organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o563-o564

1-(2,3,4,5,6-Penta­methyl­benz­yl)-2-(pyridin-2-yl)-1H-benzimidazole

aDepartment of Physics, Institute of Sciences, Dicle University, 21280, Diyarbakır, Turkey, bDepartment of Physics, Faculty of Education, Dicle University, 21280, Diyarbakır, Turkey, cScience and Technology Application and Research Center, Dicle University, 21280, Diyarbakır, Turkey, and dDepartment of Chemistry, Faculty of Science & Art, Harran University, 63300, Şanlıurfa, Turkey
*Correspondence e-mail: omer.celik@dicle.edu.tr

(Received 28 March 2014; accepted 9 April 2014; online 16 April 2014)

In the title compound, C24H25N3, the benzimidazole ring system is essentially planar, with an r.m.s. deviation of 0.017 Å, and forms dihedral angles of 7.81 (5) and 87.61 (4)° with the pyridine and benzene rings, respectively. An intra­molecular C—H⋯N hydrogen bond is observed. In the crystal, mol­ecules are stacked along the a axis by weak C—H⋯π inter­actions.

Related literature

For the use of 2-(2-pyrid­yl)benzimidazole in coordination chemistry, see: Sahin et al. (2010[Sahin, C., Ulusoy, M., Zafer, C., Ozsoy, C., Varlikli, C., Dittrich, T., Cetinkaya, B. & Icli, S. (2010). Dyes Pigments, 84, 88-94.]); Harkins et al. (1956[Harkins, T. R., Walter, J. L., Harris, O. E. & Freiser, H. (1956). J. Am. Chem. Soc. 78, 260-264.]); Chiswell et al. (1964[Chiswell, B., Lions, F. & Morris, B. S. (1964). Inorg. Chem. 3, 110-114.]); De Castro et al. (1991[De Castro, B., Freire, C., Domingues, D. & Gomes, J. (1991). Polyhedron, 10, 2541-2549.]); Maekawa et al. (1994[Maekawa, M., Munakata, M., Kuroda-Sowa, T. & Hachiya, K. (1994). Inorg. Chim. Acta, 227, 137-143.]); Khalil et al. (2001[Khalil, M. M. H., Ali, S. A. & Ramadan, R. M. (2001). Spectrochim. Acta Part A, 57, 1017-1024.]); Boca et al. (1997[Boca, R., Baran, P., Dlhán, L., Sima, J., Wiesinger, G., Renz, F., El-Ayaan, U. & Linert, W. (1997). Polyhedron, 16, 47-55.]). For the use of N—N-type ligand systems involving 2,2′-bi­pyridine, see: Lippert (1999[Lippert, B. (1999). In Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug. Weinheim: Wiley-VCH.]); Wong & Giandomenico (1999[Wong, E. & Giandomenico, C. M. (1999). Chem. Rev. 99, 2451-2466.]), Kelland & Farrell (2000[Kelland, L. R. & Farrell, N. (2000). In Platinum-based Drugs in Cancer Chemotherapy. Tatowa: Humana Press.]). For related structures, see: Çelik et al. (2007[Çelik, Ö., Ulusoy, M., Taş, E. & Íde, S. (2007). Anal. Sci. 23, 185-186.], 2009[Çelik, Ö., Kasumov, V. T. & Şahin, E. (2009). Acta Cryst. E65, o2786.], 2014[Çelik, Ö., Anĝay, F., Gündoĝan, M. & Ulusoy, M. (2014). Acta Cryst. E70, o485.]).

[Scheme 1]

Experimental

Crystal data
  • C24H25N3

  • Mr = 355.47

  • Monoclinic, P 21 /n

  • a = 5.3470 (3) Å

  • b = 21.0622 (12) Å

  • c = 17.0379 (9) Å

  • β = 97.699 (3)°

  • V = 1901.50 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.982, Tmax = 0.989

  • 25354 measured reflections

  • 3741 independent reflections

  • 3056 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.150

  • S = 1.04

  • 3741 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C7–C12 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13ACgi 0.97 2.91 3.6941 (18) 139
C13—H13B⋯N1 0.97 2.30 3.029 (2) 131
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The N—N type ligand system 2-(2-pyridyl)benzimidazole has a venerable history in coordination chemistry (Sahin et al., 2010; Harkins et al., 1956; Chiswell et al., 1964; De Castro et al., 1991; Maekawa et al., 1994; Khalil et al., 2001; Boca et al., 1997). Lots of platinum chemistry bearing N—N type ligand systems involving 2,2'-bipyridine has been reported aimed at the design of drugs having less serious side-effects than those of cisplatin, or which could extend the scope of Pt based chemotherapy to tumours (Lippert, 1999; Wong & Giandomenico, 1999; Kelland & Farrell, 2000).

The molecular structure of the title compound is shown in Fig. 1. Bond lengths and angles are in good agreement with those reported for related structures (Çelik et al., 2007; Çelik et al., 2009; Çelik et al., 2014). The benzimidazole ring system is substantially planar, the maximum deviation being 0.027 (2) Å for atom C8, and forms dihedral angles of 7.81 (5) and 87.61 (4)° with the mean planes through the pyridine (N1/C1–C5) and phenyl (C14–C19) rings, respectively. An intramolecular C—H···N hydrogen bond is present (Table 1). In the crystal structure (Fig. 2), molecules are stacked along the a axis by weak C—H···π hydrogen interactions (Table 1) involving the C7—C12 benzene ring of the benzimidazole moiety.

Related literature top

For the use of 2-(2-pyridyl)benzimidazole in coordination chemistry, see: Sahin et al. (2010); Harkins et al. (1956); Chiswell et al. (1964); De Castro et al. (1991); Maekawa et al. (1994); Khalil et al. (2001); Boca et al. (1997). For the use of N—N-type ligand systems involving 2,2'-bipyridine, see: Lippert (1999); Wong & Giandomenico (1999), Kelland & Farrell (2000). For related structures, see: Çelik et al. (2007, 2009, 2014).

Experimental top

NaH (60%) (398 mg, 11.0 mmol) was washed two times with dry hexane, filtered off via cannula and a solution of the 2-pyridiylbenzimidazole (1.95 g, 10.0 mmol) in dry toluene (10 ml) was added, then the solution was heated at 90°C for 24 h. Evolution of hydrogen was observed at this temperature. 2,3,4,5,6-Pentamethylbenzyl bromide (2.45 g, 10.0 mmol) was added to this mixture at room temperature and then heated again at 90°C for 1 day. Then volatiles were evaporated in vacuum to dryness. The residue was dissolved in CH2Cl2 and filtered via cannula on celite. The desired product was obtained after concentration of CH2Cl2 (15 ml) and then precipitated with hexane (30 ml). The off-white solid obtained in 86% yield. M. p. 416–418 K. 1H NMR (400 MHz, CDCl3, δ p.p.m.): 1.26 (s, 6H, o-(CH3)2); 1.36(s, 6H, m-(CH3)2); 2.13–2.20 (s, 3H, p-CH3); 5.50 (s, 2H, N—CH2); 6.86 (s, 1H, Ar—CH); 7.11 (s, 1H, Ar—CH); 7.26 (s, 1H, Ar—CH); 7.35 (s, 1H, Ar—CH); 7.49 (s, 1H, Ar—CH); 8.46 (s, 1H, Ar—CH); 10.19 (s, 2H, Ar—CH). 13C NMR (100.56 MHz, CDCl3, δ p.p.m.): 17.0; 17.4; 29.6; 31.7; 34.4; 35.2; 48.7; 49.3; 56.2; 117.9; 121.2; 122.4; 125.5; 126.5; 133.8; 134.0; 137.5; 140.7; 158.0; 167.9.

Refinement top

All H atoms were placed geometrically and refined using a riding model approximation, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP-3 of the title compound, showing displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The stacking of the title compound along the a axis with C—H···π type hydrogen-bond interactions (dashed lines). Displacement ellipsoids are drawn at the 50% probability level.
1-(2,3,4,5,6-Pentamethylbenzyl)-2-(pyridin-2-yl)-1H-benzimidazole top
Crystal data top
C24H25N3F(000) = 760
Mr = 355.47Dx = 1.242 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.3470 (3) ÅCell parameters from 1276 reflections
b = 21.0622 (12) Åθ = 2.3–31.5°
c = 17.0379 (9) ŵ = 0.07 mm1
β = 97.699 (3)°T = 296 K
V = 1901.50 (18) Å3Prism, yellow
Z = 40.25 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
3056 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 66
Tmin = 0.982, Tmax = 0.989k = 2525
25354 measured reflectionsl = 2120
3741 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.5927P]
where P = (Fo2 + 2Fc2)/3
3741 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C24H25N3V = 1901.50 (18) Å3
Mr = 355.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.3470 (3) ŵ = 0.07 mm1
b = 21.0622 (12) ÅT = 296 K
c = 17.0379 (9) Å0.25 × 0.20 × 0.15 mm
β = 97.699 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3741 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3056 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.989Rint = 0.026
25354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
3741 reflectionsΔρmin = 0.17 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0873 (5)0.86580 (11)0.44231 (14)0.0724 (6)
H11.21740.84280.42460.087*
C21.0060 (5)0.91952 (12)0.40152 (14)0.0737 (6)
H21.07900.93270.35770.088*
C30.8151 (5)0.95308 (12)0.42706 (16)0.0842 (7)
H30.75480.99000.40110.101*
C40.7133 (5)0.93151 (10)0.49165 (15)0.0771 (7)
H40.58090.95350.50940.092*
C50.8068 (3)0.87716 (7)0.53054 (11)0.0465 (4)
C60.6926 (3)0.85653 (7)0.60059 (10)0.0452 (4)
C70.4595 (4)0.86110 (8)0.69313 (11)0.0507 (4)
C80.2891 (4)0.87790 (10)0.74483 (13)0.0658 (6)
H80.20140.91610.73870.079*
C90.2541 (4)0.83708 (10)0.80460 (13)0.0667 (6)
H90.14140.84770.83960.080*
C100.3850 (4)0.77962 (10)0.81392 (12)0.0598 (5)
H100.35970.75310.85580.072*
C110.5507 (4)0.76104 (9)0.76284 (10)0.0505 (4)
H110.63600.72250.76900.061*
C120.5841 (3)0.80251 (8)0.70185 (10)0.0432 (4)
C130.8894 (3)0.74472 (7)0.62583 (10)0.0422 (4)
H13A1.02640.74100.66910.051*
H13B0.96320.75250.57770.051*
C140.7459 (3)0.68215 (7)0.61734 (9)0.0370 (4)
C150.5434 (3)0.67529 (7)0.55618 (9)0.0391 (4)
C160.4047 (3)0.61901 (8)0.54888 (10)0.0452 (4)
C170.4753 (3)0.56796 (8)0.59946 (11)0.0471 (4)
C180.6838 (3)0.57318 (7)0.65801 (10)0.0448 (4)
C190.8190 (3)0.63066 (7)0.66771 (10)0.0412 (4)
C200.4783 (4)0.72858 (9)0.49769 (10)0.0511 (4)
H20A0.406 (3)0.7111 (2)0.4472 (7)0.077*
H20B0.630 (2)0.7521 (5)0.4912 (6)0.077*
H20C0.357 (2)0.7567 (5)0.5172 (5)0.077*
C210.1762 (4)0.61342 (11)0.48609 (14)0.0703 (6)
H21A0.2254 (10)0.5965 (8)0.4399 (8)0.105*
H21B0.106 (2)0.6535 (6)0.4754 (8)0.105*
H21C0.057 (2)0.5868 (8)0.5043 (5)0.105*
C220.3235 (5)0.50692 (10)0.59025 (15)0.0710 (6)
H22A0.314 (3)0.4923 (5)0.5373 (9)0.107*
H22B0.158 (3)0.5146 (2)0.6025 (10)0.107*
H22C0.403 (2)0.4757 (5)0.6251 (9)0.107*
C230.7616 (5)0.51661 (9)0.71064 (13)0.0655 (6)
H23A0.626 (2)0.5047 (5)0.7383 (8)0.098*
H23B0.904 (3)0.5276 (3)0.7476 (8)0.098*
H23C0.803 (3)0.4820 (6)0.6790 (5)0.098*
C241.0435 (4)0.63574 (10)0.73176 (13)0.0630 (5)
H24A1.168 (2)0.6592 (7)0.7134 (4)0.094*
H24B1.104 (2)0.5960 (6)0.7452 (7)0.094*
H24C0.9950 (10)0.6551 (7)0.7754 (7)0.094*
N10.9926 (3)0.84413 (8)0.50574 (10)0.0616 (4)
N20.5315 (3)0.89400 (7)0.63031 (10)0.0561 (4)
N30.7309 (3)0.79969 (6)0.64092 (8)0.0406 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0797 (15)0.0651 (13)0.0780 (14)0.0052 (11)0.0312 (12)0.0205 (11)
C20.0844 (16)0.0737 (14)0.0641 (13)0.0104 (12)0.0138 (12)0.0232 (11)
C30.1041 (19)0.0620 (14)0.0871 (17)0.0111 (13)0.0152 (15)0.0351 (13)
C40.0940 (17)0.0516 (12)0.0889 (16)0.0184 (11)0.0244 (14)0.0216 (11)
C50.0539 (10)0.0329 (8)0.0517 (10)0.0066 (7)0.0031 (8)0.0006 (7)
C60.0522 (10)0.0305 (8)0.0519 (10)0.0019 (7)0.0034 (8)0.0032 (7)
C70.0580 (11)0.0396 (9)0.0551 (10)0.0025 (8)0.0099 (9)0.0119 (8)
C80.0756 (14)0.0522 (11)0.0726 (13)0.0050 (10)0.0212 (11)0.0188 (10)
C90.0737 (14)0.0657 (13)0.0651 (13)0.0053 (11)0.0261 (11)0.0210 (11)
C100.0732 (13)0.0590 (11)0.0490 (10)0.0122 (10)0.0152 (9)0.0084 (9)
C110.0582 (11)0.0457 (9)0.0476 (10)0.0050 (8)0.0070 (8)0.0042 (7)
C120.0451 (9)0.0397 (8)0.0442 (9)0.0072 (7)0.0038 (7)0.0087 (7)
C130.0405 (9)0.0345 (8)0.0514 (9)0.0012 (6)0.0059 (7)0.0014 (7)
C140.0395 (8)0.0319 (7)0.0407 (8)0.0008 (6)0.0096 (6)0.0031 (6)
C150.0416 (8)0.0382 (8)0.0389 (8)0.0030 (6)0.0108 (7)0.0045 (6)
C160.0441 (9)0.0449 (9)0.0479 (9)0.0036 (7)0.0108 (7)0.0122 (7)
C170.0536 (10)0.0381 (9)0.0538 (10)0.0077 (7)0.0227 (8)0.0116 (7)
C180.0574 (10)0.0339 (8)0.0473 (9)0.0041 (7)0.0230 (8)0.0003 (7)
C190.0453 (9)0.0367 (8)0.0426 (8)0.0044 (7)0.0094 (7)0.0000 (6)
C200.0573 (11)0.0504 (10)0.0441 (9)0.0048 (8)0.0010 (8)0.0003 (8)
C210.0589 (12)0.0747 (14)0.0738 (14)0.0118 (11)0.0033 (11)0.0163 (11)
C220.0808 (15)0.0505 (11)0.0862 (15)0.0231 (10)0.0274 (12)0.0111 (10)
C230.0940 (16)0.0398 (10)0.0665 (13)0.0052 (10)0.0247 (11)0.0093 (9)
C240.0675 (13)0.0540 (11)0.0624 (12)0.0037 (9)0.0094 (10)0.0093 (9)
N10.0691 (10)0.0521 (9)0.0671 (10)0.0057 (8)0.0216 (8)0.0180 (8)
N20.0697 (10)0.0346 (7)0.0650 (10)0.0040 (7)0.0129 (8)0.0039 (7)
N30.0456 (7)0.0305 (6)0.0455 (7)0.0029 (5)0.0056 (6)0.0021 (5)
Geometric parameters (Å, º) top
C1—N11.334 (3)C13—H13B0.9700
C1—C21.368 (3)C14—C191.405 (2)
C1—H10.9300C14—C151.406 (2)
C2—C31.360 (4)C15—C161.395 (2)
C2—H20.9300C15—C201.510 (2)
C3—C41.369 (3)C16—C171.398 (3)
C3—H30.9300C16—C211.517 (3)
C4—C51.382 (3)C17—C181.397 (3)
C4—H40.9300C17—C221.517 (2)
C5—N11.328 (2)C18—C191.408 (2)
C5—C61.477 (3)C18—C231.515 (2)
C6—N21.319 (2)C19—C241.514 (3)
C6—N31.382 (2)C20—H20A0.968 (12)
C7—N21.373 (2)C20—H20B0.968 (13)
C7—C81.395 (3)C20—H20C0.968 (12)
C7—C121.401 (2)C21—H21A0.933 (14)
C8—C91.365 (3)C21—H21B0.933 (14)
C8—H80.9300C21—H21C0.933 (14)
C9—C101.396 (3)C22—H22A0.948 (14)
C9—H90.9300C22—H22B0.948 (14)
C10—C111.379 (3)C22—H22C0.948 (14)
C10—H100.9300C23—H23A0.951 (14)
C11—C121.387 (2)C23—H23B0.951 (14)
C11—H110.9300C23—H23C0.951 (13)
C12—N31.384 (2)C24—H24A0.915 (14)
C13—N31.478 (2)C24—H24B0.915 (13)
C13—C141.522 (2)C24—H24C0.915 (13)
C13—H13A0.9700
N1—C1—C2124.4 (2)C15—C16—C17120.14 (16)
N1—C1—H1117.8C15—C16—C21119.82 (17)
C2—C1—H1117.8C17—C16—C21120.05 (16)
C3—C2—C1117.9 (2)C18—C17—C16120.23 (15)
C3—C2—H2121.0C18—C17—C22120.34 (17)
C1—C2—H2121.0C16—C17—C22119.42 (18)
C2—C3—C4118.7 (2)C17—C18—C19119.95 (15)
C2—C3—H3120.6C17—C18—C23119.35 (16)
C4—C3—H3120.6C19—C18—C23120.69 (17)
C3—C4—C5120.2 (2)C14—C19—C18119.69 (15)
C3—C4—H4119.9C14—C19—C24120.95 (15)
C5—C4—H4119.9C18—C19—C24119.35 (15)
N1—C5—C4121.30 (19)C15—C20—H20A109.5
N1—C5—C6120.74 (15)C15—C20—H20B109.5
C4—C5—C6117.96 (18)H20A—C20—H20B109.5
N2—C6—N3112.86 (16)C15—C20—H20C109.5
N2—C6—C5119.77 (15)H20A—C20—H20C109.5
N3—C6—C5127.37 (15)H20B—C20—H20C109.5
N2—C7—C8129.74 (18)C16—C21—H21A109.5
N2—C7—C12110.39 (16)C16—C21—H21B109.5
C8—C7—C12119.87 (18)H21A—C21—H21B109.5
C9—C8—C7118.6 (2)C16—C21—H21C109.5
C9—C8—H8120.7H21A—C21—H21C109.5
C7—C8—H8120.7H21B—C21—H21C109.5
C8—C9—C10120.93 (19)C17—C22—H22A109.5
C8—C9—H9119.5C17—C22—H22B109.5
C10—C9—H9119.5H22A—C22—H22B109.5
C11—C10—C9121.92 (19)C17—C22—H22C109.5
C11—C10—H10119.0H22A—C22—H22C109.5
C9—C10—H10119.0H22B—C22—H22C109.5
C10—C11—C12116.88 (18)C18—C23—H23A109.5
C10—C11—H11121.6C18—C23—H23B109.5
C12—C11—H11121.6H23A—C23—H23B109.5
N3—C12—C11132.66 (16)C18—C23—H23C109.5
N3—C12—C7105.53 (15)H23A—C23—H23C109.5
C11—C12—C7121.80 (17)H23B—C23—H23C109.5
N3—C13—C14113.67 (13)C19—C24—H24A109.5
N3—C13—H13A108.8C19—C24—H24B109.5
C14—C13—H13A108.8H24A—C24—H24B109.5
N3—C13—H13B108.8C19—C24—H24C109.5
C14—C13—H13B108.8H24A—C24—H24C109.5
H13A—C13—H13B107.7H24B—C24—H24C109.5
C19—C14—C15119.78 (14)C5—N1—C1117.39 (17)
C19—C14—C13120.99 (14)C6—N2—C7105.26 (15)
C15—C14—C13119.19 (14)C6—N3—C12105.94 (13)
C16—C15—C14120.06 (15)C6—N3—C13129.98 (14)
C16—C15—C20119.99 (15)C12—N3—C13124.08 (13)
C14—C15—C20119.95 (14)
N1—C1—C2—C30.2 (4)C15—C16—C17—C22179.52 (16)
C1—C2—C3—C40.3 (4)C21—C16—C17—C220.7 (3)
C2—C3—C4—C51.0 (4)C16—C17—C18—C191.9 (2)
C3—C4—C5—N11.2 (4)C22—C17—C18—C19178.06 (16)
C3—C4—C5—C6179.1 (2)C16—C17—C18—C23178.23 (16)
N1—C5—C6—N2171.36 (17)C22—C17—C18—C231.8 (2)
C4—C5—C6—N29.0 (3)C15—C14—C19—C181.9 (2)
N1—C5—C6—N39.7 (3)C13—C14—C19—C18179.49 (14)
C4—C5—C6—N3169.96 (19)C15—C14—C19—C24177.28 (16)
N2—C7—C8—C9178.4 (2)C13—C14—C19—C240.3 (2)
C12—C7—C8—C91.9 (3)C17—C18—C19—C141.2 (2)
C7—C8—C9—C100.1 (3)C23—C18—C19—C14178.93 (15)
C8—C9—C10—C111.2 (3)C17—C18—C19—C24179.62 (16)
C9—C10—C11—C120.7 (3)C23—C18—C19—C240.3 (2)
C10—C11—C12—N3179.82 (17)C4—C5—N1—C10.7 (3)
C10—C11—C12—C71.1 (3)C6—C5—N1—C1179.67 (18)
N2—C7—C12—N31.48 (19)C2—C1—N1—C50.1 (4)
C8—C7—C12—N3178.23 (17)N3—C6—N2—C70.2 (2)
N2—C7—C12—C11177.79 (16)C5—C6—N2—C7179.26 (15)
C8—C7—C12—C112.5 (3)C8—C7—N2—C6178.8 (2)
N3—C13—C14—C19121.53 (16)C12—C7—N2—C60.8 (2)
N3—C13—C14—C1560.88 (19)N2—C6—N3—C121.10 (19)
C19—C14—C15—C164.3 (2)C5—C6—N3—C12179.91 (16)
C13—C14—C15—C16178.05 (14)N2—C6—N3—C13178.34 (15)
C19—C14—C15—C20174.84 (15)C5—C6—N3—C130.7 (3)
C13—C14—C15—C202.8 (2)C11—C12—N3—C6177.65 (18)
C14—C15—C16—C173.6 (2)C7—C12—N3—C61.50 (17)
C20—C15—C16—C17175.52 (15)C11—C12—N3—C132.9 (3)
C14—C15—C16—C21176.10 (16)C7—C12—N3—C13177.98 (14)
C20—C15—C16—C214.7 (2)C14—C13—N3—C6125.33 (17)
C15—C16—C17—C180.5 (2)C14—C13—N3—C1254.0 (2)
C21—C16—C17—C18179.21 (16)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cgi0.972.913.6941 (18)139
C13—H13B···N10.972.303.029 (2)131
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cgi0.972.913.6941 (18)139
C13—H13B···N10.972.303.029 (2)131
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors are indebted to the X-ray laboratory of Dicle University Science and the Technology Application and Research Center, Diyarbakir, Turkey, for use of the X-ray diffractometer.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBoca, R., Baran, P., Dlhán, L., Sima, J., Wiesinger, G., Renz, F., El-Ayaan, U. & Linert, W. (1997). Polyhedron, 16, 47–55.  CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelik, Ö., Anĝay, F., Gündoĝan, M. & Ulusoy, M. (2014). Acta Cryst. E70, o485.  CSD CrossRef IUCr Journals Google Scholar
First citationÇelik, Ö., Kasumov, V. T. & Şahin, E. (2009). Acta Cryst. E65, o2786.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÇelik, Ö., Ulusoy, M., Taş, E. & Íde, S. (2007). Anal. Sci. 23, 185–186.  Google Scholar
First citationChiswell, B., Lions, F. & Morris, B. S. (1964). Inorg. Chem. 3, 110–114.  CrossRef CAS Web of Science Google Scholar
First citationDe Castro, B., Freire, C., Domingues, D. & Gomes, J. (1991). Polyhedron, 10, 2541–2549.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarkins, T. R., Walter, J. L., Harris, O. E. & Freiser, H. (1956). J. Am. Chem. Soc. 78, 260–264.  CrossRef CAS Web of Science Google Scholar
First citationKelland, L. R. & Farrell, N. (2000). In Platinum-based Drugs in Cancer Chemotherapy. Tatowa: Humana Press.  Google Scholar
First citationKhalil, M. M. H., Ali, S. A. & Ramadan, R. M. (2001). Spectrochim. Acta Part A, 57, 1017–1024.  Web of Science CrossRef Google Scholar
First citationLippert, B. (1999). In Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug. Weinheim: Wiley–VCH.  Google Scholar
First citationMaekawa, M., Munakata, M., Kuroda-Sowa, T. & Hachiya, K. (1994). Inorg. Chim. Acta, 227, 137–143.  CrossRef CAS Web of Science Google Scholar
First citationSahin, C., Ulusoy, M., Zafer, C., Ozsoy, C., Varlikli, C., Dittrich, T., Cetinkaya, B. & Icli, S. (2010). Dyes Pigments, 84, 88–94.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, E. & Giandomenico, C. M. (1999). Chem. Rev. 99, 2451–2466.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o563-o564
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds