organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl ({[(4E)-1,3-di­methyl-2,6-di­phenyl­piperidin-4-yl­­idene]amino}­­oxy)acetate

aDepartment of Physics, Shri Angalamman College of Engineering and Technology, Siruganoor, Tiruchirappalli, India, bDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram, India, cDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, and dDepartment of Physics, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India
*Correspondence e-mail: sakthi2udc@gmail.com

(Received 23 January 2014; accepted 26 March 2014; online 2 April 2014)

In the title compound, C22H26N2O3, the piperidine ring exhibits a chair conformation. The phenyl rings attached to the piperidine at the 2- and 6-positions have axial orientations. These rings make a dihedral angle of 49.75 (11)°. The amino­oxy acetate group attached at the 4-position has an equatorial orientation. In the crystal, inversion dimers linked by pairs of C—H⋯π inter­actions occur.

Related literature

For background and the importance of oxime ethers, see: Crichlow et al. (2007[Crichlow, G. V., Cheng, K. F., Dabideen, D., Ochani, M., Aljabari, B., Pavlov, V. A., Miller, E. J., Lolis, E. & Al-Abed, Y. (2007). J.Biol.Chem. 282, 23089-23095.]). For a study of the in vitro anti­proliferative activity of oxyme ether derivatives, see: Parthiban et al. (2011[Parthiban, P., Pallela, R., Kim, S.-K., Park, D.-H. & Jeong, Y.-T. (2011). Bioorg. Med. Chem. Lett. 21, 6678-6686.]). For their effects on the senescence of cut carnation flowers, see: Zeng et al. (2012[Zeng, Z., Jiang, H., Zhang, H. & Jiang, Z. (2012). Res. Chem. Intermed., 38, 463-470.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Park et al. (2012a[Park, D. H., Ramkumar, V. & Parthiban, P. (2012a). Acta Cryst. E68, o524.],b[Park, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o525.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26N2O3

  • Mr = 366.45

  • Monoclinic, P 21 /c

  • a = 8.1662 (9) Å

  • b = 15.0229 (16) Å

  • c = 16.2889 (19) Å

  • β = 93.903 (6)°

  • V = 1993.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.35 × 0.35 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.976

  • 17582 measured reflections

  • 17582 independent reflections

  • 12046 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.214

  • S = 1.06

  • 17582 reflections

  • 249 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22BCg2i 0.96 2.76 3.525 (3) 138.00
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Oxime ethers are serving as important synthetic intermediate and have been employed as starting materials for both synthetic and medicinal chemistry (Crichlow et al., 2007).

Oxime ether derivatives of 2,6-diphenyl-piperidine–4-one with N-methyl substituent enhanced the efficacy of the in vitro antiproliferative activity against human cervical carcinoma cell lines (Parthiban et al., 2011). Recently oxime ether derivatives of aminooxy acetic acid were synthesized and studied for their effects on the senescence of cut carnation flowers (Zeng et al., 2012). Due to the above importance, the crystal data for the title compound was carried out by X–ray diffraction.

Piperidine ring (C7–C11/N1) exists in a chair conformation with the puckering parameter Q = 0.5566Å, θ = 1.70 (19)°, ϕ= 23 (7)° (syn periplanar).

The bond distances and bond angles in the title compound agree very well with the corresponding values reported in closely related compound (Park et al., 2012a; 2012b).

The main plane of piperidine ring makes the dihedral angle of 81.82° and 86.73° with the phenyl rings at the 2 and 6 positions respectively. The dihedral angle between the two phenyl rings is 49.75°. The crystal is stabilized by C—H···O interactions. The packing is further stabilized by C—H···π and C22—H22B···Cg2i interactions, where Cg2 is the centroid of (C1–C6) ring. Symmetry code: (i) 1-x, 1-y, 1-z.

Related literature top

For background and the imoprtance of oxime ethers, see: Crichlow et al. (2007). For a study of the in vitro antiproliferative activity of oxyme ether derivatives, see: Parthiban et al. (2011). For their effects on the senescence of cut carnation flowers, see: Zeng et al. (2012). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Park et al. (2012a,b).

Experimental top

To a stirred mixture of 1,3-dimethyl-2,6-diphenylpiperidin-4-one oxime (0.88 g, 3 mmol) and K2CO3 (0.42 g, 1 eq.) in acetonitrile (15 ml) at 353 K, methyl chloroacetate (0.25 ml, 1 eq) was added dropwise over a period of 5 min and stirring continued for 7.5 hrs at the same condition. The progress of the reaction was monitored by TLC. After completion of the reaction K2CO3 was removed by filtration and the solvent was evaporated to getcrude product. Pure product was obtained by coloumn chromotography using petroleum ether/ethyl acetate (9.5/0.5) mixture as the eluent. Yield: 0.77 g (70%).

Refinement top

All the hydrogen atoms were geometrically fixed and allowed to ride on their parent atoms with C—H = 0.93–0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other H.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and labelling scheme for title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A packing diagram for title compound.
Methyl ({[(4E)-1,3-dimethyl-2,6-diphenylpiperidin-4-ylidene]amino}oxy)acetate top
Crystal data top
C22H26N2O3F(000) = 784
Mr = 366.45Dx = 1.221 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17582 reflections
a = 8.1662 (9) Åθ = 1.9–25.7°
b = 15.0229 (16) ŵ = 0.08 mm1
c = 16.2889 (19) ÅT = 295 K
β = 93.903 (6)°Block, colourless
V = 1993.7 (4) Å30.35 × 0.35 × 0.30 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
17582 independent reflections
Radiation source: fine–focus sealed tube12046 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 18.4 pixels mm-1θmax = 25.7°, θmin = 1.9°
ω and ϕ scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1818
Tmin = 0.972, Tmax = 0.976l = 1916
17582 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.214 w = 1/[σ2(Fo2) + (0.0418P)2 + 3.4429P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
17582 reflectionsΔρmax = 0.31 e Å3
249 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (7)
Crystal data top
C22H26N2O3V = 1993.7 (4) Å3
Mr = 366.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1662 (9) ŵ = 0.08 mm1
b = 15.0229 (16) ÅT = 295 K
c = 16.2889 (19) Å0.35 × 0.35 × 0.30 mm
β = 93.903 (6)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
17582 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
12046 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.976Rint = 0.000
17582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
17582 reflectionsΔρmin = 0.29 e Å3
249 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All s.u.'s are estimated from the variances of the (full) variance–covariance matrix. The cell s.u.'s are taken into account in the estimation of distances, angles and torsion angles.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68977 (19)0.49995 (10)0.43999 (8)0.0606 (6)
O20.7546 (2)0.43922 (10)0.65189 (9)0.0649 (6)
O30.6248 (2)0.36381 (11)0.54968 (10)0.0771 (7)
N10.83698 (18)0.48449 (10)0.16289 (9)0.0383 (5)
N20.7999 (2)0.43901 (11)0.40538 (10)0.0467 (6)
C10.5090 (3)0.55836 (14)0.10496 (12)0.0499 (7)
C20.3910 (3)0.60714 (17)0.06143 (13)0.0619 (9)
C30.3809 (3)0.69704 (19)0.07252 (15)0.0684 (10)
C40.4887 (3)0.73784 (16)0.12720 (17)0.0680 (10)
C50.6074 (3)0.68953 (14)0.17255 (14)0.0529 (8)
C60.6190 (2)0.59865 (12)0.16163 (11)0.0381 (7)
C70.7430 (2)0.54460 (12)0.21323 (11)0.0394 (7)
C80.6541 (2)0.49215 (14)0.27705 (11)0.0459 (7)
C90.7736 (2)0.43693 (13)0.32754 (11)0.0390 (7)
C100.8732 (2)0.37623 (12)0.27849 (11)0.0401 (7)
C110.9567 (2)0.43131 (12)0.21322 (11)0.0387 (6)
C121.0538 (3)0.37151 (13)0.15962 (12)0.0427 (7)
C131.2220 (3)0.37356 (15)0.16396 (14)0.0583 (9)
C141.3111 (3)0.31608 (18)0.11732 (17)0.0757 (11)
C151.2312 (4)0.25588 (19)0.06656 (17)0.0820 (11)
C161.0624 (4)0.25213 (18)0.06119 (15)0.0792 (11)
C170.9742 (3)0.30997 (15)0.10737 (13)0.0575 (8)
C180.9212 (3)0.53774 (15)0.10310 (13)0.0606 (9)
C190.9942 (3)0.31926 (14)0.32933 (13)0.0579 (8)
C200.7357 (3)0.50883 (14)0.52479 (11)0.0542 (8)
C210.6970 (3)0.42816 (15)0.57362 (13)0.0490 (8)
C220.7303 (3)0.36794 (16)0.70832 (15)0.0774 (10)
H10.515170.497290.096310.0598*
H20.317200.578860.024040.0743*
H30.300770.729990.042790.0822*
H40.482790.799150.134340.0816*
H50.679450.718310.210450.0635*
H70.819930.585690.242340.0473*
H8A0.599300.532960.312320.0551*
H8B0.571490.454130.249520.0551*
H100.796270.335610.248720.0481*
H111.033880.472450.242140.0465*
H131.277400.414200.198800.0700*
H141.425140.318700.120740.0909*
H151.290840.217210.035440.0981*
H161.007860.210870.026650.0952*
H170.860130.307590.103350.0690*
H18A0.991360.580480.131740.0910*
H18B0.841440.568240.067360.0910*
H18C0.985950.499350.071090.0910*
H19A1.080190.356180.353840.0869*
H19B1.040530.275610.294620.0869*
H19C0.938860.289810.371810.0869*
H20A0.679180.559730.546190.0650*
H20B0.852630.520400.531760.0650*
H22A0.641400.331020.686960.1162*
H22B0.704580.392080.760470.1162*
H22C0.828700.333010.715320.1162*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0757 (11)0.0737 (11)0.0332 (8)0.0271 (9)0.0097 (7)0.0022 (7)
O20.0901 (12)0.0665 (10)0.0372 (9)0.0126 (9)0.0029 (8)0.0039 (8)
O30.1051 (14)0.0639 (11)0.0629 (11)0.0216 (10)0.0111 (10)0.0182 (9)
N10.0392 (9)0.0444 (9)0.0321 (9)0.0053 (7)0.0094 (8)0.0040 (7)
N20.0561 (11)0.0505 (10)0.0343 (10)0.0116 (9)0.0086 (8)0.0057 (8)
C10.0560 (13)0.0519 (13)0.0414 (12)0.0069 (11)0.0010 (11)0.0031 (10)
C20.0577 (14)0.0802 (18)0.0469 (14)0.0085 (13)0.0040 (12)0.0074 (13)
C30.0623 (16)0.081 (2)0.0624 (17)0.0243 (14)0.0081 (14)0.0244 (14)
C40.0731 (17)0.0438 (14)0.090 (2)0.0148 (13)0.0279 (15)0.0214 (14)
C50.0514 (13)0.0458 (13)0.0627 (15)0.0006 (11)0.0123 (12)0.0008 (11)
C60.0406 (11)0.0401 (12)0.0344 (11)0.0043 (9)0.0078 (9)0.0030 (9)
C70.0425 (12)0.0414 (11)0.0346 (11)0.0001 (9)0.0043 (9)0.0041 (9)
C80.0427 (12)0.0629 (14)0.0328 (11)0.0124 (10)0.0071 (10)0.0051 (10)
C90.0405 (11)0.0458 (12)0.0315 (11)0.0015 (9)0.0091 (9)0.0032 (9)
C100.0438 (11)0.0429 (12)0.0342 (11)0.0044 (9)0.0065 (9)0.0005 (9)
C110.0350 (10)0.0447 (11)0.0365 (11)0.0002 (9)0.0028 (9)0.0046 (9)
C120.0478 (13)0.0468 (12)0.0349 (11)0.0055 (10)0.0130 (10)0.0030 (9)
C130.0483 (14)0.0612 (15)0.0672 (16)0.0038 (11)0.0174 (12)0.0001 (12)
C140.0597 (16)0.0826 (19)0.088 (2)0.0216 (14)0.0294 (15)0.0069 (16)
C150.099 (2)0.079 (2)0.0726 (19)0.0311 (17)0.0398 (17)0.0027 (16)
C160.101 (2)0.0803 (19)0.0580 (16)0.0145 (16)0.0181 (16)0.0243 (14)
C170.0589 (14)0.0685 (16)0.0455 (13)0.0077 (12)0.0061 (12)0.0092 (12)
C180.0643 (15)0.0670 (16)0.0537 (14)0.0106 (12)0.0265 (12)0.0184 (12)
C190.0609 (14)0.0614 (15)0.0524 (14)0.0172 (12)0.0105 (12)0.0028 (11)
C200.0788 (16)0.0557 (14)0.0283 (11)0.0030 (12)0.0058 (11)0.0052 (10)
C210.0581 (13)0.0516 (14)0.0383 (12)0.0028 (12)0.0107 (11)0.0102 (10)
C220.105 (2)0.0694 (17)0.0589 (16)0.0111 (15)0.0129 (15)0.0156 (13)
Geometric parameters (Å, º) top
O1—N21.426 (2)C20—C211.495 (3)
O1—C201.413 (2)C1—H10.9300
O2—C211.339 (3)C2—H20.9300
O2—C221.434 (3)C3—H30.9300
O3—C211.185 (3)C4—H40.9300
N1—C71.471 (2)C5—H50.9300
N1—C111.469 (2)C7—H70.9800
N1—C181.467 (3)C8—H8A0.9700
N2—C91.272 (2)C8—H8B0.9700
C1—C21.369 (3)C10—H100.9800
C1—C61.383 (3)C11—H110.9800
C2—C31.366 (4)C13—H130.9300
C3—C41.355 (4)C14—H140.9300
C4—C51.384 (3)C15—H150.9300
C5—C61.381 (3)C16—H160.9300
C6—C71.508 (2)C17—H170.9300
C7—C81.527 (3)C18—H18A0.9600
C8—C91.486 (3)C18—H18B0.9600
C9—C101.490 (3)C18—H18C0.9600
C10—C111.542 (2)C19—H19A0.9600
C10—C191.511 (3)C19—H19B0.9600
C11—C121.514 (3)C19—H19C0.9600
C12—C131.371 (3)C20—H20A0.9700
C12—C171.388 (3)C20—H20B0.9700
C13—C141.388 (4)C22—H22A0.9600
C14—C151.362 (4)C22—H22B0.9600
C15—C161.376 (5)C22—H22C0.9600
C16—C171.383 (4)
N2—O1—C20108.33 (15)C6—C5—H5120.00
C21—O2—C22117.57 (18)N1—C7—H7108.00
C7—N1—C11112.06 (14)C6—C7—H7108.00
C7—N1—C18108.74 (15)C8—C7—H7108.00
C11—N1—C18110.05 (15)C7—C8—H8A110.00
O1—N2—C9109.98 (15)C7—C8—H8B110.00
C2—C1—C6120.9 (2)C9—C8—H8A110.00
C1—C2—C3120.5 (2)C9—C8—H8B110.00
C2—C3—C4119.5 (2)H8A—C8—H8B108.00
C3—C4—C5120.9 (2)C9—C10—H10107.00
C4—C5—C6120.1 (2)C11—C10—H10107.00
C1—C6—C5118.14 (18)C19—C10—H10107.00
C1—C6—C7121.15 (17)N1—C11—H11108.00
C5—C6—C7120.65 (17)C10—C11—H11108.00
N1—C7—C6112.08 (14)C12—C11—H11108.00
N1—C7—C8110.68 (15)C12—C13—H13119.00
C6—C7—C8108.96 (14)C14—C13—H13119.00
C7—C8—C9109.89 (14)C13—C14—H14120.00
N2—C9—C8126.73 (17)C15—C14—H14120.00
N2—C9—C10119.23 (16)C14—C15—H15120.00
C8—C9—C10114.01 (15)C16—C15—H15120.00
C9—C10—C11108.93 (15)C15—C16—H16120.00
C9—C10—C19114.41 (16)C17—C16—H16120.00
C11—C10—C19112.23 (15)C12—C17—H17120.00
N1—C11—C10111.59 (13)C16—C17—H17120.00
N1—C11—C12110.84 (15)N1—C18—H18A109.00
C10—C11—C12110.65 (15)N1—C18—H18B109.00
C11—C12—C13121.28 (18)N1—C18—H18C109.00
C11—C12—C17120.5 (2)H18A—C18—H18B109.00
C13—C12—C17118.2 (2)H18A—C18—H18C109.00
C12—C13—C14121.2 (2)H18B—C18—H18C109.00
C13—C14—C15119.9 (2)C10—C19—H19A109.00
C14—C15—C16120.2 (3)C10—C19—H19B109.00
C15—C16—C17119.7 (2)C10—C19—H19C109.00
C12—C17—C16120.8 (2)H19A—C19—H19B109.00
O1—C20—C21113.08 (17)H19A—C19—H19C109.00
O2—C21—O3123.3 (2)H19B—C19—H19C109.00
O2—C21—C20109.43 (18)O1—C20—H20A109.00
O3—C21—C20127.2 (2)O1—C20—H20B109.00
C2—C1—H1120.00C21—C20—H20A109.00
C6—C1—H1120.00C21—C20—H20B109.00
C1—C2—H2120.00H20A—C20—H20B108.00
C3—C2—H2120.00O2—C22—H22A109.00
C2—C3—H3120.00O2—C22—H22B109.00
C4—C3—H3120.00O2—C22—H22C109.00
C3—C4—H4120.00H22A—C22—H22B109.00
C5—C4—H4120.00H22A—C22—H22C109.00
C4—C5—H5120.00H22B—C22—H22C109.00
C20—O1—N2—C9172.81 (17)C6—C7—C8—C9178.85 (15)
N2—O1—C20—C2171.9 (2)N1—C7—C8—C955.18 (19)
C22—O2—C21—C20179.44 (19)C7—C8—C9—C1055.2 (2)
C22—O2—C21—O31.7 (3)C7—C8—C9—N2122.7 (2)
C18—N1—C11—C1257.7 (2)N2—C9—C10—C11124.12 (18)
C7—N1—C11—C12178.86 (15)N2—C9—C10—C192.4 (2)
C11—N1—C7—C6179.50 (14)C8—C9—C10—C1153.95 (19)
C18—N1—C7—C658.62 (19)C8—C9—C10—C19179.55 (16)
C11—N1—C7—C857.64 (18)C19—C10—C11—C1254.6 (2)
C18—N1—C11—C10178.47 (15)C9—C10—C11—C12177.68 (15)
C18—N1—C7—C8179.52 (15)C19—C10—C11—N1178.49 (15)
C7—N1—C11—C1057.34 (18)C9—C10—C11—N153.77 (18)
O1—N2—C9—C83.3 (3)C10—C11—C12—C1766.3 (2)
O1—N2—C9—C10178.95 (15)C10—C11—C12—C13110.6 (2)
C2—C1—C6—C7176.48 (19)N1—C11—C12—C1758.0 (2)
C6—C1—C2—C30.8 (3)N1—C11—C12—C13125.0 (2)
C2—C1—C6—C50.6 (3)C11—C12—C13—C14177.3 (2)
C1—C2—C3—C40.1 (4)C13—C12—C17—C160.2 (3)
C2—C3—C4—C50.8 (4)C11—C12—C17—C16176.8 (2)
C3—C4—C5—C61.0 (4)C17—C12—C13—C140.2 (3)
C4—C5—C6—C10.3 (3)C12—C13—C14—C150.5 (4)
C4—C5—C6—C7177.4 (2)C13—C14—C15—C160.2 (4)
C1—C6—C7—N151.3 (2)C14—C15—C16—C170.2 (4)
C5—C6—C7—C8105.5 (2)C15—C16—C17—C120.4 (4)
C5—C6—C7—N1131.70 (19)O1—C20—C21—O35.6 (4)
C1—C6—C7—C871.5 (2)O1—C20—C21—O2175.58 (18)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O10.972.222.653 (2)106
C22—H22A···O30.962.282.668 (3)103
C22—H22B···Cg2i0.962.763.525 (3)138
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O10.972.222.653 (2)106
C22—H22A···O30.962.282.668 (3)103
C22—H22B···Cg2i0.962.763.525 (3)138
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The auther thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, India, for carrying out the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCrichlow, G. V., Cheng, K. F., Dabideen, D., Ochani, M., Aljabari, B., Pavlov, V. A., Miller, E. J., Lolis, E. & Al-Abed, Y. (2007). J.Biol.Chem. 282, 23089–23095.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2012a). Acta Cryst. E68, o524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o525.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Pallela, R., Kim, S.-K., Park, D.-H. & Jeong, Y.-T. (2011). Bioorg. Med. Chem. Lett. 21, 6678-6686.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, Z., Jiang, H., Zhang, H. & Jiang, Z. (2012). Res. Chem. Intermed., 38, 463–470.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds