organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o516-o517

N,N,N′-Tri­methyl-N′′-(4-nitro­phen­yl)-N′-phenyl­guanidine

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany, and bInstitut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
*Correspondence e-mail: willi.kantlehner@htw-aalen.de

(Received 12 March 2014; accepted 28 March 2014; online 5 April 2014)

The C—N bond lengths in the guanidine unit of the title compound, C16H18N4O2, are 1.298 (2), 1.353 (2) and 1.401 (3) Å, indicating double- and single-bond character. The N—C—N angles are 115.81 (16), 118.90 (18) and 125.16 (18)°, showing a deviation of the CN3 plane from an ideal trigonal–planar geometry. In the crystal, C—H⋯O hydrogen bonds are observed between the methyl- and aromatic-H atoms and nitro-O atoms. One H atom of the phenyl ring and of the NMe2 group associate with the O atoms of the nitro group, giving chains along the a- and b-axis directions. Cross-linking of these two chains results in a two-dimensional network along bc.

Related literature

For the synthesis and characterization of compounds for blue OLEDs, see: Agarwal et al. (2011[Agarwal, N., Nayak, P. K., Ali, F., Patankar, M. P., Narasimhan, K. L. & Periasamy, N. (2011). Synth. Met. 161, 466-473.]). For the crystal structures of N-methyl­ated di­phenyl­guanidines, see: Tanatani et al. (1998[Tanatani, A., Yamaguchi, K., Azumaya, I., Fukutomi, R., Shudo, K. & Kagechika, H. (1998). J. Am. Chem. Soc. 120, 6433-6442.]). For non-classical hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, ch. 2. Oxford University Press.]). For the crystal structure of N′′-(4-carbazol-9-yl-phen­yl)-N,N′-diethyl-N,N′-di­phenyl­guanidine, see: Tiritiris & Kantlehner (2013[Tiritiris, I. & Kantlehner, W. (2013). Acta Cryst. E69, o1066.]), and of N′′-(4-meth­oxy­phen­yl)-N,N,N′-trimethyl-N′-phenyl­guanidine, see: Tiritiris et al. (2014[Tiritiris, I., Frey, W. & Kantlehner, W. (2014). Acta Cryst. E70, o460.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N4O2

  • Mr = 298.34

  • Monoclinic, C 2/c

  • a = 18.409 (2) Å

  • b = 7.7140 (8) Å

  • c = 22.493 (3) Å

  • β = 109.503 (7)°

  • V = 3010.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Nicolet P3/F diffractometer

  • 2974 measured reflections

  • 2974 independent reflections

  • 2237 reflections with I > 2σ(I)

  • 3 standard reflections every 50 reflections intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.124

  • S = 1.06

  • 2974 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.93 2.49 3.416 (3) 173
C2—H2A⋯O1ii 0.96 2.72 3.064 (3) 102
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We were interested in the synthesis and characterization of aromatic guanidines to examine their suitability in OLEDs (Agarwal et al., 2011). Because the crystal structure of the title compound was not known so far, it was decided to carry out an appropriate investigation. According to the structure analysis, the C1–N3 bond in the guanidine unit is 1.298 (2) Å, indicating double bond character. The bond lengths C1–N2 = 1.401 (3) Å and C1–N1 = 1.353 (2) Å are elongated and characteristic for C–N imine single bonds. The N–C1–N angles are 115.81 (16)° (N1–C1–N2), 125.16 (18)° (N2–C1–N3) and 118.90 (18)° (N1–C1–N3), showing a deviation of the CN3 plane from an ideal trigonal planar geometry (Fig. 1). Similar bond lengths and angles of the guanidine CN3 part have been found by structure analysis for N''-(4-Carbazol-9-yl-phenyl)- N,N'-diethyl-N,N'-diphenyl-guanidine (Tiritiris & Kantlehner, 2013), several N-methylated diphenylguanidines (Tanatani et al., 1998) and N''- (4-methoxyphenyl)-N,N,N'-trimethyl-N'- phenylguanidine (Tiritiris et al., 2014). Non-classical C–H···O hydrogen bonds (Desiraju & Steiner, 1999) between methyl hydrogen atoms, aromatic hydrogen atoms and oxygen atoms of the nitro groups are present [d(H···O) = 2.49 and 2.72 Å] (Tab. 1). One hydrogen atom of the phenyl ring (H12) is associated with the oxygen atom (O2) of the nitro group, resulting in chains along the b axis. A second hydrogen atom of the NMe2 group (H2A) is connected with O1, giving chains along the a axis. By crosslinking of both chains, a two-dimensional network along bc results (Fig. 2).

Related literature top

For the synthesis and characterization of compounds for blue OLEDs, see: Agarwal et al. (2011). For the crystal structures of N-methylated diphenylguanidines, see: Tanatani et al. (1998). For non-classical hydrogen bonds, see: Desiraju & Steiner (1999). For the crystal structure of N''-(4-carbazol-9-yl-phenyl)-N,N'-diethyl-N,N'-diphenylguanidine, see: Tiritiris & Kantlehner (2013) and of N''-(4-methoxyphenyl)-N,N,N'-trimethyl-N'-phenylguanidine, see: Tiritiris et al. (2014).

Experimental top

One equivalent of N,N-dimethyl-N',N'-methylphenyl- chloroformamidinium-chloride (synthesized from N,N-dimethyl- N',N'-methylphenylthiourea and phosgene) was reacted with one equivalent of 4-nitroaniline (Sigma-Aldrich) in acetonitrile, in the presence of one equivalent triethylamine, at 273 K. The obtained mixture consisting of the guanidinium chloride and triethylammonium chloride was reacted in the next step with an excess of an aqueous sodium hydroxide solution at 273 K. After extraction of the guanidine with diethyl ether from the water phase, the solvent was evaporated and the title compound was isolated in form of a colourless solid. Single crystals have been obtained by recrystallization from a saturated acetonitrile solution at room temperature.

Refinement top

The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with Uiso(H) set to 1.5Ueq(C) and d(C—H) = 0.96 Å. H atoms for Caromatic were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound. The C–H···O hydrogen bonds (indicated by dashed lines) are arranged in a two-dimensional network (bc-view). Only hydrogen atoms involved in the hydrogen bonding system are shown.
N,N,N'-Trimethyl-N''-(4-nitrophenyl)-N'-phenylguanidine top
Crystal data top
C16H18N4O2F(000) = 1264
Mr = 298.34Dx = 1.316 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 35 reflections
a = 18.409 (2) Åθ = 14–17°
b = 7.7140 (8) ŵ = 0.09 mm1
c = 22.493 (3) ÅT = 293 K
β = 109.503 (7)°Plate, colorless
V = 3010.9 (6) Å30.35 × 0.25 × 0.20 mm
Z = 8
Data collection top
Nicolet P3/F
diffractometer
Rint = 0.000
Radiation source: sealed tubeθmax = 26.0°, θmin = 1.9°
Graphite monochromatorh = 2221
Wyckoff scank = 09
2974 measured reflectionsl = 027
2974 independent reflections3 standard reflections every 50 reflections
2237 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0442P)2 + 2.9581P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2974 reflectionsΔρmax = 0.18 e Å3
203 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0044 (4)
Crystal data top
C16H18N4O2V = 3010.9 (6) Å3
Mr = 298.34Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.409 (2) ŵ = 0.09 mm1
b = 7.7140 (8) ÅT = 293 K
c = 22.493 (3) Å0.35 × 0.25 × 0.20 mm
β = 109.503 (7)°
Data collection top
Nicolet P3/F
diffractometer
Rint = 0.000
2974 measured reflections3 standard reflections every 50 reflections
2974 independent reflections intensity decay: 3%
2237 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
2974 reflectionsΔρmin = 0.22 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11956 (11)0.3349 (3)0.21285 (9)0.0330 (4)
N10.09025 (10)0.2129 (2)0.16803 (8)0.0384 (4)
N20.16570 (9)0.4615 (2)0.19854 (7)0.0356 (4)
N30.10725 (10)0.3212 (2)0.26620 (7)0.0384 (4)
C20.12086 (14)0.1763 (3)0.11771 (10)0.0493 (6)
H2A0.08560.21790.07840.074*
H2B0.12760.05340.11500.074*
H2C0.16970.23330.12640.074*
C30.03122 (15)0.0957 (3)0.17362 (11)0.0544 (6)
H3A0.05510.00610.19640.082*
H3B0.00210.06320.13230.082*
H3C0.00160.15250.19580.082*
C40.24120 (12)0.4984 (3)0.24453 (11)0.0467 (5)
H4A0.24830.43060.28180.070*
H4B0.24450.61940.25520.070*
H4C0.28050.46970.22690.070*
C50.13871 (12)0.5590 (3)0.14236 (9)0.0351 (4)
C60.05972 (12)0.5794 (3)0.11112 (10)0.0426 (5)
H60.02460.52970.12770.051*
C70.03365 (14)0.6734 (3)0.05569 (10)0.0506 (6)
H70.01910.68470.03490.061*
C80.08444 (15)0.7502 (3)0.03083 (10)0.0529 (6)
H80.06650.81250.00670.063*
C90.16233 (15)0.7334 (3)0.06238 (11)0.0529 (6)
H90.19710.78670.04620.064*
C100.18983 (13)0.6391 (3)0.11746 (10)0.0451 (5)
H100.24260.62910.13800.054*
C110.11811 (11)0.4595 (3)0.30767 (9)0.0343 (4)
C120.14071 (12)0.4207 (3)0.37217 (9)0.0381 (5)
H120.14730.30540.38490.046*
C130.15342 (12)0.5484 (3)0.41700 (9)0.0389 (5)
H130.16890.52000.45960.047*
C140.14288 (11)0.7195 (3)0.39797 (9)0.0359 (5)
C150.11713 (12)0.7640 (3)0.33462 (9)0.0400 (5)
H150.10880.87950.32240.048*
C160.10416 (12)0.6349 (3)0.29011 (9)0.0403 (5)
H160.08580.66390.24760.048*
N40.15796 (10)0.8552 (2)0.44528 (8)0.0420 (4)
O10.17013 (11)0.8141 (2)0.50039 (7)0.0594 (5)
O20.15764 (12)1.0061 (2)0.42853 (9)0.0682 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0320 (10)0.0350 (10)0.0298 (9)0.0008 (8)0.0075 (8)0.0000 (8)
N10.0432 (10)0.0390 (9)0.0322 (8)0.0066 (8)0.0116 (7)0.0069 (7)
N20.0323 (8)0.0417 (10)0.0296 (8)0.0062 (7)0.0062 (7)0.0008 (7)
N30.0466 (10)0.0382 (10)0.0318 (8)0.0040 (8)0.0148 (7)0.0027 (7)
C20.0575 (14)0.0557 (14)0.0345 (11)0.0041 (12)0.0152 (10)0.0095 (10)
C30.0602 (15)0.0503 (14)0.0496 (13)0.0181 (12)0.0141 (11)0.0088 (11)
C40.0341 (11)0.0515 (14)0.0465 (12)0.0057 (10)0.0027 (9)0.0047 (10)
C50.0376 (10)0.0360 (11)0.0314 (9)0.0010 (9)0.0113 (8)0.0025 (8)
C60.0363 (11)0.0529 (13)0.0386 (11)0.0004 (10)0.0124 (9)0.0043 (10)
C70.0445 (13)0.0609 (15)0.0408 (12)0.0045 (11)0.0068 (10)0.0038 (11)
C80.0671 (16)0.0527 (14)0.0349 (11)0.0012 (12)0.0118 (11)0.0083 (11)
C90.0603 (15)0.0551 (15)0.0477 (13)0.0103 (12)0.0237 (12)0.0064 (11)
C100.0412 (12)0.0511 (13)0.0430 (12)0.0064 (10)0.0142 (9)0.0027 (10)
C110.0327 (10)0.0400 (11)0.0318 (10)0.0023 (8)0.0127 (8)0.0015 (9)
C120.0458 (12)0.0339 (11)0.0343 (10)0.0012 (9)0.0128 (9)0.0033 (9)
C130.0430 (11)0.0448 (12)0.0290 (10)0.0014 (10)0.0118 (8)0.0033 (9)
C140.0364 (11)0.0397 (11)0.0335 (10)0.0008 (9)0.0141 (8)0.0054 (9)
C150.0475 (12)0.0356 (11)0.0388 (11)0.0094 (9)0.0167 (9)0.0031 (9)
C160.0471 (12)0.0445 (12)0.0279 (10)0.0078 (10)0.0108 (9)0.0036 (9)
N40.0435 (10)0.0426 (11)0.0429 (10)0.0015 (8)0.0184 (8)0.0078 (8)
O10.0782 (12)0.0658 (12)0.0362 (8)0.0074 (9)0.0215 (8)0.0125 (8)
O20.1042 (16)0.0391 (10)0.0635 (11)0.0023 (10)0.0309 (11)0.0080 (8)
Geometric parameters (Å, º) top
C1—N31.298 (2)C7—C81.374 (3)
C1—N11.353 (2)C7—H70.9300
C1—N21.401 (3)C8—C91.377 (3)
N1—C21.451 (3)C8—H80.9300
N1—C31.451 (3)C9—C101.379 (3)
N2—C51.411 (2)C9—H90.9300
N2—C41.457 (2)C10—H100.9300
N3—C111.387 (2)C11—C121.402 (3)
C2—H2A0.9600C11—C161.408 (3)
C2—H2B0.9600C12—C131.372 (3)
C2—H2C0.9600C12—H120.9300
C3—H3A0.9600C13—C141.381 (3)
C3—H3B0.9600C13—H130.9300
C3—H3C0.9600C14—C151.386 (3)
C4—H4A0.9600C14—N41.452 (3)
C4—H4B0.9600C15—C161.375 (3)
C4—H4C0.9600C15—H150.9300
C5—C101.390 (3)C16—H160.9300
C5—C61.397 (3)N4—O21.223 (2)
C6—C71.382 (3)N4—O11.226 (2)
C6—H60.9300
N3—C1—N1118.90 (18)C8—C7—C6121.0 (2)
N3—C1—N2125.16 (18)C8—C7—H7119.5
N1—C1—N2115.81 (16)C6—C7—H7119.5
C1—N1—C2123.70 (18)C7—C8—C9118.8 (2)
C1—N1—C3119.52 (17)C7—C8—H8120.6
C2—N1—C3116.34 (18)C9—C8—H8120.6
C1—N2—C5121.22 (16)C8—C9—C10121.3 (2)
C1—N2—C4118.76 (16)C8—C9—H9119.4
C5—N2—C4119.93 (17)C10—C9—H9119.4
C1—N3—C11121.92 (18)C9—C10—C5120.1 (2)
N1—C2—H2A109.5C9—C10—H10119.9
N1—C2—H2B109.5C5—C10—H10119.9
H2A—C2—H2B109.5N3—C11—C12117.26 (18)
N1—C2—H2C109.5N3—C11—C16125.34 (17)
H2A—C2—H2C109.5C12—C11—C16117.30 (18)
H2B—C2—H2C109.5C13—C12—C11121.7 (2)
N1—C3—H3A109.5C13—C12—H12119.1
N1—C3—H3B109.5C11—C12—H12119.1
H3A—C3—H3B109.5C12—C13—C14119.09 (18)
N1—C3—H3C109.5C12—C13—H13120.5
H3A—C3—H3C109.5C14—C13—H13120.5
H3B—C3—H3C109.5C13—C14—C15121.30 (19)
N2—C4—H4A109.5C13—C14—N4119.30 (18)
N2—C4—H4B109.5C15—C14—N4119.39 (19)
H4A—C4—H4B109.5C16—C15—C14119.0 (2)
N2—C4—H4C109.5C16—C15—H15120.5
H4A—C4—H4C109.5C14—C15—H15120.5
H4B—C4—H4C109.5C15—C16—C11121.35 (18)
C10—C5—C6118.56 (19)C15—C16—H16119.3
C10—C5—N2120.95 (19)C11—C16—H16119.3
C6—C5—N2120.48 (18)O2—N4—O1122.59 (19)
C7—C6—C5120.2 (2)O2—N4—C14118.72 (18)
C7—C6—H6119.9O1—N4—C14118.70 (19)
C5—C6—H6119.9
N3—C1—N1—C2157.1 (2)C8—C9—C10—C50.2 (4)
N2—C1—N1—C218.9 (3)C6—C5—C10—C91.3 (3)
N3—C1—N1—C315.0 (3)N2—C5—C10—C9179.8 (2)
N2—C1—N1—C3169.05 (19)C1—N3—C11—C12149.4 (2)
N3—C1—N2—C5130.6 (2)C1—N3—C11—C1634.4 (3)
N1—C1—N2—C553.7 (3)N3—C11—C12—C13179.57 (19)
N3—C1—N2—C446.0 (3)C16—C11—C12—C133.9 (3)
N1—C1—N2—C4129.7 (2)C11—C12—C13—C140.7 (3)
N1—C1—N3—C11163.60 (18)C12—C13—C14—C152.3 (3)
N2—C1—N3—C1120.8 (3)C12—C13—C14—N4178.60 (18)
C1—N2—C5—C10158.0 (2)C13—C14—C15—C162.0 (3)
C4—N2—C5—C1025.4 (3)N4—C14—C15—C16178.97 (19)
C1—N2—C5—C623.1 (3)C14—C15—C16—C111.4 (3)
C4—N2—C5—C6153.4 (2)N3—C11—C16—C15179.51 (19)
C10—C5—C6—C71.9 (3)C12—C11—C16—C154.2 (3)
N2—C5—C6—C7179.2 (2)C13—C14—N4—O2171.2 (2)
C5—C6—C7—C81.0 (4)C15—C14—N4—O29.8 (3)
C6—C7—C8—C90.5 (4)C13—C14—N4—O19.2 (3)
C7—C8—C9—C101.1 (4)C15—C14—N4—O1169.88 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.932.493.416 (3)173
C2—H2A···O1ii0.962.723.064 (3)102
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.932.493.416 (3)173
C2—H2A···O1ii0.962.723.064 (3)102
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z1/2.
 

Acknowledgements

The authors thank Dr B. Iliev (IoLiTec GmbH) for the synthesis of the title compound.

References

First citationAgarwal, N., Nayak, P. K., Ali, F., Patankar, M. P., Narasimhan, K. L. & Periasamy, N. (2011). Synth. Met. 161, 466–473.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, ch. 2. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTanatani, A., Yamaguchi, K., Azumaya, I., Fukutomi, R., Shudo, K. & Kagechika, H. (1998). J. Am. Chem. Soc. 120, 6433–6442.  Web of Science CSD CrossRef CAS Google Scholar
First citationTiritiris, I., Frey, W. & Kantlehner, W. (2014). Acta Cryst. E70, o460.  CSD CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2013). Acta Cryst. E69, o1066.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o516-o517
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds