 (14) | 0.38978 (5) | 0.0127 (2) | |
H2 | 0.7915 | 0.4271 | 0.4150 | 0.017 (2)* | |
C3 | 0.87537 (10) | 0.31270 (14) | 0.36822 (5) | 0.0131 (3) | |
H3 | 0.9342 | 0.3561 | 0.3779 | 0.017 (2)* | |
C4 | 0.87557 (10) | 0.20536 (14) | 0.33235 (5) | 0.0133 (3) | |
H4 | 0.9342 | 0.1760 | 0.3177 | 0.017 (2)* | |
C5 | 0.78987 (10) | 0.14213 (14) | 0.31837 (5) | 0.0129 (3) | |
H5 | 0.7900 | 0.0664 | 0.2949 | 0.017 (2)* | |
C6 | 0.70280 (10) | 0.18889 (14) | 0.33858 (4) | 0.0106 (2) | |
C7 | 0.60147 (10) | 0.06126 (13) | 0.28535 (4) | 0.0109 (2) | |
H7 | 0.6540 | 0.0611 | 0.2633 | 0.011 (3)* | |
C8 | 0.51716 (10) | −0.01222 (15) | 0.27076 (5) | 0.0117 (2) | |
C9 | 0.43345 (10) | −0.02889 (14) | 0.30044 (4) | 0.0116 (2) | |
C10 | 0.52453 (9) | −0.09216 (15) | 0.22679 (5) | 0.0117 (2) | |
C11 | 0.29041 (10) | −0.17030 (16) | 0.31142 (5) | 0.0173 (3) | |
H11A | 0.2381 | −0.2080 | 0.2906 | 0.027 (2)* | |
H11B | 0.2650 | −0.0872 | 0.3303 | 0.027 (2)* | |
C12 | 0.32314 (12) | −0.28751 (16) | 0.34613 (6) | 0.0219 (3) | |
H12A | 0.3535 | −0.3660 | 0.3276 | 0.027 (2)* | |
H12B | 0.2677 | −0.3256 | 0.3640 | 0.027 (2)* | |
H12C | 0.3695 | −0.2470 | 0.3693 | 0.027 (2)* | |
C13 | 0.59711 (10) | 0.46053 (14) | 0.41516 (4) | 0.0111 (2) | |
H13 | 0.6510 | 0.5226 | 0.4188 | 0.011 (3)* | |
C14 | 0.50756 (10) | 0.51032 (15) | 0.43377 (5) | 0.0121 (3) | |
C16 | 0.50610 (9) | 0.64963 (16) | 0.45565 (5) | 0.0132 (3) | |
C15 | 0.41851 (10) | 0.43285 (14) | 0.43127 (4) | 0.0126 (3) | |
C17 | 0.25169 (11) | 0.43452 (17) | 0.45179 (5) | 0.0218 (3) | |
H17A | 0.2435 | 0.3821 | 0.4206 | 0.037 (2)* | |
H17B | 0.2010 | 0.5093 | 0.4539 | 0.037 (2)* | |
C18 | 0.24101 (12) | 0.32972 (19) | 0.49360 (5) | 0.0272 (4) | |
H18A | 0.2945 | 0.2609 | 0.4932 | 0.037 (2)* | |
H18B | 0.1803 | 0.2770 | 0.4903 | 0.037 (2)* | |
H18C | 0.2412 | 0.3832 | 0.5245 | 0.037 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01164 (9) | 0.00914 (9) | 0.00874 (8) | −0.00053 (5) | 0.00045 (5) | −0.00140 (5) |
O1 | 0.0152 (5) | 0.0196 (5) | 0.0134 (4) | −0.0059 (4) | 0.0007 (3) | −0.0042 (4) |
O2 | 0.0143 (5) | 0.0136 (5) | 0.0122 (4) | −0.0016 (4) | 0.0011 (3) | −0.0024 (3) |
O3 | 0.0141 (5) | 0.0166 (5) | 0.0226 (5) | 0.0008 (4) | 0.0038 (4) | −0.0058 (4) |
O4 | 0.0156 (5) | 0.0132 (5) | 0.0126 (4) | −0.0006 (4) | 0.0013 (4) | −0.0028 (3) |
O5 | 0.0387 (7) | 0.0089 (5) | 0.0110 (5) | 0.0003 (4) | 0.0024 (4) | −0.0005 (4) |
N1 | 0.0131 (5) | 0.0096 (5) | 0.0095 (5) | 0.0002 (4) | 0.0000 (4) | −0.0002 (4) |
N2 | 0.0121 (5) | 0.0092 (5) | 0.0102 (5) | −0.0003 (4) | −0.0010 (4) | −0.0007 (4) |
N3 | 0.0143 (6) | 0.0172 (6) | 0.0136 (5) | −0.0040 (5) | −0.0001 (4) | −0.0026 (4) |
N4 | 0.0218 (7) | 0.0124 (6) | 0.0161 (6) | 0.0003 (5) | 0.0043 (4) | −0.0015 (5) |
C1 | 0.0134 (6) | 0.0088 (6) | 0.0092 (5) | 0.0013 (5) | −0.0007 (4) | 0.0015 (4) |
C2 | 0.0163 (7) | 0.0097 (6) | 0.0120 (6) | −0.0008 (5) | −0.0023 (5) | −0.0005 (4) |
C3 | 0.0138 (6) | 0.0111 (6) | 0.0142 (6) | −0.0024 (5) | −0.0030 (5) | 0.0020 (5) |
C4 | 0.0122 (6) | 0.0136 (6) | 0.0140 (6) | 0.0007 (5) | 0.0015 (5) | 0.0016 (5) |
C5 | 0.0153 (6) | 0.0116 (6) | 0.0120 (6) | 0.0004 (5) | −0.0004 (5) | −0.0018 (5) |
C6 | 0.0137 (6) | 0.0086 (6) | 0.0097 (5) | −0.0005 (5) | −0.0010 (4) | 0.0013 (4) |
C7 | 0.0130 (6) | 0.0095 (6) | 0.0101 (5) | 0.0006 (5) | 0.0006 (4) | 0.0004 (4) |
C8 | 0.0140 (6) | 0.0113 (6) | 0.0098 (6) | −0.0011 (5) | −0.0008 (5) | −0.0012 (5) |
C9 | 0.0137 (6) | 0.0095 (6) | 0.0116 (5) | −0.0001 (5) | −0.0022 (5) | 0.0006 (4) |
C10 | 0.0106 (6) | 0.0118 (6) | 0.0126 (6) | −0.0026 (5) | −0.0014 (5) | 0.0021 (5) |
C11 | 0.0121 (6) | 0.0193 (7) | 0.0205 (6) | −0.0047 (5) | 0.0026 (5) | −0.0045 (5) |
C12 | 0.0253 (8) | 0.0162 (7) | 0.0243 (7) | −0.0028 (6) | 0.0065 (6) | −0.0015 (5) |
C13 | 0.0147 (6) | 0.0103 (6) | 0.0085 (5) | −0.0008 (5) | −0.0014 (5) | 0.0003 (4) |
C14 | 0.0165 (7) | 0.0095 (6) | 0.0105 (6) | 0.0014 (5) | 0.0005 (4) | −0.0012 (5) |
C16 | 0.0156 (7) | 0.0137 (7) | 0.0103 (6) | 0.0005 (5) | 0.0021 (4) | 0.0016 (5) |
C15 | 0.0151 (7) | 0.0131 (6) | 0.0096 (5) | 0.0024 (5) | 0.0008 (5) | 0.0009 (5) |
C17 | 0.0116 (7) | 0.0269 (8) | 0.0268 (7) | 0.0002 (6) | 0.0006 (5) | −0.0103 (6) |
C18 | 0.0210 (8) | 0.0365 (9) | 0.0242 (7) | −0.0136 (7) | 0.0030 (6) | −0.0085 (7) |
Zn1—O4 | 2.0606 (9) | C3—H3 | 0.9500 |
Zn1—N2 | 2.0626 (11) | C4—C5 | 1.3831 (19) |
Zn1—N1 | 2.0754 (11) | C4—H4 | 0.9500 |
Zn1—O2 | 2.1112 (9) | C5—C6 | 1.4016 (18) |
Zn1—O5 | 2.1852 (11) | C5—H5 | 0.9500 |
Zn1—N3i | 2.2317 (11) | C7—C8 | 1.4141 (18) |
O1—C9 | 1.3476 (16) | C7—H7 | 0.9500 |
O1—C11 | 1.4555 (16) | C8—C10 | 1.4175 (18) |
O2—C9 | 1.2447 (15) | C8—C9 | 1.4304 (18) |
O3—C15 | 1.3440 (16) | C11—C12 | 1.511 (2) |
O3—C17 | 1.4582 (18) | C11—H11A | 0.9900 |
O4—C15 | 1.2455 (16) | C11—H11B | 0.9900 |
O5—H51 | 0.79 (2) | C12—H12A | 0.9800 |
O5—H52 | 0.83 (2) | C12—H12B | 0.9800 |
N1—C13 | 1.3064 (16) | C12—H12C | 0.9800 |
N1—C1 | 1.4161 (17) | C13—C14 | 1.4242 (18) |
N2—C7 | 1.2970 (16) | C13—H13 | 0.9500 |
N2—C6 | 1.4097 (17) | C14—C16 | 1.4192 (19) |
N3—C10 | 1.1493 (17) | C14—C15 | 1.4336 (19) |
N3—Zn1ii | 2.2317 (11) | C17—C18 | 1.508 (2) |
N4—C16 | 1.157 (2) | C17—H17A | 0.9900 |
C1—C2 | 1.3982 (18) | C17—H17B | 0.9900 |
C1—C6 | 1.4163 (17) | C18—H18A | 0.9800 |
C2—C3 | 1.3862 (19) | C18—H18B | 0.9800 |
C2—H2 | 0.9500 | C18—H18C | 0.9800 |
C3—C4 | 1.3962 (18) | ||
O4—Zn1—N2 | 167.20 (4) | N2—C6—C1 | 116.22 (12) |
O4—Zn1—N1 | 90.06 (4) | N2—C7—C8 | 125.34 (12) |
N2—Zn1—N1 | 79.83 (4) | N2—C7—H7 | 117.3 |
O4—Zn1—O2 | 102.78 (4) | C8—C7—H7 | 117.3 |
N2—Zn1—O2 | 87.65 (4) | C7—C8—C10 | 115.48 (12) |
N1—Zn1—O2 | 167.05 (4) | C7—C8—C9 | 124.60 (12) |
O4—Zn1—O5 | 83.64 (4) | C10—C8—C9 | 119.15 (12) |
N2—Zn1—O5 | 104.21 (4) | O2—C9—O1 | 121.16 (12) |
N1—Zn1—O5 | 90.97 (4) | O2—C9—C8 | 126.50 (12) |
O2—Zn1—O5 | 88.89 (4) | O1—C9—C8 | 112.33 (11) |
O4—Zn1—N3i | 87.06 (4) | N3—C10—C8 | 176.10 (14) |
N2—Zn1—N3i | 85.45 (4) | O1—C11—C12 | 110.65 (12) |
N1—Zn1—N3i | 91.86 (4) | O1—C11—H11A | 109.5 |
O2—Zn1—N3i | 90.43 (4) | C12—C11—H11A | 109.5 |
O5—Zn1—N3i | 170.28 (4) | O1—C11—H11B | 109.5 |
C9—O1—C11 | 117.81 (10) | C12—C11—H11B | 109.5 |
C9—O2—Zn1 | 125.02 (9) | H11A—C11—H11B | 108.1 |
C15—O3—C17 | 117.09 (11) | C11—C12—H12A | 109.5 |
C15—O4—Zn1 | 126.05 (9) | C11—C12—H12B | 109.5 |
Zn1—O5—H51 | 133.8 (15) | H12A—C12—H12B | 109.5 |
Zn1—O5—H52 | 110.0 (16) | C11—C12—H12C | 109.5 |
H51—O5—H52 | 111 (2) | H12A—C12—H12C | 109.5 |
C13—N1—C1 | 121.06 (11) | H12B—C12—H12C | 109.5 |
C13—N1—Zn1 | 124.65 (9) | N1—C13—C14 | 125.16 (12) |
C1—N1—Zn1 | 113.18 (8) | N1—C13—H13 | 117.4 |
C7—N2—C6 | 120.25 (11) | C14—C13—H13 | 117.4 |
C7—N2—Zn1 | 124.61 (9) | C16—C14—C13 | 117.16 (12) |
C6—N2—Zn1 | 113.73 (8) | C16—C14—C15 | 117.38 (12) |
C10—N3—Zn1ii | 156.83 (11) | C13—C14—C15 | 125.44 (12) |
C2—C1—N1 | 125.81 (11) | N4—C16—C14 | 179.05 (15) |
C2—C1—C6 | 118.41 (12) | O4—C15—O3 | 120.33 (12) |
N1—C1—C6 | 115.77 (12) | O4—C15—C14 | 126.80 (12) |
C3—C2—C1 | 120.83 (12) | O3—C15—C14 | 112.87 (11) |
C3—C2—H2 | 119.6 | O3—C17—C18 | 111.08 (12) |
C1—C2—H2 | 119.6 | O3—C17—H17A | 109.4 |
C2—C3—C4 | 120.58 (13) | C18—C17—H17A | 109.4 |
C2—C3—H3 | 119.7 | O3—C17—H17B | 109.4 |
C4—C3—H3 | 119.7 | C18—C17—H17B | 109.4 |
C5—C4—C3 | 119.55 (13) | H17A—C17—H17B | 108.0 |
C5—C4—H4 | 120.2 | C17—C18—H18A | 109.5 |
C3—C4—H4 | 120.2 | C17—C18—H18B | 109.5 |
C4—C5—C6 | 120.49 (12) | H18A—C18—H18B | 109.5 |
C4—C5—H5 | 119.8 | C17—C18—H18C | 109.5 |
C6—C5—H5 | 119.8 | H18A—C18—H18C | 109.5 |
C5—C6—N2 | 123.66 (11) | H18B—C18—H18C | 109.5 |
C5—C6—C1 | 120.06 (12) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H51···N4iii | 0.79 (2) | 2.21 (2) | 2.9823 (17) | 168 (2) |
O5—H52···N4iv | 0.83 (2) | 2.12 (2) | 2.9405 (16) | 174 (2) |
Symmetry codes: (iii) x, y−1, z; (iv) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H51···N4i | 0.79 (2) | 2.21 (2) | 2.9823 (17) | 168 (2) |
O5—H52···N4ii | 0.83 (2) | 2.12 (2) | 2.9405 (16) | 174 (2) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z+1. |
Footnotes
‡present address: European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Acknowledgements
The authors gratefully acknowledge financial support for their work from the Karlsruhe Institute for Technology.
References
Barnard, P. J., Holland, J. P., Bayly, S. R., Wadas, T. J., Anderson, C. J. & Dilworth, J. R. (2009). Inorg. Chem. 48, 7117–7126. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fuchs, M. A., Staudt, S., Altesleben, C., Walter, O., Zevaco, T. A. & Dinjus, E. (2014). Dalton Trans. 43, 2344–2347. Web of Science CSD CrossRef CAS PubMed Google Scholar
Jäger, E.-G., Häussler, E., Rudolph, M. & Schneider, A. (1985). Z. Anorg. Allg. Chem. 525, 67–85. Google Scholar
Ryu, J. Y., Lee, J. Y., Seo, J. S., Kim, C. & Kim, Y. (2003). Appl. Organomet. Chem. 17, 803–804. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanase, T., Inukai, H., Onaka, T., Kato, M., Yano, S. & Lippard, S. J. (2001). Inorg. Chem. 40, 3943–3953. Web of Science CSD CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The polymeric chain structure of title compound can be described by single units of to a Zn-centre mer-η4-O,O-N,N-coordinated N,N'-bis-(2-cyano-ethylpropenoyl)-1,2-diamidobenzene ligand with a water solvent molecule in one apical position over the coordination plane. The polymeric structure and completeness of the coordination sphere is obtained by intermolecular coordination of a N-atom of a neighboured molecule finally forming the polymeric catena-structure with Zn-atoms in distorted octahedral geometry. The Zn-O bond distances involving the ligand are accordingly determined to 2.061 (1) and 2.111 (1) Å and agree with the corresponding Zn-N bond lengths of 2.063 (1) and 2.075 (1) Å. The Zn-O bond distance to the coordinated water solvent molecule is elongated to 2.185 (1) Å but still shorter than the one to the N-atom of the cyano-group of a neighbour molecule (2.232 (1) Å) which finally leads to the formation of the polymeric catena structure. The four donor atoms of the ligand in its mer-coordination form a coordination plane, they deviate from this by in the mean 0.09 Å so that the position of the central Zn-atom with a deviation from this plane of 0.04 Å can be regarded as placed well within this plane. These findings are in agreement with its embedding in the centre of a distorted octahedron. With respect to the flexibility of Zn(ii) in the formation of different complex geometries the complex fits within Fuchs et al. (2014), Barnard et al. (2009), Ryu et al. (2003), or Tanase et al. (2001), even if for the latter case larger structural deviations are observed due to larger structural differences in the ligand constitution.