metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2.2.2-Cryptand)potassium tetra­carbonyl­cobaltate(−I)

aDepartment of Chemistry, 207 Pleasant Street SE, University of Minnesota, Minneapolis, MN 55455, USA
*Correspondence e-mail: brennessel@chem.rochester.edu

(Received 19 March 2014; accepted 26 March 2014; online 16 April 2014)

The title salt, [K(C18H36N2O6)][Co(CO)4], is an example of a classical carbonyl­metalate. The asymmetric unit contains one cation and one tetrahedral anion, both in general positions. Based on comparison of the four carbonyl C—O bond lengths and C—Co—C angles, the anion is unperturbed by the cation, which is normal for an alkali metal fully encased by a cryptand cage.

Related literature

For a survey of metal carbonyl anions, see: Ellis (2003[Ellis, J. E. (2003). Organometallics, 22, 3322-3338.]). For the synthesis of the precursor bis­(anthracene)cobaltate, see: Brennessel et al. (2002[Brennessel, W. W., Young, V. G. Jr & Ellis, J. E. (2002). Angew. Chem. Int. Ed. 41, 1211-1215.]). For an in-depth discussion of the perturbations of the title anion by cations in various solvents, as measured by IR spectroscopy, see: Edgell & Lyford (1971[Edgell, W. F. & Lyford IV, J. (1971). J. Am. Chem. Soc. 93, 6407-6414.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C18H36N2O6)][Co(CO)4]

  • Mr = 586.56

  • Monoclinic, P 21 /c

  • a = 9.3611 (18) Å

  • b = 12.022 (2) Å

  • c = 25.358 (5) Å

  • β = 91.536 (4)°

  • V = 2852.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 173 K

  • 0.30 × 0.19 × 0.14 mm

Data collection
  • Bruker SMART CCD platform diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2012[Sheldrick, G. M. (2012). SADABS, University of Göttingen, Germany.]) Tmin = 0.521, Tmax = 0.745

  • 14351 measured reflections

  • 5046 independent reflections

  • 3551 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.093

  • S = 0.92

  • 5046 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected bond lengths (Å)

Co1—C4 1.762 (3)
Co1—C3 1.763 (4)
Co1—C1 1.767 (3)
Co1—C2 1.770 (4)

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS, Inc., Madison, WI, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS, Inc., Madison, WI, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title salt (Fig. 1) contains the classical metal carbonyl anion (Ellis, 2003) tetracarbonylcobaltate, which has now appeared in the Cambridge Structural Database (CSD, Version 5.35, update No. 2, Febuary 2014, Allen, 2002) 86 times, 70 for which it serves simply as an anion of modest bulk, as in the title salt. In eleven instances it is part of an alkali metal or thallium network, and in the remaining five occurrences it is coordinated through an oxygen atom to a transition metal or lanthanide.

Because the cobaltate is an unperturbed anion in this salt, the IR stretch is very strong and without features, as expected for a tetrahedron. In contrast, the very strong IR stretch of K[Co(CO)4] in instances in which there can be monodentate or tridentate K···O interactions has a shoulder that is due to symmetry reduction from Td to C3v (Edgell & Lyford, 1971).

Related literature top

For a survey of metal carbonyl anions, see: Ellis (2003). For the synthesis of the precursor bis(anthracene)cobaltate, see: Brennessel et al. (2002). For an in-depth discussion of the perturbations of the title anion by cations in various solvents, as measured by IR spectroscopy, see: Edgell & Lyford (1971). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Argon was removed under vacuum from a deep pinkish-red solution of [K([2.2.2]cryptand)][Co(η4-C14H10)2]·0.5THF (Brennessel et al., 2002) stirring in tetrahydrofuran (THF) at room temperature. Carbon monoxide (1 atm) was added, and the solution became immediately colorless. After a few minutes, the carbon monoxide and most of the solvent were removed under vacuum. Argon was reintroduced and diethyl ether was added to extract the anthracene and to precipitate the product. After filtering, washing (diethyl ether), and drying, the colorless salt was obtained in quantitative yield.

IR (νCO, THF, cm-1): 1892 vs; IR (νCO, Nujol mull, cm-1): 1878 vs br; 59Co NMR (71.15 MHz, CD3CN, 293 K, external reference 0.1 M K3[Co(CN)6] in D2O at 0.0 p.p.m., δ, p.p.m.): -3015.7 (s). Colorless blocks were grown from a pentane-layered THF solution at 273 K.

Refinement top

All H atoms were placed geometrically and treated as riding atoms: C—H = 0.99 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title salt, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
(2.2.2-Cryptand)potassium tetracarbonylcobaltate(-I) top
Crystal data top
[K(C18H36N2O6)][Co(CO)4]F(000) = 1232
Mr = 586.56Dx = 1.366 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3611 (18) ÅCell parameters from 3996 reflections
b = 12.022 (2) Åθ = 2.3–24.6°
c = 25.358 (5) ŵ = 0.80 mm1
β = 91.536 (4)°T = 173 K
V = 2852.8 (9) Å3Block, colorless
Z = 40.30 × 0.19 × 0.14 mm
Data collection top
Bruker SMART CCD platform
diffractometer
3551 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.058
ω scansθmax = 25.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
h = 1111
Tmin = 0.521, Tmax = 0.745k = 1114
14351 measured reflectionsl = 2930
5046 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0428P)2]
where P = (Fo2 + 2Fc2)/3
5046 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[K(C18H36N2O6)][Co(CO)4]V = 2852.8 (9) Å3
Mr = 586.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3611 (18) ŵ = 0.80 mm1
b = 12.022 (2) ÅT = 173 K
c = 25.358 (5) Å0.30 × 0.19 × 0.14 mm
β = 91.536 (4)°
Data collection top
Bruker SMART CCD platform
diffractometer
5046 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
3551 reflections with I > 2σ(I)
Tmin = 0.521, Tmax = 0.745Rint = 0.058
14351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 0.92Δρmax = 0.39 e Å3
5046 reflectionsΔρmin = 0.23 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.03175 (4)0.80932 (3)0.38562 (2)0.03777 (12)
C10.1014 (3)0.8470 (2)0.44858 (12)0.0452 (7)
O10.1456 (3)0.8706 (2)0.48980 (8)0.0653 (6)
C20.1456 (4)0.8597 (3)0.37998 (11)0.0489 (8)
O20.2606 (3)0.8925 (2)0.37675 (10)0.0736 (7)
C30.0336 (3)0.6631 (3)0.38061 (11)0.0462 (7)
O30.0358 (2)0.56731 (19)0.37816 (9)0.0651 (6)
C40.1381 (3)0.8663 (2)0.33608 (11)0.0436 (7)
O40.2078 (3)0.90302 (17)0.30383 (8)0.0627 (6)
K10.37979 (6)0.39030 (5)0.37685 (2)0.03466 (15)
N10.2667 (2)0.17944 (18)0.42354 (9)0.0408 (6)
C50.2462 (3)0.1981 (2)0.48042 (11)0.0488 (8)
H5A0.33990.19210.49920.059*
H5B0.18370.13870.49400.059*
C60.1812 (3)0.3093 (3)0.49271 (11)0.0520 (8)
H6A0.09280.32010.47100.062*
H6B0.15580.31200.53030.062*
O50.28056 (19)0.39546 (15)0.48182 (7)0.0399 (5)
C70.2248 (3)0.5016 (2)0.49582 (11)0.0482 (8)
H7A0.20080.50190.53360.058*
H7B0.13640.51700.47480.058*
C80.3322 (3)0.5887 (2)0.48574 (11)0.0504 (8)
H8A0.29520.66210.49650.060*
H8B0.42080.57330.50670.060*
O60.3626 (2)0.58999 (15)0.43112 (7)0.0438 (5)
C90.4473 (3)0.6823 (2)0.41678 (12)0.0512 (8)
H9A0.54690.67160.42990.061*
H9B0.40960.75110.43280.061*
C100.4439 (3)0.6927 (2)0.35785 (12)0.0535 (8)
H10A0.34370.70420.34560.064*
H10B0.49880.75970.34810.064*
C110.1280 (3)0.1528 (2)0.39757 (12)0.0481 (8)
H11A0.05320.20050.41260.058*
H11B0.10340.07450.40520.058*
C120.1278 (3)0.1691 (2)0.33879 (12)0.0492 (8)
H12A0.20910.12850.32370.059*
H12B0.03830.13920.32270.059*
O70.13939 (19)0.28435 (15)0.32733 (7)0.0396 (5)
C130.1274 (3)0.3049 (3)0.27216 (10)0.0480 (8)
H13A0.03400.27760.25820.058*
H13B0.20400.26500.25370.058*
C140.1397 (3)0.4268 (3)0.26271 (11)0.0461 (7)
H14A0.11790.44370.22510.055*
H14B0.07070.46740.28450.055*
O80.28281 (19)0.46132 (16)0.27640 (7)0.0458 (5)
C150.3056 (3)0.5738 (3)0.26203 (12)0.0610 (9)
H15A0.24310.62310.28250.073*
H15B0.28220.58430.22410.073*
C160.4602 (3)0.6026 (3)0.27332 (12)0.0619 (9)
H16A0.52120.55080.25350.074*
H16B0.47860.67870.26030.074*
C170.3671 (3)0.0864 (2)0.41663 (13)0.0509 (8)
H17A0.35460.05690.38040.061*
H17B0.34290.02610.44140.061*
C180.5219 (3)0.1185 (3)0.42583 (12)0.0507 (8)
H18A0.53500.15190.46130.061*
H18B0.58310.05150.42410.061*
O90.56202 (19)0.19592 (16)0.38686 (7)0.0466 (5)
C190.7118 (3)0.2156 (2)0.38849 (11)0.0473 (8)
H19A0.76350.14510.38230.057*
H19B0.74170.24420.42370.057*
C200.7477 (3)0.2982 (2)0.34723 (11)0.0471 (8)
H20A0.85270.30740.34610.056*
H20B0.71290.27160.31230.056*
O100.68266 (18)0.40194 (15)0.35896 (7)0.0404 (5)
C210.7229 (3)0.4842 (2)0.32179 (11)0.0504 (8)
H21A0.68870.46250.28600.060*
H21B0.82840.49050.32160.060*
C220.6590 (3)0.5936 (2)0.33652 (12)0.0472 (7)
H22A0.68550.61020.37380.057*
H22B0.70050.65260.31440.057*
N20.5018 (2)0.5968 (2)0.33005 (9)0.0432 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0357 (2)0.0434 (2)0.0341 (2)0.00146 (18)0.00036 (16)0.00340 (17)
C10.0456 (19)0.0426 (17)0.0476 (18)0.0042 (14)0.0054 (15)0.0106 (14)
O10.0779 (17)0.0789 (17)0.0382 (12)0.0091 (13)0.0153 (11)0.0002 (11)
C20.053 (2)0.0490 (18)0.0451 (17)0.0006 (16)0.0038 (16)0.0033 (14)
O20.0462 (15)0.0820 (19)0.0924 (18)0.0188 (13)0.0037 (13)0.0085 (14)
C30.0390 (18)0.061 (2)0.0384 (16)0.0029 (15)0.0038 (13)0.0001 (15)
O30.0783 (17)0.0451 (14)0.0711 (15)0.0066 (12)0.0143 (13)0.0077 (12)
C40.0494 (19)0.0424 (17)0.0386 (16)0.0051 (14)0.0055 (14)0.0010 (14)
O40.0755 (16)0.0628 (15)0.0510 (13)0.0019 (12)0.0223 (12)0.0182 (11)
K10.0300 (3)0.0400 (3)0.0340 (3)0.0031 (3)0.0000 (2)0.0008 (3)
N10.0344 (13)0.0383 (13)0.0495 (14)0.0043 (11)0.0000 (11)0.0027 (11)
C50.0470 (19)0.054 (2)0.0457 (16)0.0079 (15)0.0046 (14)0.0111 (15)
C60.049 (2)0.064 (2)0.0440 (17)0.0022 (17)0.0151 (15)0.0043 (16)
O50.0345 (11)0.0454 (12)0.0400 (10)0.0021 (9)0.0076 (8)0.0007 (9)
C70.0464 (19)0.059 (2)0.0395 (16)0.0137 (16)0.0123 (14)0.0012 (15)
C80.061 (2)0.0461 (18)0.0443 (17)0.0148 (16)0.0032 (15)0.0119 (14)
O60.0429 (12)0.0415 (11)0.0472 (11)0.0025 (9)0.0035 (9)0.0040 (9)
C90.0429 (18)0.0385 (17)0.072 (2)0.0015 (14)0.0036 (16)0.0074 (16)
C100.0372 (18)0.0449 (18)0.078 (2)0.0054 (15)0.0016 (16)0.0192 (17)
C110.0353 (18)0.0441 (17)0.065 (2)0.0064 (14)0.0034 (15)0.0063 (15)
C120.0429 (19)0.0422 (19)0.0618 (19)0.0042 (14)0.0080 (15)0.0065 (15)
O70.0400 (11)0.0412 (11)0.0373 (10)0.0036 (9)0.0043 (8)0.0040 (8)
C130.0459 (19)0.061 (2)0.0364 (15)0.0009 (15)0.0063 (13)0.0111 (15)
C140.0403 (18)0.063 (2)0.0344 (15)0.0039 (15)0.0097 (13)0.0002 (14)
O80.0368 (12)0.0596 (13)0.0406 (11)0.0091 (9)0.0085 (9)0.0089 (10)
C150.053 (2)0.074 (2)0.0551 (19)0.0184 (18)0.0204 (16)0.0281 (17)
C160.053 (2)0.079 (2)0.0531 (19)0.0237 (18)0.0061 (16)0.0281 (18)
C170.049 (2)0.0367 (17)0.067 (2)0.0009 (14)0.0008 (16)0.0014 (15)
C180.0392 (18)0.0495 (19)0.0630 (19)0.0065 (15)0.0036 (15)0.0050 (16)
O90.0327 (12)0.0509 (12)0.0559 (12)0.0042 (9)0.0032 (9)0.0025 (10)
C190.0298 (16)0.057 (2)0.0546 (18)0.0092 (14)0.0013 (14)0.0140 (15)
C200.0313 (16)0.061 (2)0.0489 (17)0.0050 (14)0.0073 (13)0.0147 (15)
O100.0291 (10)0.0511 (12)0.0413 (10)0.0019 (9)0.0092 (8)0.0063 (9)
C210.0365 (17)0.065 (2)0.0501 (18)0.0096 (15)0.0127 (14)0.0038 (16)
C220.0329 (17)0.057 (2)0.0522 (17)0.0137 (14)0.0038 (14)0.0079 (15)
N20.0323 (13)0.0560 (16)0.0413 (13)0.0086 (12)0.0004 (11)0.0091 (12)
Geometric parameters (Å, º) top
Co1—C41.762 (3)C11—H11A0.9900
Co1—C31.763 (4)C11—H11B0.9900
Co1—C11.767 (3)C12—O71.420 (3)
Co1—C21.770 (4)C12—H12A0.9900
C1—O11.149 (3)C12—H12B0.9900
C2—O21.147 (3)O7—C131.422 (3)
C3—O31.153 (4)C13—C141.490 (4)
C4—O41.148 (3)C13—H13A0.9900
K1—O62.7741 (19)C13—H13B0.9900
K1—O82.8137 (18)C14—O81.436 (3)
K1—O52.8433 (18)C14—H14A0.9900
K1—O72.8481 (19)C14—H14B0.9900
K1—O102.8866 (19)O8—C151.418 (3)
K1—O92.900 (2)C15—C161.508 (4)
K1—N22.991 (2)C15—H15A0.9900
K1—N13.003 (2)C15—H15B0.9900
N1—C171.474 (4)C16—N21.482 (4)
N1—C111.475 (3)C16—H16A0.9900
N1—C51.477 (3)C16—H16B0.9900
C5—C61.505 (4)C17—C181.512 (4)
C5—H5A0.9900C17—H17A0.9900
C5—H5B0.9900C17—H17B0.9900
C6—O51.424 (3)C18—O91.416 (3)
C6—H6A0.9900C18—H18A0.9900
C6—H6B0.9900C18—H18B0.9900
O5—C71.427 (3)O9—C191.421 (3)
C7—C81.478 (4)C19—C201.488 (4)
C7—H7A0.9900C19—H19A0.9900
C7—H7B0.9900C19—H19B0.9900
C8—O61.421 (3)C20—O101.423 (3)
C8—H8A0.9900C20—H20A0.9900
C8—H8B0.9900C20—H20B0.9900
O6—C91.417 (3)O10—C211.424 (3)
C9—C101.499 (4)C21—C221.497 (4)
C9—H9A0.9900C21—H21A0.9900
C9—H9B0.9900C21—H21B0.9900
C10—N21.464 (4)C22—N21.477 (3)
C10—H10A0.9900C22—H22A0.9900
C10—H10B0.9900C22—H22B0.9900
C11—C121.503 (4)
C4—Co1—C3109.24 (13)C12—C11—H11A109.0
C4—Co1—C1110.01 (13)N1—C11—H11B109.0
C3—Co1—C1108.48 (13)C12—C11—H11B109.0
C4—Co1—C2110.86 (13)H11A—C11—H11B107.8
C3—Co1—C2110.27 (14)O7—C12—C11109.4 (2)
C1—Co1—C2107.94 (13)O7—C12—H12A109.8
O1—C1—Co1179.1 (3)C11—C12—H12A109.8
O2—C2—Co1179.4 (3)O7—C12—H12B109.8
O3—C3—Co1178.9 (3)C11—C12—H12B109.8
O4—C4—Co1179.7 (3)H12A—C12—H12B108.2
O6—K1—O899.49 (6)C12—O7—C13111.5 (2)
O6—K1—O559.46 (5)C12—O7—K1114.18 (15)
O8—K1—O5137.33 (6)C13—O7—K1113.37 (15)
O6—K1—O7123.37 (6)O7—C13—C14109.0 (2)
O8—K1—O760.31 (5)O7—C13—H13A109.9
O5—K1—O798.53 (5)C14—C13—H13A109.9
O6—K1—O1096.11 (5)O7—C13—H13B109.9
O8—K1—O1097.90 (5)C14—C13—H13B109.9
O5—K1—O10119.53 (5)H13A—C13—H13B108.3
O7—K1—O10136.07 (5)O8—C14—C13108.8 (2)
O6—K1—O9134.08 (6)O8—C14—H14A109.9
O8—K1—O9119.90 (6)C13—C14—H14A109.9
O5—K1—O998.15 (5)O8—C14—H14B109.9
O7—K1—O997.71 (6)C13—C14—H14B109.9
O10—K1—O958.33 (5)H14A—C14—H14B108.3
O6—K1—N260.43 (6)C15—O8—C14111.1 (2)
O8—K1—N260.42 (6)C15—O8—K1118.35 (16)
O5—K1—N2119.41 (6)C14—O8—K1114.04 (14)
O7—K1—N2120.12 (6)O8—C15—C16108.7 (3)
O10—K1—N260.68 (6)O8—C15—H15A110.0
O9—K1—N2118.26 (6)C16—C15—H15A110.0
O6—K1—N1120.61 (6)O8—C15—H15B110.0
O8—K1—N1120.30 (6)C16—C15—H15B110.0
O5—K1—N161.43 (6)H15A—C15—H15B108.3
O7—K1—N160.89 (6)N2—C16—C15113.5 (2)
O10—K1—N1117.46 (6)N2—C16—H16A108.9
O9—K1—N159.87 (6)C15—C16—H16A108.9
N2—K1—N1178.13 (7)N2—C16—H16B108.9
C17—N1—C11109.8 (2)C15—C16—H16B108.9
C17—N1—C5109.3 (2)H16A—C16—H16B107.7
C11—N1—C5109.4 (2)N1—C17—C18113.5 (2)
C17—N1—K1111.16 (16)N1—C17—H17A108.9
C11—N1—K1108.83 (16)C18—C17—H17A108.9
C5—N1—K1108.26 (16)N1—C17—H17B108.9
N1—C5—C6113.6 (2)C18—C17—H17B108.9
N1—C5—H5A108.8H17A—C17—H17B107.7
C6—C5—H5A108.8O9—C18—C17109.3 (2)
N1—C5—H5B108.8O9—C18—H18A109.8
C6—C5—H5B108.8C17—C18—H18A109.8
H5A—C5—H5B107.7O9—C18—H18B109.8
O5—C6—C5109.7 (2)C17—C18—H18B109.8
O5—C6—H6A109.7H18A—C18—H18B108.3
C5—C6—H6A109.7C18—O9—C19111.7 (2)
O5—C6—H6B109.7C18—O9—K1115.11 (15)
C5—C6—H6B109.7C19—O9—K1116.48 (16)
H6A—C6—H6B108.2O9—C19—C20109.4 (2)
C6—O5—C7110.9 (2)O9—C19—H19A109.8
C6—O5—K1113.40 (15)C20—C19—H19A109.8
C7—O5—K1112.52 (14)O9—C19—H19B109.8
O5—C7—C8109.6 (2)C20—C19—H19B109.8
O5—C7—H7A109.8H19A—C19—H19B108.2
C8—C7—H7A109.8O10—C20—C19109.4 (2)
O5—C7—H7B109.8O10—C20—H20A109.8
C8—C7—H7B109.8C19—C20—H20A109.8
H7A—C7—H7B108.2O10—C20—H20B109.8
O6—C8—C7109.3 (2)C19—C20—H20B109.8
O6—C8—H8A109.8H20A—C20—H20B108.2
C7—C8—H8A109.8C20—O10—C21110.4 (2)
O6—C8—H8B109.8C20—O10—K1114.71 (15)
C7—C8—H8B109.8C21—O10—K1114.61 (15)
H8A—C8—H8B108.3O10—C21—C22109.3 (2)
C9—O6—C8112.7 (2)O10—C21—H21A109.8
C9—O6—K1120.67 (15)C22—C21—H21A109.8
C8—O6—K1119.31 (16)O10—C21—H21B109.8
O6—C9—C10108.9 (2)C22—C21—H21B109.8
O6—C9—H9A109.9H21A—C21—H21B108.3
C10—C9—H9A109.9N2—C22—C21113.5 (2)
O6—C9—H9B109.9N2—C22—H22A108.9
C10—C9—H9B109.9C21—C22—H22A108.9
H9A—C9—H9B108.3N2—C22—H22B108.9
N2—C10—C9114.6 (2)C21—C22—H22B108.9
N2—C10—H10A108.6H22A—C22—H22B107.7
C9—C10—H10A108.6C10—N2—C22110.3 (2)
N2—C10—H10B108.6C10—N2—C16109.9 (2)
C9—C10—H10B108.6C22—N2—C16110.1 (2)
H10A—C10—H10B107.6C10—N2—K1108.21 (15)
N1—C11—C12113.0 (2)C22—N2—K1108.94 (16)
N1—C11—H11A109.0C16—N2—K1109.33 (17)
C17—N1—C5—C6163.4 (2)K1—O8—C15—C1649.7 (3)
C11—N1—C5—C676.4 (3)O8—C15—C16—N263.7 (4)
K1—N1—C5—C642.1 (3)C11—N1—C17—C18161.4 (2)
N1—C5—C6—O568.5 (3)C5—N1—C17—C1878.5 (3)
C5—C6—O5—C7176.8 (2)K1—N1—C17—C1841.0 (3)
C5—C6—O5—K155.4 (3)N1—C17—C18—O965.0 (3)
C6—O5—C7—C8178.1 (2)C17—C18—O9—C19170.7 (2)
K1—O5—C7—C853.7 (3)C17—C18—O9—K153.5 (3)
O5—C7—C8—O661.3 (3)C18—O9—C19—C20179.4 (2)
C7—C8—O6—C9170.6 (2)K1—O9—C19—C2044.3 (3)
C7—C8—O6—K138.9 (3)O9—C19—C20—O1064.3 (3)
C8—O6—C9—C10166.3 (2)C19—C20—O10—C21176.4 (2)
K1—O6—C9—C1043.8 (3)C19—C20—O10—K152.4 (3)
O6—C9—C10—N261.4 (3)C20—O10—C21—C22177.2 (2)
C17—N1—C11—C1278.8 (3)K1—O10—C21—C2251.4 (3)
C5—N1—C11—C12161.2 (2)O10—C21—C22—N268.2 (3)
K1—N1—C11—C1243.0 (3)C9—C10—N2—C2272.8 (3)
N1—C11—C12—O768.3 (3)C9—C10—N2—C16165.6 (2)
C11—C12—O7—C13175.0 (2)C9—C10—N2—K146.3 (3)
C11—C12—O7—K154.9 (3)C21—C22—N2—C10164.9 (2)
C12—O7—C13—C14179.8 (2)C21—C22—N2—C1673.7 (3)
K1—O7—C13—C1449.7 (3)C21—C22—N2—K146.2 (3)
O7—C13—C14—O867.6 (3)C15—C16—N2—C1074.6 (3)
C13—C14—O8—C15172.7 (2)C15—C16—N2—C22163.7 (3)
C13—C14—O8—K150.5 (2)C15—C16—N2—K144.1 (3)
C14—O8—C15—C16175.5 (2)
Selected bond lengths (Å) top
Co1—C41.762 (3)Co1—C11.767 (3)
Co1—C31.763 (4)Co1—C21.770 (4)
 

Acknowledgements

This research was supported by the US National Science Foundation and the donors of the Petroleum Research Fund, administered by the American Chemical Society.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrennessel, W. W., Young, V. G. Jr & Ellis, J. E. (2002). Angew. Chem. Int. Ed. 41, 1211–1215.  CrossRef CAS Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS, Inc., Madison, WI, USA.  Google Scholar
First citationEdgell, W. F. & Lyford IV, J. (1971). J. Am. Chem. Soc. 93, 6407–6414.  CrossRef CAS Web of Science Google Scholar
First citationEllis, J. E. (2003). Organometallics, 22, 3322–3338.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2012). SADABS, University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds