organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o596-o597

3-Bromo-2-[4-(methyl­sulfan­yl)phen­yl]-5,6,7,8-tetra­hydro-1,3-benzo­thia­zolo[3,2-a]imidazole

aDepartment of Chemistry and Chemical Technology, Togliatti State University, 14 Belorusskaya St, Togliatti 445667, Russian Federation, bDepartment of Organic, Bioorganic and Medicinal Chemistry, Samara State University, 1 Akademician Pavlov St, Samara 443011, Russian Federation, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: a.s.bunev@gmail.com

(Received 31 March 2014; accepted 20 April 2014; online 26 April 2014)

In the title mol­ecule, C16H15BrN2S2, the central imidazo[2,1-b]thia­zole fragment is almost planar (r.m.s. deviation = 0.012 Å), and the fused 5,6,7,8-tetra­hydro­benzene ring adopts an unsymmetrical half-chair conformation. The dihedral angle between the imidazo[2,1-b]thia­zole and benzene planes is 18.25 (4)°. The terminal methyl­sulfanyl substituent lies practically within the benzene plane [the dihedral angle between the corresponding planes is 7.20 (10)°] and is turned toward the C—Br bond. In the crystal, mol­ecules form infinite chains along [100] via secondary Br⋯N inter­actions [3.1861 (16) Å]. The chains are arranged at van der Waals distances.

Related literature

For applications of imidazo[2,1-b][1,3]benzo­thia­zoles, see: Ager et al. (1988[Ager, I. R., Barnes, A. C., Danswan, G. W., Hairsine, P. W., Kay, D. P., Kennewell, P. D., Matharu, S. S., Miller, P. & Robson, P. (1988). J. Med. Chem. 31, 1098-1115.]); Sanfilippo et al. (1988[Sanfilippo, P. J., Urbanski, M., Press, J. B., Dubinsky, B. & Moore, J. B. Jr (1988). J. Med. Chem. 31, 2221-2227.]); Barchéchath et al. (2005[Barchéchath, S. D., Tawatao, R. I., Corr, V., Carson, D. I. & Cottam, H. B. (2005). J. Med. Chem. 48, 6409-6422.]); Andreani et al. (2008[Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Calonghi, N., Cappadone, C., Farruggia, G., Zini, M., Stefanelli, C., Masotti, L., Radin, N. S. & Shoemaker, R. H. (2008). J. Med. Chem. 51, 809-816.]); Chao et al. (2009[Chao, Q., Sprankle, K. G., Grotzfeld, R. M., Lai, A. G., Carter, T. A., Velasco, A. M., Gunawardane, R. N., Cramer, M. D., Gardner, M. F., James, J., Zarrinkar, P. P., Patel, H. K. & Bhagwat, S. S. (2009). J. Med. Chem. 52, 7808-7816.]); Kumbhare et al. (2011[Kumbhare, R. M., Kumar, K. V., Ramaiah, M. J., Dadmal, T., Pushpavalli, S. N., Mukhopadhyay, D., Divya, B., Devi, T. A., Kosurkar, U. & Pal-Bhadra, M. (2011). Eur. J. Med. Chem. 46, 4258-4266.]); Chandak et al. (2013[Chandak, N., Bhardwaj, J. K., Sharma, R. K. & Sharma, P. K. (2013). Eur. J. Med. Chem. 59, 203-208.]). For the crystal structures of related compounds, see: Landreau et al. (2002[Landreau, C., Deniaud, D., Evain, M., Reliquet, A. & Meslin, J.-C. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 741-745.]); Adib et al. (2008[Adib, M., Sheibani, E., Zhu, L.-G. & Bijanzadeh, H. R. (2008). Synlett, pp. 2941-2944.]); Fun, Asik et al. (2011[Fun, H.-K., Asik, S. I. J., Himaja, M., Munirajasekhar, D. & Sarojini, B. K. (2011). Acta Cryst. E67, o2810.]); Fun, Hemamalini et al. (2011[Fun, H.-K., Hemamalini, M., Umesha, K., Sarojini, B. K. & Narayana, B. (2011). Acta Cryst. E67, o3265-o3266.]); Ghabbour et al. (2012[Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1631-o1632.]); Bunev et al. (2013[Bunev, A. S., Sukhonosova, E. V., Syrazhetdinova, D. R., Statsyuk, V. E., Ostapenko, G. I. & Khrustalev, V. N. (2013). Acta Cryst. E69, o531.], 2014[Bunev, A. S., Sukhonosova, E. V., Statsyuk, V. E., Ostapenko, G. I. & Khrustalev, V. N. (2014). Acta Cryst. E70, o143-o144.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15BrN2S2

  • Mr = 379.34

  • Triclinic, [P \overline 1]

  • a = 7.3132 (3) Å

  • b = 7.5663 (3) Å

  • c = 14.4543 (7) Å

  • α = 95.033 (1)°

  • β = 97.188 (1)°

  • γ = 101.938 (1)°

  • V = 771.03 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.93 mm−1

  • T = 120 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.668, Tmax = 0.758

  • 10352 measured reflections

  • 4508 independent reflections

  • 3927 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.073

  • S = 1.05

  • 4508 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazo[2,1–b][1,3]benzothiazole are of great interest due to their biological properties. These compounds and their derivatives demonstrate the antitumor (Andreani et al., 2008), antiallergic (Ager et al., 1988), anesthetic (Sanfilippo et al., 1988) and anti–cancer (Kumbhare et al., 2011) activities as well as the inhibition activity of apoptosis in testiculargerm cells (Chandak et al., 2013), lymphocytes (Barchéchath et al., 2005), and FMS–like tyrosine kinase–3 (FLT3) (Chao et al., 2009).

In this work, a new halogensubstituted 5,6,7,8–tetrahydrobenzo[d]imidazo[2,1–b]thiazole, C16H15BrN2S2, I, was prepared by the reaction of 5,6,7,8–tetrahydrobenzo[d]imidazo[2,1–b]thiazole with bromine at room temperature (Fig. 1), and its structure was unambiguously established by the X–ray diffraction study (Fig. 2).

In the title molecule (I) the central imidazo[2,1–b]thiazole fragment is almost planar (r.m.s. deviation = 0.012 Å), and the fused 5,6,7,8-tetrahydrobenzene ring adopts an unsymmetrical half–chair conformation (the C6 and C7 carbon atoms are out of the plane passed through the other atoms of the ring by -0.246 (2) and 0.508 (2) Å, respectively). The bond lengths and angles within the molecule of I are in a good agreement with those found in the related compounds (Landreau et al., 2002; Adib et al., 2008; Fun, Asik et al., 2011; Fun, Hemamalini et al., 2011; Ghabbour et al., 2012; Bunev et al., 2013, 2014). The dihedral angle between the imidazo[2,1–b]thiazole and benzene planes is 18.25 (4)°. The terminal methylthio substituent lies practically within the benzene plane (the dihedral angle between the corresponding planes is 7.20 (10)°) and is turned toward the C—Br bond.

In the crystal, the molecules of I form infinite chains along [100] by intermolecular secondary Br1···N1i interactions (3.1861 (16) Å) (Fig. 3). The chains are arranged at van der Waals distances. Symmetry code: (i) 1 + x, y, z.

Related literature top

For applications of imidazo[2,1-b][1,3]benzothiazoles, see: Ager et al. (1988); Sanfilippo et al. (1988); Barchéchath et al. (2005); Andreani et al. (2008); Chao et al. (2009); Kumbhare et al. (2011); Chandak et al. (2013). For the crystal structures of related compounds, see: Landreau et al. (2002); Adib et al. (2008); Fun, Asik et al. (2011); Fun, Hemamalini et al. (2011); Ghabbour et al. (2012); Bunev et al. (2013, 2014).

Experimental top

A solution of bromine (139 µL, 430.4 mg, 2.69 mmol) in dry CHCl3 (10 mL) was added to a solutions 2–(4–(methylthio)phenyl)–5,6,7,8–tetrahydrobenzo[d]imidazo[2,1–b]thiazole (808.3 mg, 2.69 mmol) in dry CHCl3 (30 mL). The reaction mixture was stirred at room temperature for 3 h. the solvent was evaporated from the reaction mixture on rotavapor. The crude product was diluted with 5% solution Na2CO3 in water (25 mL). The precipitate was filtered and crystallized from DMF. Yield is 75%. The single–crystal of the product I was obtained by slow crystallization from DMF. M.p. = 439–441 K. IR (KBr), ν/cm-1: 3131, 3073, 1580, 1523, 1501, 1337, 1144, 815, 714. 1H NMR (600 MHz, DMSOd6, 304 K): 7.63 (d, 2H, J = 8.9), 7.54 (d, 2H, J = 8.9), 3.39–3.33 (m, 2H), 3.02–2.96 (m, 2H), 2.45 (s, 3H), 1.91–1.81 (m, 4H). Anal. Calcd for C16H15BrN2S: C, 50.66; H, 3.99. Found: C, 50.57; H, 4.08.

Refinement top

All hydrogen atoms were placed in the calculated positions with C—H = 0.95–0.99 Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for the methyl group and Uiso(H) = 1.2Ueq(C) for the other groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The synthesis of 3-bromo-2-[4-(methylsulfanyl)phenyl]-5,6,7,8-tetrahydro-1,3-benzothiazolo[3,2-a]imidazole.
[Figure 2] Fig. 2. Molecular structure of I. Displacement ellipsoids are presented at the 50% probability level. H atoms are depicted as small spheres of arbitrary radius.
[Figure 3] Fig. 3. A portion of the crystal structure of I demonstrating the chains along [100]. The intermolecular secondary Br···N interactions are depicted by dashed lines.
3-Bromo-2-[4-(methylsulfanyl)phenyl]-5,6,7,8-tetrahydro-1,3-benzothiazolo[3,2-a]imidazole top
Crystal data top
C16H15BrN2S2Z = 2
Mr = 379.34F(000) = 384
Triclinic, P1Dx = 1.634 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3132 (3) ÅCell parameters from 4428 reflections
b = 7.5663 (3) Åθ = 2.8–32.3°
c = 14.4543 (7) ŵ = 2.93 mm1
α = 95.033 (1)°T = 120 K
β = 97.188 (1)°Prism, colourless
γ = 101.938 (1)°0.15 × 0.10 × 0.10 mm
V = 771.03 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4508 independent reflections
Radiation source: fine-focus sealed tube3927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 30.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1010
Tmin = 0.668, Tmax = 0.758k = 1010
10352 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.1351P]
where P = (Fo2 + 2Fc2)/3
4508 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C16H15BrN2S2γ = 101.938 (1)°
Mr = 379.34V = 771.03 (6) Å3
Triclinic, P1Z = 2
a = 7.3132 (3) ÅMo Kα radiation
b = 7.5663 (3) ŵ = 2.93 mm1
c = 14.4543 (7) ÅT = 120 K
α = 95.033 (1)°0.15 × 0.10 × 0.10 mm
β = 97.188 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4508 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3927 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.758Rint = 0.025
10352 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.05Δρmax = 0.67 e Å3
4508 reflectionsΔρmin = 0.32 e Å3
191 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.52846 (2)0.33371 (2)0.103656 (13)0.01782 (6)
S10.31673 (8)0.75383 (8)0.55165 (4)0.02712 (12)
N10.0318 (2)0.3490 (2)0.10823 (11)0.0169 (3)
C20.1565 (3)0.3866 (2)0.15151 (13)0.0150 (3)
C30.2697 (2)0.3284 (2)0.09002 (13)0.0146 (3)
N40.1494 (2)0.2541 (2)0.00724 (10)0.0136 (3)
C4A0.1551 (3)0.1754 (2)0.08424 (13)0.0147 (3)
C50.3302 (3)0.1399 (2)0.11797 (13)0.0159 (3)
H5A0.39210.06960.07390.019*
H5B0.41950.25680.11990.019*
C60.2819 (3)0.0326 (3)0.21646 (14)0.0194 (4)
H6A0.39780.04620.24640.023*
H6B0.23720.09810.21060.023*
C70.1308 (3)0.0964 (3)0.27918 (13)0.0208 (4)
H7A0.11100.02950.34290.025*
H7B0.17350.22760.28440.025*
C80.0560 (3)0.0635 (3)0.23845 (13)0.0186 (4)
H8A0.14580.12530.27260.022*
H8B0.11330.06840.24570.022*
C8A0.0175 (3)0.1366 (2)0.13656 (13)0.0154 (3)
S90.19453 (6)0.18940 (6)0.07481 (3)0.01700 (10)
C9A0.0272 (2)0.2722 (2)0.02379 (13)0.0153 (3)
C100.2059 (3)0.4782 (2)0.24789 (13)0.0164 (3)
C110.0607 (3)0.4836 (3)0.30255 (14)0.0191 (4)
H110.06580.42670.27670.023*
C120.0991 (3)0.5705 (3)0.39362 (14)0.0204 (4)
H120.00140.57330.42910.024*
C130.2850 (3)0.6542 (3)0.43388 (13)0.0199 (4)
C140.4292 (3)0.6527 (3)0.37994 (14)0.0232 (4)
H140.55540.71080.40580.028*
C150.3898 (3)0.5664 (3)0.28802 (14)0.0217 (4)
H150.49000.56760.25200.026*
C160.5684 (3)0.8198 (3)0.58283 (16)0.0302 (5)
H16A0.60010.86150.65020.045*
H16B0.61870.91850.54720.045*
H16C0.62420.71540.56820.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01313 (9)0.02030 (10)0.01932 (10)0.00599 (7)0.00109 (6)0.00219 (7)
S10.0271 (3)0.0327 (3)0.0173 (2)0.0007 (2)0.0029 (2)0.0057 (2)
N10.0157 (7)0.0163 (7)0.0187 (8)0.0026 (6)0.0042 (6)0.0015 (6)
C20.0154 (8)0.0140 (8)0.0158 (8)0.0029 (7)0.0033 (7)0.0023 (6)
C30.0134 (8)0.0155 (8)0.0154 (8)0.0051 (7)0.0010 (6)0.0008 (6)
N40.0109 (7)0.0153 (7)0.0145 (7)0.0034 (6)0.0011 (5)0.0010 (6)
C4A0.0145 (8)0.0121 (8)0.0175 (9)0.0030 (6)0.0023 (7)0.0016 (6)
C50.0140 (8)0.0160 (8)0.0186 (9)0.0050 (7)0.0036 (7)0.0004 (7)
C60.0195 (9)0.0217 (9)0.0179 (9)0.0083 (8)0.0030 (7)0.0010 (7)
C70.0221 (9)0.0247 (10)0.0159 (9)0.0070 (8)0.0025 (7)0.0004 (7)
C80.0178 (9)0.0193 (9)0.0167 (9)0.0036 (7)0.0016 (7)0.0013 (7)
C8A0.0136 (8)0.0140 (8)0.0182 (8)0.0025 (7)0.0028 (7)0.0007 (6)
S90.01080 (19)0.0210 (2)0.0186 (2)0.00355 (17)0.00092 (16)0.00057 (17)
C9A0.0119 (8)0.0160 (8)0.0186 (8)0.0030 (7)0.0033 (7)0.0031 (7)
C100.0192 (9)0.0129 (8)0.0167 (8)0.0027 (7)0.0028 (7)0.0010 (6)
C110.0176 (9)0.0174 (9)0.0208 (9)0.0017 (7)0.0021 (7)0.0001 (7)
C120.0211 (9)0.0208 (9)0.0193 (9)0.0037 (8)0.0051 (7)0.0010 (7)
C130.0252 (10)0.0187 (9)0.0145 (8)0.0037 (8)0.0019 (7)0.0011 (7)
C140.0196 (9)0.0252 (10)0.0208 (10)0.0006 (8)0.0014 (7)0.0028 (8)
C150.0205 (9)0.0235 (10)0.0194 (9)0.0009 (8)0.0063 (7)0.0012 (8)
C160.0286 (11)0.0311 (12)0.0249 (11)0.0003 (9)0.0030 (9)0.0030 (9)
Geometric parameters (Å, º) top
Br1—C31.8693 (18)C7—H7B0.9900
S1—C131.7673 (19)C8—C8A1.498 (3)
S1—C161.793 (2)C8—H8A0.9900
N1—C9A1.312 (2)C8—H8B0.9900
N1—C21.400 (2)C8A—S91.7529 (19)
C2—C31.391 (2)S9—C9A1.7354 (19)
C2—C101.467 (3)C10—C151.399 (3)
C3—N41.391 (2)C10—C111.405 (3)
N4—C9A1.374 (2)C11—C121.387 (3)
N4—C4A1.411 (2)C11—H110.9500
C4A—C8A1.349 (2)C12—C131.403 (3)
C4A—C51.492 (2)C12—H120.9500
C5—C61.537 (3)C13—C141.389 (3)
C5—H5A0.9900C14—C151.396 (3)
C5—H5B0.9900C14—H140.9500
C6—C71.524 (3)C15—H150.9500
C6—H6A0.9900C16—H16A0.9800
C6—H6B0.9900C16—H16B0.9800
C7—C81.537 (3)C16—H16C0.9800
C7—H7A0.9900
C13—S1—C16103.71 (10)C8A—C8—H8B109.9
C9A—N1—C2104.13 (15)C7—C8—H8B109.9
C3—C2—N1110.13 (16)H8A—C8—H8B108.3
C3—C2—C10130.54 (17)C4A—C8A—C8124.20 (17)
N1—C2—C10119.33 (16)C4A—C8A—S9113.31 (14)
C2—C3—N4106.03 (15)C8—C8A—S9122.44 (13)
C2—C3—Br1131.99 (14)C9A—S9—C8A89.99 (9)
N4—C3—Br1121.98 (13)N1—C9A—N4114.32 (16)
C9A—N4—C3105.38 (15)N1—C9A—S9134.58 (14)
C9A—N4—C4A114.32 (15)N4—C9A—S9111.08 (13)
C3—N4—C4A140.26 (16)C15—C10—C11117.62 (17)
C8A—C4A—N4111.27 (16)C15—C10—C2123.61 (17)
C8A—C4A—C5124.77 (17)C11—C10—C2118.73 (17)
N4—C4A—C5123.97 (16)C12—C11—C10121.15 (18)
C4A—C5—C6110.25 (15)C12—C11—H11119.4
C4A—C5—H5A109.6C10—C11—H11119.4
C6—C5—H5A109.6C11—C12—C13120.61 (18)
C4A—C5—H5B109.6C11—C12—H12119.7
C6—C5—H5B109.6C13—C12—H12119.7
H5A—C5—H5B108.1C14—C13—C12118.75 (18)
C7—C6—C5112.55 (15)C14—C13—S1124.86 (16)
C7—C6—H6A109.1C12—C13—S1116.38 (15)
C5—C6—H6A109.1C13—C14—C15120.45 (19)
C7—C6—H6B109.1C13—C14—H14119.8
C5—C6—H6B109.1C15—C14—H14119.8
H6A—C6—H6B107.8C14—C15—C10121.38 (18)
C6—C7—C8110.44 (16)C14—C15—H15119.3
C6—C7—H7A109.6C10—C15—H15119.3
C8—C7—H7A109.6S1—C16—H16A109.5
C6—C7—H7B109.6S1—C16—H16B109.5
C8—C7—H7B109.6H16A—C16—H16B109.5
H7A—C7—H7B108.1S1—C16—H16C109.5
C8A—C8—C7109.02 (15)H16A—C16—H16C109.5
C8A—C8—H8A109.9H16B—C16—H16C109.5
C7—C8—H8A109.9
C9A—N1—C2—C30.4 (2)C8—C8A—S9—C9A175.86 (16)
C9A—N1—C2—C10178.60 (16)C2—N1—C9A—N40.5 (2)
N1—C2—C3—N40.2 (2)C2—N1—C9A—S9178.31 (16)
C10—C2—C3—N4178.66 (17)C3—N4—C9A—N10.4 (2)
N1—C2—C3—Br1178.84 (14)C4A—N4—C9A—N1178.63 (15)
C10—C2—C3—Br12.3 (3)C3—N4—C9A—S9178.71 (12)
C2—C3—N4—C9A0.07 (19)C4A—N4—C9A—S90.45 (19)
Br1—C3—N4—C9A179.24 (12)C8A—S9—C9A—N1177.7 (2)
C2—C3—N4—C4A177.6 (2)C8A—S9—C9A—N41.11 (14)
Br1—C3—N4—C4A3.2 (3)C3—C2—C10—C1517.2 (3)
C9A—N4—C4A—C8A0.7 (2)N1—C2—C10—C15161.53 (18)
C3—N4—C4A—C8A176.6 (2)C3—C2—C10—C11164.91 (19)
C9A—N4—C4A—C5179.12 (16)N1—C2—C10—C1116.3 (3)
C3—N4—C4A—C53.5 (3)C15—C10—C11—C121.1 (3)
C8A—C4A—C5—C66.7 (3)C2—C10—C11—C12179.12 (17)
N4—C4A—C5—C6173.18 (16)C10—C11—C12—C130.5 (3)
C4A—C5—C6—C739.6 (2)C11—C12—C13—C141.7 (3)
C5—C6—C7—C863.1 (2)C11—C12—C13—S1177.96 (15)
C6—C7—C8—C8A49.1 (2)C16—S1—C13—C146.6 (2)
N4—C4A—C8A—C8175.79 (16)C16—S1—C13—C12173.04 (16)
C5—C4A—C8A—C84.3 (3)C12—C13—C14—C151.2 (3)
N4—C4A—C8A—S91.6 (2)S1—C13—C14—C15178.47 (16)
C5—C4A—C8A—S9178.26 (14)C13—C14—C15—C100.5 (3)
C7—C8—C8A—C4A17.4 (3)C11—C10—C15—C141.7 (3)
C7—C8—C8A—S9159.79 (14)C2—C10—C15—C14179.55 (18)
C4A—C8A—S9—C9A1.59 (15)

Experimental details

Crystal data
Chemical formulaC16H15BrN2S2
Mr379.34
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.3132 (3), 7.5663 (3), 14.4543 (7)
α, β, γ (°)95.033 (1), 97.188 (1), 101.938 (1)
V3)771.03 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.93
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.668, 0.758
No. of measured, independent and
observed [I > 2σ(I)] reflections
10352, 4508, 3927
Rint0.025
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.073, 1.05
No. of reflections4508
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.32

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to the Ministry of Education and Science of the Russian Federation (State program No. 426).

References

First citationAdib, M., Sheibani, E., Zhu, L.-G. & Bijanzadeh, H. R. (2008). Synlett, pp. 2941–2944.  Web of Science CSD CrossRef Google Scholar
First citationAger, I. R., Barnes, A. C., Danswan, G. W., Hairsine, P. W., Kay, D. P., Kennewell, P. D., Matharu, S. S., Miller, P. & Robson, P. (1988). J. Med. Chem. 31, 1098–1115.  CrossRef CAS PubMed Web of Science Google Scholar
First citationAndreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Calonghi, N., Cappadone, C., Farruggia, G., Zini, M., Stefanelli, C., Masotti, L., Radin, N. S. & Shoemaker, R. H. (2008). J. Med. Chem. 51, 809–816.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarchéchath, S. D., Tawatao, R. I., Corr, V., Carson, D. I. & Cottam, H. B. (2005). J. Med. Chem. 48, 6409–6422.  Web of Science PubMed Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunev, A. S., Sukhonosova, E. V., Statsyuk, V. E., Ostapenko, G. I. & Khrustalev, V. N. (2014). Acta Cryst. E70, o143–o144.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBunev, A. S., Sukhonosova, E. V., Syrazhetdinova, D. R., Statsyuk, V. E., Ostapenko, G. I. & Khrustalev, V. N. (2013). Acta Cryst. E69, o531.  CSD CrossRef IUCr Journals Google Scholar
First citationChandak, N., Bhardwaj, J. K., Sharma, R. K. & Sharma, P. K. (2013). Eur. J. Med. Chem. 59, 203–208.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChao, Q., Sprankle, K. G., Grotzfeld, R. M., Lai, A. G., Carter, T. A., Velasco, A. M., Gunawardane, R. N., Cramer, M. D., Gardner, M. F., James, J., Zarrinkar, P. P., Patel, H. K. & Bhagwat, S. S. (2009). J. Med. Chem. 52, 7808–7816.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Asik, S. I. J., Himaja, M., Munirajasekhar, D. & Sarojini, B. K. (2011). Acta Cryst. E67, o2810.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Umesha, K., Sarojini, B. K. & Narayana, B. (2011). Acta Cryst. E67, o3265–o3266.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGhabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1631–o1632.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKumbhare, R. M., Kumar, K. V., Ramaiah, M. J., Dadmal, T., Pushpavalli, S. N., Mukhopadhyay, D., Divya, B., Devi, T. A., Kosurkar, U. & Pal-Bhadra, M. (2011). Eur. J. Med. Chem. 46, 4258–4266.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLandreau, C., Deniaud, D., Evain, M., Reliquet, A. & Meslin, J.-C. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 741–745.  Web of Science CSD CrossRef Google Scholar
First citationSanfilippo, P. J., Urbanski, M., Press, J. B., Dubinsky, B. & Moore, J. B. Jr (1988). J. Med. Chem. 31, 2221–2227.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o596-o597
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds