organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(2-Nitro­phen­yl)-4,5-di­phenyl-1H-imidazol-1-yl]-3-phenyl­propan-1-ol

aSchool of Chemistry and Chemical engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: henangongda@yahoo.com

(Received 1 April 2014; accepted 17 April 2014; online 30 April 2014)

In the title compound, C30H25N3O3, the central imidazole ring forms dihedral angles of 77.34 (6), 12.56 (6) and 87.04 (6)°, respectively, with the o-nitro­benzene ring and the phenyl substituents in the 5- and 4-positions. The mol­ecular conformation is stabilized by weak intra­molecular C—H⋯π inter­actions. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming chains running parallel to the b-axis direction.

Related literature

For the synthesis of imidazole derivatives, see: Ding et al. (2005[Ding, J., Desikan, V., Han, X., Xiao, T., Ding, R., Jenks, W. & Armstrong, D. (2005). Org. Lett. 7, 7335-337.]); Heightman & Vasella (1999[Heightman, T. D. & Vasella, A. T. (1999). Angew. Chem. Int. Ed. 38, 750-770.]); Wasserscheid & Keim (2000[Wasserscheid, P. & Keim, W. (2000). Angew. Chem. Int. Ed. 39, 3772-3789.]). For related compounds synthesized by our group, see: Gao, Yang et al. (2013[Gao, J., Yang, L., Mai, W., Yuan, J. & Mao, P. (2013). Acta Cryst. E69, o1379.]); Gao, Wang et al. (2013[Gao, J., Wang, H., Yang, L., Xiao, Y. & Mao, P. (2013). Acta Cryst. E69, o1858.]); Mao et al. (2010[Mao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418-2425.]); Yang et al. (2012[Yang, L., Xiao, Y., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o1670.]); Xiao et al. (2012[Xiao, Y., Yang, L., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o264.]).

[Scheme 1]

Experimental

Crystal data
  • C30H25N3O3

  • Mr = 475.53

  • Orthorhombic, P 21 21 21

  • a = 10.54812 (16) Å

  • b = 12.77836 (19) Å

  • c = 18.4800 (3) Å

  • V = 2490.87 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 291 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.638, Tmax = 1.000

  • 23649 measured reflections

  • 4460 independent reflections

  • 4263 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.05

  • 4460 reflections

  • 330 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); 1925 Friedel pairs

  • Absolute structure parameter: 0.2 (2)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C9–C14 and C22–C27 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1 0.93 2.84 3.715 (2) 157
C21—H21⋯Cg2 0.93 2.81 3.501 (2) 132
O3—H3⋯N1i 0.90 (3) 1.89 (3) 2.7935 (17) 179 (3)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Imidazole and its derivatives attracted research interest due to their important roles in the field of biology, medicine and chemistry. Imidazoles containing chiral N-substituent have high potentiality for application in coordination chemistry and transition metal catalysis (Ding et al., 2005; Heightman & Vasella, 1999; Wasserscheid & Keim, 2000). Our group is interested in the synthesis and application of chiral imidazolium compounds derived from natural amino acids (Gao, Yang et al., 2013; Gao, Wang et al., 2013; Mao et al., 2010; Yang et al., 2012; Xiao et al., 2012). Here we present the synthesis of a chiral nirtrophenyl-substituted imidazole derivative obtained from the condensation of a chiral aminoalcohol, nitrobenzaldehyde, ammonium acetate and benzyl. The synthetic procedure provides valuable information for the research and development of novel chiral catalysts.

The molecular structure of the title compound is shown in Figure 1. As expected, the imidazole core (C7/C8/N2/C15/N1) is essentially planar (r.m.s. deviation = 0.0056 Å). The dihedral angles it forms with the o-nitrobenzene ring and the two phenyl substituents (C1—C6, C9—C14) are 77.34 (6), 12.56 (6) and 87.04 (6)°, respectively. Two intramolecular C—H···π interactions stabilizing the molecular conformation are observed (Table 1). In the crystal, molecules are linked by O—H···N hydrogen bonds (Table 1), forming chains running parallel to the b axis.

Related literature top

For the synthesis of imidazole derivatives, see: Ding et al. (2005); Heightman & Vasella (1999); Wasserscheid & Keim (2000). For related compounds synthesized by our group, see: Gao, Yang et al. (2013); Gao, Wang et al. (2013); Mao et al. (2010); Yang et al. (2012); Xiao et al. (2012).

Experimental top

L-Phenylalaninol (15.1 g, 0.1 mol) was added to the solvent (CH3OH, 200 mL) with ammonium acetate (7.7 g, 0.1 mol) and dibenzoyl (21.0 g, 0.1 mol) in a three-neck flask. The system was stirred until L-phenylalaninol was dissolved completely, affording a transparent dark yellow solution. The flask was then put into an ice bath and o-nitrobenzaldehyde (15.1 g, 0.1 mol) in MeOH (20 ml) was added dropwise to the solution. The mixture was heated to 65°C for 12 h. The solvent was eliminated by vacuum rotary evaporation and the crude product obtained purified using column chromatography (ethyl acetate/ethanol/triethylamine, 10:1:0.1 v/v/v). Crystallization of the product by slow evaporation of a methanol/diethyl ether solution (1:1 v/v) afforded crystals of the title compound suitable for X-ray analysis.

Refinement top

The hydroxyl H atom was located in a difference Fourier map and refined freely. All other H atoms were placed in calculated positions with C—H = 0.93–0.98 Å and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids. Hydrogen atoms, but those associated to the chiral C29 carbon atom and hydroxyl group, are omitted for clarity.
2-[2-(2-Nitrophenyl)-4,5-diphenyl-1H-imidazol-1-yl]-3-phenylpropan-1-ol top
Crystal data top
C30H25N3O3Dx = 1.268 Mg m3
Mr = 475.53Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, P212121Cell parameters from 12200 reflections
a = 10.54812 (16) Åθ = 4.2–72.5°
b = 12.77836 (19) ŵ = 0.67 mm1
c = 18.4800 (3) ÅT = 291 K
V = 2490.87 (6) Å3, yellow
Z = 40.25 × 0.22 × 0.20 mm
F(000) = 1000
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4460 independent reflections
Radiation source: Enhance (Cu) X-ray Source4263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 16.2312 pixels mm-1θmax = 67.1°, θmin = 4.2°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1514
Tmin = 0.638, Tmax = 1.000l = 2221
23649 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.1165P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.16 e Å3
4460 reflectionsΔρmin = 0.14 e Å3
330 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0020 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983); 1925 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.2 (2)
Crystal data top
C30H25N3O3V = 2490.87 (6) Å3
Mr = 475.53Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 10.54812 (16) ŵ = 0.67 mm1
b = 12.77836 (19) ÅT = 291 K
c = 18.4800 (3) Å0.25 × 0.22 × 0.20 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4460 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4263 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 1.000Rint = 0.054
23649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111Δρmax = 0.16 e Å3
S = 1.05Δρmin = 0.14 e Å3
4460 reflectionsAbsolute structure: Flack (1983); 1925 Friedel pairs
330 parametersAbsolute structure parameter: 0.2 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3588 (2)0.84256 (18)0.76549 (10)0.0943 (6)
O20.2703 (2)0.8468 (2)0.86999 (14)0.1240 (9)
O30.69834 (12)0.98409 (9)0.67498 (6)0.0495 (3)
N10.42502 (13)0.60777 (11)0.72217 (7)0.0421 (3)
N20.58116 (12)0.71200 (10)0.68724 (7)0.0381 (3)
N30.3581 (2)0.82279 (15)0.82985 (10)0.0720 (5)
C10.2345 (2)0.50148 (18)0.63890 (11)0.0643 (5)
H10.22490.50900.68870.077*
C20.1417 (3)0.4507 (2)0.59907 (14)0.0823 (8)
H20.06990.42490.62220.099*
C30.1554 (3)0.43820 (18)0.52542 (13)0.0763 (7)
H3A0.09290.40430.49880.092*
C40.2609 (2)0.47571 (15)0.49166 (11)0.0629 (5)
H40.27040.46670.44200.075*
C50.3536 (2)0.52686 (14)0.53059 (10)0.0537 (4)
H50.42510.55210.50680.064*
C60.34175 (17)0.54120 (12)0.60510 (9)0.0450 (4)
C70.43445 (15)0.60224 (12)0.64747 (8)0.0406 (3)
C80.53212 (15)0.66520 (12)0.62466 (8)0.0393 (3)
C90.58588 (15)0.67981 (14)0.55083 (8)0.0442 (4)
C100.54220 (18)0.75864 (16)0.50552 (9)0.0537 (4)
H100.48090.80530.52190.064*
C110.5900 (3)0.7680 (2)0.43568 (10)0.0741 (7)
H110.56110.82140.40580.089*
C120.6789 (3)0.6993 (3)0.41067 (11)0.0847 (8)
H120.71110.70640.36410.102*
C130.7207 (2)0.6199 (2)0.45434 (13)0.0817 (8)
H130.78030.57250.43700.098*
C140.6749 (2)0.60967 (18)0.52423 (11)0.0624 (5)
H140.70390.55550.55350.075*
C150.51231 (14)0.67378 (12)0.74329 (8)0.0390 (3)
C160.53902 (15)0.70021 (13)0.82028 (8)0.0434 (3)
C170.46705 (19)0.76810 (14)0.86142 (9)0.0518 (4)
C180.4959 (3)0.78953 (19)0.93326 (12)0.0753 (7)
H180.44610.83570.95970.090*
C190.5983 (3)0.7422 (2)0.96475 (11)0.0810 (8)
H190.61880.75671.01260.097*
C200.6698 (2)0.6741 (2)0.92610 (12)0.0805 (7)
H200.73920.64190.94770.097*
C210.64027 (19)0.6518 (2)0.85425 (11)0.0640 (5)
H210.68920.60370.82880.077*
C220.8477 (2)0.58423 (16)0.71153 (13)0.0613 (5)
H220.79360.55920.67580.074*
C230.9023 (2)0.51434 (18)0.75950 (16)0.0775 (7)
H230.88330.44340.75640.093*
C240.9841 (3)0.5492 (2)0.81139 (19)0.0896 (8)
H241.02020.50260.84400.108*
C251.0122 (3)0.6533 (3)0.81481 (19)0.0993 (9)
H251.07020.67710.84890.119*
C260.9552 (2)0.7242 (2)0.76789 (14)0.0747 (6)
H260.97370.79510.77190.090*
C270.87162 (15)0.69031 (15)0.71554 (10)0.0503 (4)
C280.80645 (16)0.76837 (14)0.66683 (10)0.0488 (4)
H28A0.79990.73900.61860.059*
H28B0.85810.83100.66370.059*
C290.67331 (14)0.79849 (12)0.69335 (8)0.0400 (3)
H290.68110.81450.74500.048*
C300.62316 (17)0.89749 (13)0.65685 (9)0.0475 (4)
H30A0.62330.88800.60480.057*
H30B0.53650.91000.67210.057*
H30.658 (2)1.023 (2)0.7087 (16)0.078 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1086 (13)0.1066 (14)0.0678 (10)0.0422 (12)0.0073 (10)0.0090 (10)
O20.1259 (17)0.139 (2)0.1075 (16)0.0540 (16)0.0522 (14)0.0077 (15)
O30.0666 (7)0.0394 (6)0.0426 (6)0.0080 (5)0.0105 (5)0.0074 (5)
N10.0531 (7)0.0423 (7)0.0309 (6)0.0089 (6)0.0013 (5)0.0044 (5)
N20.0465 (6)0.0352 (6)0.0327 (6)0.0033 (5)0.0020 (5)0.0004 (5)
N30.0920 (12)0.0620 (10)0.0621 (11)0.0134 (10)0.0226 (9)0.0047 (9)
C10.0784 (12)0.0682 (12)0.0464 (9)0.0281 (11)0.0132 (9)0.0115 (9)
C20.0859 (15)0.0888 (17)0.0722 (14)0.0435 (14)0.0203 (12)0.0142 (13)
C30.0934 (16)0.0622 (12)0.0735 (14)0.0236 (12)0.0397 (13)0.0008 (11)
C40.0942 (14)0.0472 (10)0.0472 (10)0.0038 (10)0.0249 (10)0.0031 (8)
C50.0724 (11)0.0451 (9)0.0437 (9)0.0043 (8)0.0091 (8)0.0001 (7)
C60.0598 (9)0.0357 (7)0.0394 (8)0.0048 (7)0.0119 (7)0.0042 (6)
C70.0541 (8)0.0361 (7)0.0317 (7)0.0021 (7)0.0034 (6)0.0030 (6)
C80.0513 (7)0.0361 (7)0.0307 (7)0.0014 (6)0.0013 (6)0.0003 (6)
C90.0524 (8)0.0475 (8)0.0328 (7)0.0097 (7)0.0019 (6)0.0037 (6)
C100.0671 (10)0.0579 (10)0.0361 (8)0.0133 (8)0.0060 (7)0.0053 (7)
C110.0982 (16)0.0879 (16)0.0363 (9)0.0388 (14)0.0085 (10)0.0109 (10)
C120.0977 (16)0.120 (2)0.0368 (9)0.0439 (17)0.0187 (11)0.0152 (12)
C130.0776 (13)0.109 (2)0.0584 (13)0.0133 (14)0.0205 (11)0.0371 (14)
C140.0686 (11)0.0683 (12)0.0503 (10)0.0008 (10)0.0058 (8)0.0157 (9)
C150.0498 (7)0.0369 (7)0.0303 (7)0.0031 (6)0.0016 (6)0.0020 (6)
C160.0535 (8)0.0449 (8)0.0318 (7)0.0141 (7)0.0004 (6)0.0016 (6)
C170.0710 (10)0.0452 (9)0.0392 (8)0.0135 (8)0.0101 (8)0.0021 (7)
C180.1157 (19)0.0663 (13)0.0440 (10)0.0335 (13)0.0190 (11)0.0146 (9)
C190.1110 (18)0.0966 (17)0.0353 (9)0.0515 (16)0.0103 (11)0.0013 (10)
C200.0772 (13)0.116 (2)0.0484 (11)0.0226 (15)0.0201 (10)0.0130 (12)
C210.0619 (10)0.0845 (14)0.0454 (10)0.0018 (10)0.0052 (8)0.0060 (10)
C220.0624 (10)0.0464 (10)0.0753 (13)0.0054 (8)0.0049 (9)0.0101 (9)
C230.0761 (13)0.0500 (11)0.1064 (19)0.0169 (10)0.0039 (13)0.0032 (12)
C240.0769 (14)0.0825 (17)0.109 (2)0.0233 (13)0.0197 (15)0.0112 (16)
C250.0825 (16)0.112 (2)0.103 (2)0.0033 (16)0.0421 (16)0.0016 (19)
C260.0761 (13)0.0663 (13)0.0817 (14)0.0173 (11)0.0171 (12)0.0039 (12)
C270.0423 (7)0.0479 (9)0.0606 (10)0.0009 (7)0.0054 (7)0.0082 (8)
C280.0497 (8)0.0442 (8)0.0524 (9)0.0062 (7)0.0083 (7)0.0017 (7)
C290.0486 (7)0.0362 (7)0.0351 (7)0.0058 (6)0.0032 (6)0.0021 (6)
C300.0582 (9)0.0385 (8)0.0460 (8)0.0051 (7)0.0000 (7)0.0009 (7)
Geometric parameters (Å, º) top
O1—N31.216 (3)C13—C141.385 (3)
O2—N31.226 (3)C14—H140.9300
O3—C301.402 (2)C15—C161.489 (2)
O3—H30.90 (3)C16—C171.381 (3)
N1—C71.3858 (18)C16—C211.385 (3)
N1—C151.308 (2)C17—C181.389 (3)
N2—C81.4009 (19)C18—H180.9300
N2—C151.3561 (19)C18—C191.367 (4)
N2—C291.4762 (19)C19—H190.9300
N3—C171.466 (3)C19—C201.355 (4)
C1—H10.9300C20—H200.9300
C1—C21.386 (3)C20—C211.393 (3)
C1—C61.388 (3)C21—H210.9300
C2—H20.9300C22—H220.9300
C2—C31.378 (4)C22—C231.384 (3)
C3—H3A0.9300C22—C271.381 (3)
C3—C41.363 (4)C23—H230.9300
C4—H40.9300C23—C241.364 (4)
C4—C51.379 (3)C24—H240.9300
C5—H50.9300C24—C251.364 (4)
C5—C61.395 (2)C25—H250.9300
C6—C71.476 (2)C25—C261.390 (4)
C7—C81.374 (2)C26—H260.9300
C8—C91.489 (2)C26—C271.379 (3)
C9—C101.389 (3)C27—C281.509 (3)
C9—C141.388 (3)C28—H28A0.9700
C10—H100.9300C28—H28B0.9700
C10—C111.391 (3)C28—C291.536 (2)
C11—H110.9300C29—H290.9800
C11—C121.365 (4)C29—C301.528 (2)
C12—H120.9300C30—H30A0.9700
C12—C131.369 (4)C30—H30B0.9700
C13—H130.9300
C30—O3—H3109.6 (17)C17—C16—C21117.09 (16)
C15—N1—C7106.24 (13)C21—C16—C15118.52 (16)
C8—N2—C29128.75 (12)C16—C17—N3120.76 (16)
C15—N2—C8106.21 (12)C16—C17—C18122.0 (2)
C15—N2—C29124.32 (12)C18—C17—N3117.27 (19)
O1—N3—O2123.0 (2)C17—C18—H18120.2
O1—N3—C17118.91 (17)C19—C18—C17119.5 (2)
O2—N3—C17118.1 (2)C19—C18—H18120.2
C2—C1—H1119.7C18—C19—H19120.0
C2—C1—C6120.5 (2)C20—C19—C18119.94 (19)
C6—C1—H1119.7C20—C19—H19120.0
C1—C2—H2119.9C19—C20—H20119.7
C3—C2—C1120.3 (2)C19—C20—C21120.6 (2)
C3—C2—H2119.9C21—C20—H20119.7
C2—C3—H3A120.1C16—C21—C20120.8 (2)
C4—C3—C2119.8 (2)C16—C21—H21119.6
C4—C3—H3A120.1C20—C21—H21119.6
C3—C4—H4119.8C23—C22—H22119.2
C3—C4—C5120.5 (2)C27—C22—H22119.2
C5—C4—H4119.8C27—C22—C23121.5 (2)
C4—C5—H5119.6C22—C23—H23119.9
C4—C5—C6120.9 (2)C24—C23—C22120.2 (2)
C6—C5—H5119.6C24—C23—H23119.9
C1—C6—C5118.00 (17)C23—C24—H24120.4
C1—C6—C7119.63 (16)C25—C24—C23119.2 (3)
C5—C6—C7122.25 (17)C25—C24—H24120.4
N1—C7—C6120.53 (14)C24—C25—H25119.6
C8—C7—N1109.25 (13)C24—C25—C26120.8 (3)
C8—C7—C6130.08 (14)C26—C25—H25119.6
N2—C8—C9124.21 (14)C25—C26—H26119.7
C7—C8—N2105.88 (12)C27—C26—C25120.6 (2)
C7—C8—C9129.81 (14)C27—C26—H26119.7
C10—C9—C8121.14 (16)C22—C27—C28122.24 (17)
C14—C9—C8120.07 (16)C26—C27—C22117.5 (2)
C14—C9—C10118.64 (17)C26—C27—C28120.17 (18)
C9—C10—H10119.9C27—C28—H28A109.0
C9—C10—C11120.1 (2)C27—C28—H28B109.0
C11—C10—H10119.9C27—C28—C29113.05 (14)
C10—C11—H11119.7H28A—C28—H28B107.8
C12—C11—C10120.5 (2)C29—C28—H28A109.0
C12—C11—H11119.7C29—C28—H28B109.0
C11—C12—H12120.1N2—C29—C28112.95 (12)
C11—C12—C13119.86 (19)N2—C29—H29106.6
C13—C12—H12120.1N2—C29—C30110.98 (12)
C12—C13—H13119.8C28—C29—H29106.6
C12—C13—C14120.5 (2)C30—C29—C28112.52 (13)
C14—C13—H13119.8C30—C29—H29106.6
C9—C14—H14119.8O3—C30—C29110.62 (14)
C13—C14—C9120.3 (2)O3—C30—H30A109.5
C13—C14—H14119.8O3—C30—H30B109.5
N1—C15—N2112.40 (13)C29—C30—H30A109.5
N1—C15—C16124.36 (13)C29—C30—H30B109.5
N2—C15—C16123.15 (13)H30A—C30—H30B108.1
C17—C16—C15124.36 (16)
O1—N3—C17—C1628.9 (3)C10—C9—C14—C131.3 (3)
O1—N3—C17—C18149.6 (2)C10—C11—C12—C130.6 (4)
O2—N3—C17—C16151.3 (2)C11—C12—C13—C141.0 (4)
O2—N3—C17—C1830.2 (3)C12—C13—C14—C90.0 (4)
N1—C7—C8—N21.39 (18)C14—C9—C10—C111.7 (3)
N1—C7—C8—C9174.96 (16)C15—N1—C7—C6174.64 (14)
N1—C15—C16—C1778.5 (2)C15—N1—C7—C81.39 (18)
N1—C15—C16—C2199.5 (2)C15—N2—C8—C70.87 (16)
N2—C8—C9—C1091.6 (2)C15—N2—C8—C9175.75 (15)
N2—C8—C9—C1492.9 (2)C15—N2—C29—C28123.81 (16)
N2—C15—C16—C17105.10 (19)C15—N2—C29—C30108.76 (16)
N2—C15—C16—C2176.9 (2)C15—C16—C17—N32.0 (2)
N2—C29—C30—O3168.26 (12)C15—C16—C17—C18179.64 (17)
N3—C17—C18—C19178.64 (19)C15—C16—C21—C20179.7 (2)
C1—C2—C3—C40.2 (4)C16—C17—C18—C190.2 (3)
C1—C6—C7—N19.2 (3)C17—C16—C21—C202.2 (3)
C1—C6—C7—C8165.92 (19)C17—C18—C19—C200.7 (3)
C2—C1—C6—C51.0 (3)C18—C19—C20—C210.1 (4)
C2—C1—C6—C7175.2 (2)C19—C20—C21—C161.4 (4)
C2—C3—C4—C50.5 (4)C21—C16—C17—N3179.99 (17)
C3—C4—C5—C60.1 (3)C21—C16—C17—C181.6 (3)
C4—C5—C6—C10.7 (3)C22—C23—C24—C250.7 (5)
C4—C5—C6—C7175.39 (17)C22—C27—C28—C2981.6 (2)
C5—C6—C7—N1174.82 (16)C23—C22—C27—C261.9 (3)
C5—C6—C7—C810.1 (3)C23—C22—C27—C28176.0 (2)
C6—C1—C2—C30.6 (4)C23—C24—C25—C262.3 (5)
C6—C7—C8—N2174.14 (16)C24—C25—C26—C271.8 (5)
C6—C7—C8—C99.5 (3)C25—C26—C27—C220.3 (4)
C7—N1—C15—N20.83 (18)C25—C26—C27—C28177.6 (2)
C7—N1—C15—C16177.60 (16)C26—C27—C28—C2996.2 (2)
C7—C8—C9—C1092.6 (2)C27—C22—C23—C241.4 (4)
C7—C8—C9—C1482.8 (2)C27—C28—C29—N269.13 (18)
C8—N2—C15—N10.02 (18)C27—C28—C29—C30164.25 (14)
C8—N2—C15—C16176.79 (15)C28—C29—C30—O364.08 (18)
C8—N2—C29—C2867.3 (2)C29—N2—C8—C7169.57 (14)
C8—N2—C29—C3060.1 (2)C29—N2—C8—C913.8 (2)
C8—C9—C10—C11177.23 (16)C29—N2—C15—N1170.96 (14)
C8—C9—C14—C13176.89 (19)C29—N2—C15—C1612.2 (2)
C9—C10—C11—C120.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9–C14 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg10.932.843.715 (2)157
C21—H21···Cg20.932.813.501 (2)132
O3—H3···N1i0.90 (3)1.89 (3)2.7935 (17)179 (3)
Symmetry code: (i) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C9–C14 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg10.932.843.715 (2)157
C21—H21···Cg20.932.813.501 (2)132
O3—H3···N1i0.90 (3)1.89 (3)2.7935 (17)179 (3)
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank Ms Y. Zhu for technical assistance. This research was supported by the National Natural Science Foundation of China (No. 21172055) and the Program for Innovative Research Team from Zhengzhou (131PCXTD605).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationDing, J., Desikan, V., Han, X., Xiao, T., Ding, R., Jenks, W. & Armstrong, D. (2005). Org. Lett. 7, 7335–337.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, J., Wang, H., Yang, L., Xiao, Y. & Mao, P. (2013). Acta Cryst. E69, o1858.  CSD CrossRef IUCr Journals Google Scholar
First citationGao, J., Yang, L., Mai, W., Yuan, J. & Mao, P. (2013). Acta Cryst. E69, o1379.  CSD CrossRef IUCr Journals Google Scholar
First citationHeightman, T. D. & Vasella, A. T. (1999). Angew. Chem. Int. Ed. 38, 750–770.  CrossRef CAS Google Scholar
First citationMao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418–2425.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWasserscheid, P. & Keim, W. (2000). Angew. Chem. Int. Ed. 39, 3772–3789.  Web of Science CrossRef CAS Google Scholar
First citationXiao, Y., Yang, L., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o264.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, L., Xiao, Y., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o1670.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds