organic compounds
2-[2-(2-Nitrophenyl)-4,5-diphenyl-1H-imidazol-1-yl]-3-phenylpropan-1-ol
aSchool of Chemistry and Chemical engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: henangongda@yahoo.com
In the title compound, C30H25N3O3, the central imidazole ring forms dihedral angles of 77.34 (6), 12.56 (6) and 87.04 (6)°, respectively, with the o-nitrobenzene ring and the phenyl substituents in the 5- and 4-positions. The molecular conformation is stabilized by weak intramolecular C—H⋯π interactions. In the crystal, molecules are linked by O—H⋯N hydrogen bonds, forming chains running parallel to the b-axis direction.
CCDC reference: 997919
Related literature
For the synthesis of imidazole derivatives, see: Ding et al. (2005); Heightman & Vasella (1999); Wasserscheid & Keim (2000). For related compounds synthesized by our group, see: Gao, Yang et al. (2013); Gao, Wang et al. (2013); Mao et al. (2010); Yang et al. (2012); Xiao et al. (2012).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 997919
10.1107/S1600536814008770/rz5116sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814008770/rz5116Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814008770/rz5116Isup3.cml
L-Phenylalaninol (15.1 g, 0.1 mol) was added to the solvent (CH3OH, 200 mL) with ammonium acetate (7.7 g, 0.1 mol) and dibenzoyl (21.0 g, 0.1 mol) in a three-neck flask. The system was stirred until L-phenylalaninol was dissolved completely, affording a transparent dark yellow solution. The flask was then put into an ice bath and o-nitrobenzaldehyde (15.1 g, 0.1 mol) in MeOH (20 ml) was added dropwise to the solution. The mixture was heated to 65°C for 12 h. The solvent was eliminated by vacuum rotary evaporation and the crude product obtained purified using
(ethyl acetate/ethanol/triethylamine, 10:1:0.1 v/v/v). Crystallization of the product by slow evaporation of a methanol/diethyl ether solution (1:1 v/v) afforded crystals of the title compound suitable for X-ray analysis.The hydroxyl H atom was located in a difference Fourier map and refined freely. All other H atoms were placed in calculated positions with C—H = 0.93–0.98 Å and refined as riding, with Uiso(H) = 1.2Ueq(C).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids. Hydrogen atoms, but those associated to the chiral C29 carbon atom and hydroxyl group, are omitted for clarity. |
C30H25N3O3 | Dx = 1.268 Mg m−3 |
Mr = 475.53 | Cu Kα radiation, λ = 1.5418 Å |
Orthorhombic, P212121 | Cell parameters from 12200 reflections |
a = 10.54812 (16) Å | θ = 4.2–72.5° |
b = 12.77836 (19) Å | µ = 0.67 mm−1 |
c = 18.4800 (3) Å | T = 291 K |
V = 2490.87 (6) Å3 | , yellow |
Z = 4 | 0.25 × 0.22 × 0.20 mm |
F(000) = 1000 |
Agilent Xcalibur (Eos, Gemini) diffractometer | 4460 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 4263 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 16.2312 pixels mm-1 | θmax = 67.1°, θmin = 4.2° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −15→14 |
Tmin = 0.638, Tmax = 1.000 | l = −22→21 |
23649 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0732P)2 + 0.1165P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.111 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.16 e Å−3 |
4460 reflections | Δρmin = −0.14 e Å−3 |
330 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0020 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983); 1925 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.2 (2) |
C30H25N3O3 | V = 2490.87 (6) Å3 |
Mr = 475.53 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 10.54812 (16) Å | µ = 0.67 mm−1 |
b = 12.77836 (19) Å | T = 291 K |
c = 18.4800 (3) Å | 0.25 × 0.22 × 0.20 mm |
Agilent Xcalibur (Eos, Gemini) diffractometer | 4460 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 4263 reflections with I > 2σ(I) |
Tmin = 0.638, Tmax = 1.000 | Rint = 0.054 |
23649 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.111 | Δρmax = 0.16 e Å−3 |
S = 1.05 | Δρmin = −0.14 e Å−3 |
4460 reflections | Absolute structure: Flack (1983); 1925 Friedel pairs |
330 parameters | Absolute structure parameter: 0.2 (2) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3588 (2) | 0.84256 (18) | 0.76549 (10) | 0.0943 (6) | |
O2 | 0.2703 (2) | 0.8468 (2) | 0.86999 (14) | 0.1240 (9) | |
O3 | 0.69834 (12) | 0.98409 (9) | 0.67498 (6) | 0.0495 (3) | |
N1 | 0.42502 (13) | 0.60777 (11) | 0.72217 (7) | 0.0421 (3) | |
N2 | 0.58116 (12) | 0.71200 (10) | 0.68724 (7) | 0.0381 (3) | |
N3 | 0.3581 (2) | 0.82279 (15) | 0.82985 (10) | 0.0720 (5) | |
C1 | 0.2345 (2) | 0.50148 (18) | 0.63890 (11) | 0.0643 (5) | |
H1 | 0.2249 | 0.5090 | 0.6887 | 0.077* | |
C2 | 0.1417 (3) | 0.4507 (2) | 0.59907 (14) | 0.0823 (8) | |
H2 | 0.0699 | 0.4249 | 0.6222 | 0.099* | |
C3 | 0.1554 (3) | 0.43820 (18) | 0.52542 (13) | 0.0763 (7) | |
H3A | 0.0929 | 0.4043 | 0.4988 | 0.092* | |
C4 | 0.2609 (2) | 0.47571 (15) | 0.49166 (11) | 0.0629 (5) | |
H4 | 0.2704 | 0.4667 | 0.4420 | 0.075* | |
C5 | 0.3536 (2) | 0.52686 (14) | 0.53059 (10) | 0.0537 (4) | |
H5 | 0.4251 | 0.5521 | 0.5068 | 0.064* | |
C6 | 0.34175 (17) | 0.54120 (12) | 0.60510 (9) | 0.0450 (4) | |
C7 | 0.43445 (15) | 0.60224 (12) | 0.64747 (8) | 0.0406 (3) | |
C8 | 0.53212 (15) | 0.66520 (12) | 0.62466 (8) | 0.0393 (3) | |
C9 | 0.58588 (15) | 0.67981 (14) | 0.55083 (8) | 0.0442 (4) | |
C10 | 0.54220 (18) | 0.75864 (16) | 0.50552 (9) | 0.0537 (4) | |
H10 | 0.4809 | 0.8053 | 0.5219 | 0.064* | |
C11 | 0.5900 (3) | 0.7680 (2) | 0.43568 (10) | 0.0741 (7) | |
H11 | 0.5611 | 0.8214 | 0.4058 | 0.089* | |
C12 | 0.6789 (3) | 0.6993 (3) | 0.41067 (11) | 0.0847 (8) | |
H12 | 0.7111 | 0.7064 | 0.3641 | 0.102* | |
C13 | 0.7207 (2) | 0.6199 (2) | 0.45434 (13) | 0.0817 (8) | |
H13 | 0.7803 | 0.5725 | 0.4370 | 0.098* | |
C14 | 0.6749 (2) | 0.60967 (18) | 0.52423 (11) | 0.0624 (5) | |
H14 | 0.7039 | 0.5555 | 0.5535 | 0.075* | |
C15 | 0.51231 (14) | 0.67378 (12) | 0.74329 (8) | 0.0390 (3) | |
C16 | 0.53902 (15) | 0.70021 (13) | 0.82028 (8) | 0.0434 (3) | |
C17 | 0.46705 (19) | 0.76810 (14) | 0.86142 (9) | 0.0518 (4) | |
C18 | 0.4959 (3) | 0.78953 (19) | 0.93326 (12) | 0.0753 (7) | |
H18 | 0.4461 | 0.8357 | 0.9597 | 0.090* | |
C19 | 0.5983 (3) | 0.7422 (2) | 0.96475 (11) | 0.0810 (8) | |
H19 | 0.6188 | 0.7567 | 1.0126 | 0.097* | |
C20 | 0.6698 (2) | 0.6741 (2) | 0.92610 (12) | 0.0805 (7) | |
H20 | 0.7392 | 0.6419 | 0.9477 | 0.097* | |
C21 | 0.64027 (19) | 0.6518 (2) | 0.85425 (11) | 0.0640 (5) | |
H21 | 0.6892 | 0.6037 | 0.8288 | 0.077* | |
C22 | 0.8477 (2) | 0.58423 (16) | 0.71153 (13) | 0.0613 (5) | |
H22 | 0.7936 | 0.5592 | 0.6758 | 0.074* | |
C23 | 0.9023 (2) | 0.51434 (18) | 0.75950 (16) | 0.0775 (7) | |
H23 | 0.8833 | 0.4434 | 0.7564 | 0.093* | |
C24 | 0.9841 (3) | 0.5492 (2) | 0.81139 (19) | 0.0896 (8) | |
H24 | 1.0202 | 0.5026 | 0.8440 | 0.108* | |
C25 | 1.0122 (3) | 0.6533 (3) | 0.81481 (19) | 0.0993 (9) | |
H25 | 1.0702 | 0.6771 | 0.8489 | 0.119* | |
C26 | 0.9552 (2) | 0.7242 (2) | 0.76789 (14) | 0.0747 (6) | |
H26 | 0.9737 | 0.7951 | 0.7719 | 0.090* | |
C27 | 0.87162 (15) | 0.69031 (15) | 0.71554 (10) | 0.0503 (4) | |
C28 | 0.80645 (16) | 0.76837 (14) | 0.66683 (10) | 0.0488 (4) | |
H28A | 0.7999 | 0.7390 | 0.6186 | 0.059* | |
H28B | 0.8581 | 0.8310 | 0.6637 | 0.059* | |
C29 | 0.67331 (14) | 0.79849 (12) | 0.69335 (8) | 0.0400 (3) | |
H29 | 0.6811 | 0.8145 | 0.7450 | 0.048* | |
C30 | 0.62316 (17) | 0.89749 (13) | 0.65685 (9) | 0.0475 (4) | |
H30A | 0.6233 | 0.8880 | 0.6048 | 0.057* | |
H30B | 0.5365 | 0.9100 | 0.6721 | 0.057* | |
H3 | 0.658 (2) | 1.023 (2) | 0.7087 (16) | 0.078 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1086 (13) | 0.1066 (14) | 0.0678 (10) | 0.0422 (12) | 0.0073 (10) | 0.0090 (10) |
O2 | 0.1259 (17) | 0.139 (2) | 0.1075 (16) | 0.0540 (16) | 0.0522 (14) | 0.0077 (15) |
O3 | 0.0666 (7) | 0.0394 (6) | 0.0426 (6) | −0.0080 (5) | 0.0105 (5) | −0.0074 (5) |
N1 | 0.0531 (7) | 0.0423 (7) | 0.0309 (6) | −0.0089 (6) | −0.0013 (5) | 0.0044 (5) |
N2 | 0.0465 (6) | 0.0352 (6) | 0.0327 (6) | −0.0033 (5) | 0.0020 (5) | 0.0004 (5) |
N3 | 0.0920 (12) | 0.0620 (10) | 0.0621 (11) | 0.0134 (10) | 0.0226 (9) | −0.0047 (9) |
C1 | 0.0784 (12) | 0.0682 (12) | 0.0464 (9) | −0.0281 (11) | −0.0132 (9) | 0.0115 (9) |
C2 | 0.0859 (15) | 0.0888 (17) | 0.0722 (14) | −0.0435 (14) | −0.0203 (12) | 0.0142 (13) |
C3 | 0.0934 (16) | 0.0622 (12) | 0.0735 (14) | −0.0236 (12) | −0.0397 (13) | 0.0008 (11) |
C4 | 0.0942 (14) | 0.0472 (10) | 0.0472 (10) | −0.0038 (10) | −0.0249 (10) | −0.0031 (8) |
C5 | 0.0724 (11) | 0.0451 (9) | 0.0437 (9) | −0.0043 (8) | −0.0091 (8) | −0.0001 (7) |
C6 | 0.0598 (9) | 0.0357 (7) | 0.0394 (8) | −0.0048 (7) | −0.0119 (7) | 0.0042 (6) |
C7 | 0.0541 (8) | 0.0361 (7) | 0.0317 (7) | −0.0021 (7) | −0.0034 (6) | 0.0030 (6) |
C8 | 0.0513 (7) | 0.0361 (7) | 0.0307 (7) | −0.0014 (6) | −0.0013 (6) | −0.0003 (6) |
C9 | 0.0524 (8) | 0.0475 (8) | 0.0328 (7) | −0.0097 (7) | 0.0019 (6) | −0.0037 (6) |
C10 | 0.0671 (10) | 0.0579 (10) | 0.0361 (8) | −0.0133 (8) | −0.0060 (7) | 0.0053 (7) |
C11 | 0.0982 (16) | 0.0879 (16) | 0.0363 (9) | −0.0388 (14) | −0.0085 (10) | 0.0109 (10) |
C12 | 0.0977 (16) | 0.120 (2) | 0.0368 (9) | −0.0439 (17) | 0.0187 (11) | −0.0152 (12) |
C13 | 0.0776 (13) | 0.109 (2) | 0.0584 (13) | −0.0133 (14) | 0.0205 (11) | −0.0371 (14) |
C14 | 0.0686 (11) | 0.0683 (12) | 0.0503 (10) | 0.0008 (10) | 0.0058 (8) | −0.0157 (9) |
C15 | 0.0498 (7) | 0.0369 (7) | 0.0303 (7) | −0.0031 (6) | 0.0016 (6) | 0.0020 (6) |
C16 | 0.0535 (8) | 0.0449 (8) | 0.0318 (7) | −0.0141 (7) | 0.0004 (6) | 0.0016 (6) |
C17 | 0.0710 (10) | 0.0452 (9) | 0.0392 (8) | −0.0135 (8) | 0.0101 (8) | −0.0021 (7) |
C18 | 0.1157 (19) | 0.0663 (13) | 0.0440 (10) | −0.0335 (13) | 0.0190 (11) | −0.0146 (9) |
C19 | 0.1110 (18) | 0.0966 (17) | 0.0353 (9) | −0.0515 (16) | −0.0103 (11) | −0.0013 (10) |
C20 | 0.0772 (13) | 0.116 (2) | 0.0484 (11) | −0.0226 (15) | −0.0201 (10) | 0.0130 (12) |
C21 | 0.0619 (10) | 0.0845 (14) | 0.0454 (10) | −0.0018 (10) | −0.0052 (8) | 0.0060 (10) |
C22 | 0.0624 (10) | 0.0464 (10) | 0.0753 (13) | 0.0054 (8) | −0.0049 (9) | −0.0101 (9) |
C23 | 0.0761 (13) | 0.0500 (11) | 0.1064 (19) | 0.0169 (10) | −0.0039 (13) | −0.0032 (12) |
C24 | 0.0769 (14) | 0.0825 (17) | 0.109 (2) | 0.0233 (13) | −0.0197 (15) | 0.0112 (16) |
C25 | 0.0825 (16) | 0.112 (2) | 0.103 (2) | −0.0033 (16) | −0.0421 (16) | 0.0016 (19) |
C26 | 0.0761 (13) | 0.0663 (13) | 0.0817 (14) | −0.0173 (11) | −0.0171 (12) | −0.0039 (12) |
C27 | 0.0423 (7) | 0.0479 (9) | 0.0606 (10) | −0.0009 (7) | 0.0054 (7) | −0.0082 (8) |
C28 | 0.0497 (8) | 0.0442 (8) | 0.0524 (9) | −0.0062 (7) | 0.0083 (7) | −0.0017 (7) |
C29 | 0.0486 (7) | 0.0362 (7) | 0.0351 (7) | −0.0058 (6) | 0.0032 (6) | −0.0021 (6) |
C30 | 0.0582 (9) | 0.0385 (8) | 0.0460 (8) | −0.0051 (7) | 0.0000 (7) | 0.0009 (7) |
O1—N3 | 1.216 (3) | C13—C14 | 1.385 (3) |
O2—N3 | 1.226 (3) | C14—H14 | 0.9300 |
O3—C30 | 1.402 (2) | C15—C16 | 1.489 (2) |
O3—H3 | 0.90 (3) | C16—C17 | 1.381 (3) |
N1—C7 | 1.3858 (18) | C16—C21 | 1.385 (3) |
N1—C15 | 1.308 (2) | C17—C18 | 1.389 (3) |
N2—C8 | 1.4009 (19) | C18—H18 | 0.9300 |
N2—C15 | 1.3561 (19) | C18—C19 | 1.367 (4) |
N2—C29 | 1.4762 (19) | C19—H19 | 0.9300 |
N3—C17 | 1.466 (3) | C19—C20 | 1.355 (4) |
C1—H1 | 0.9300 | C20—H20 | 0.9300 |
C1—C2 | 1.386 (3) | C20—C21 | 1.393 (3) |
C1—C6 | 1.388 (3) | C21—H21 | 0.9300 |
C2—H2 | 0.9300 | C22—H22 | 0.9300 |
C2—C3 | 1.378 (4) | C22—C23 | 1.384 (3) |
C3—H3A | 0.9300 | C22—C27 | 1.381 (3) |
C3—C4 | 1.363 (4) | C23—H23 | 0.9300 |
C4—H4 | 0.9300 | C23—C24 | 1.364 (4) |
C4—C5 | 1.379 (3) | C24—H24 | 0.9300 |
C5—H5 | 0.9300 | C24—C25 | 1.364 (4) |
C5—C6 | 1.395 (2) | C25—H25 | 0.9300 |
C6—C7 | 1.476 (2) | C25—C26 | 1.390 (4) |
C7—C8 | 1.374 (2) | C26—H26 | 0.9300 |
C8—C9 | 1.489 (2) | C26—C27 | 1.379 (3) |
C9—C10 | 1.389 (3) | C27—C28 | 1.509 (3) |
C9—C14 | 1.388 (3) | C28—H28A | 0.9700 |
C10—H10 | 0.9300 | C28—H28B | 0.9700 |
C10—C11 | 1.391 (3) | C28—C29 | 1.536 (2) |
C11—H11 | 0.9300 | C29—H29 | 0.9800 |
C11—C12 | 1.365 (4) | C29—C30 | 1.528 (2) |
C12—H12 | 0.9300 | C30—H30A | 0.9700 |
C12—C13 | 1.369 (4) | C30—H30B | 0.9700 |
C13—H13 | 0.9300 | ||
C30—O3—H3 | 109.6 (17) | C17—C16—C21 | 117.09 (16) |
C15—N1—C7 | 106.24 (13) | C21—C16—C15 | 118.52 (16) |
C8—N2—C29 | 128.75 (12) | C16—C17—N3 | 120.76 (16) |
C15—N2—C8 | 106.21 (12) | C16—C17—C18 | 122.0 (2) |
C15—N2—C29 | 124.32 (12) | C18—C17—N3 | 117.27 (19) |
O1—N3—O2 | 123.0 (2) | C17—C18—H18 | 120.2 |
O1—N3—C17 | 118.91 (17) | C19—C18—C17 | 119.5 (2) |
O2—N3—C17 | 118.1 (2) | C19—C18—H18 | 120.2 |
C2—C1—H1 | 119.7 | C18—C19—H19 | 120.0 |
C2—C1—C6 | 120.5 (2) | C20—C19—C18 | 119.94 (19) |
C6—C1—H1 | 119.7 | C20—C19—H19 | 120.0 |
C1—C2—H2 | 119.9 | C19—C20—H20 | 119.7 |
C3—C2—C1 | 120.3 (2) | C19—C20—C21 | 120.6 (2) |
C3—C2—H2 | 119.9 | C21—C20—H20 | 119.7 |
C2—C3—H3A | 120.1 | C16—C21—C20 | 120.8 (2) |
C4—C3—C2 | 119.8 (2) | C16—C21—H21 | 119.6 |
C4—C3—H3A | 120.1 | C20—C21—H21 | 119.6 |
C3—C4—H4 | 119.8 | C23—C22—H22 | 119.2 |
C3—C4—C5 | 120.5 (2) | C27—C22—H22 | 119.2 |
C5—C4—H4 | 119.8 | C27—C22—C23 | 121.5 (2) |
C4—C5—H5 | 119.6 | C22—C23—H23 | 119.9 |
C4—C5—C6 | 120.9 (2) | C24—C23—C22 | 120.2 (2) |
C6—C5—H5 | 119.6 | C24—C23—H23 | 119.9 |
C1—C6—C5 | 118.00 (17) | C23—C24—H24 | 120.4 |
C1—C6—C7 | 119.63 (16) | C25—C24—C23 | 119.2 (3) |
C5—C6—C7 | 122.25 (17) | C25—C24—H24 | 120.4 |
N1—C7—C6 | 120.53 (14) | C24—C25—H25 | 119.6 |
C8—C7—N1 | 109.25 (13) | C24—C25—C26 | 120.8 (3) |
C8—C7—C6 | 130.08 (14) | C26—C25—H25 | 119.6 |
N2—C8—C9 | 124.21 (14) | C25—C26—H26 | 119.7 |
C7—C8—N2 | 105.88 (12) | C27—C26—C25 | 120.6 (2) |
C7—C8—C9 | 129.81 (14) | C27—C26—H26 | 119.7 |
C10—C9—C8 | 121.14 (16) | C22—C27—C28 | 122.24 (17) |
C14—C9—C8 | 120.07 (16) | C26—C27—C22 | 117.5 (2) |
C14—C9—C10 | 118.64 (17) | C26—C27—C28 | 120.17 (18) |
C9—C10—H10 | 119.9 | C27—C28—H28A | 109.0 |
C9—C10—C11 | 120.1 (2) | C27—C28—H28B | 109.0 |
C11—C10—H10 | 119.9 | C27—C28—C29 | 113.05 (14) |
C10—C11—H11 | 119.7 | H28A—C28—H28B | 107.8 |
C12—C11—C10 | 120.5 (2) | C29—C28—H28A | 109.0 |
C12—C11—H11 | 119.7 | C29—C28—H28B | 109.0 |
C11—C12—H12 | 120.1 | N2—C29—C28 | 112.95 (12) |
C11—C12—C13 | 119.86 (19) | N2—C29—H29 | 106.6 |
C13—C12—H12 | 120.1 | N2—C29—C30 | 110.98 (12) |
C12—C13—H13 | 119.8 | C28—C29—H29 | 106.6 |
C12—C13—C14 | 120.5 (2) | C30—C29—C28 | 112.52 (13) |
C14—C13—H13 | 119.8 | C30—C29—H29 | 106.6 |
C9—C14—H14 | 119.8 | O3—C30—C29 | 110.62 (14) |
C13—C14—C9 | 120.3 (2) | O3—C30—H30A | 109.5 |
C13—C14—H14 | 119.8 | O3—C30—H30B | 109.5 |
N1—C15—N2 | 112.40 (13) | C29—C30—H30A | 109.5 |
N1—C15—C16 | 124.36 (13) | C29—C30—H30B | 109.5 |
N2—C15—C16 | 123.15 (13) | H30A—C30—H30B | 108.1 |
C17—C16—C15 | 124.36 (16) | ||
O1—N3—C17—C16 | −28.9 (3) | C10—C9—C14—C13 | 1.3 (3) |
O1—N3—C17—C18 | 149.6 (2) | C10—C11—C12—C13 | 0.6 (4) |
O2—N3—C17—C16 | 151.3 (2) | C11—C12—C13—C14 | −1.0 (4) |
O2—N3—C17—C18 | −30.2 (3) | C12—C13—C14—C9 | 0.0 (4) |
N1—C7—C8—N2 | −1.39 (18) | C14—C9—C10—C11 | −1.7 (3) |
N1—C7—C8—C9 | 174.96 (16) | C15—N1—C7—C6 | −174.64 (14) |
N1—C15—C16—C17 | −78.5 (2) | C15—N1—C7—C8 | 1.39 (18) |
N1—C15—C16—C21 | 99.5 (2) | C15—N2—C8—C7 | 0.87 (16) |
N2—C8—C9—C10 | −91.6 (2) | C15—N2—C8—C9 | −175.75 (15) |
N2—C8—C9—C14 | 92.9 (2) | C15—N2—C29—C28 | 123.81 (16) |
N2—C15—C16—C17 | 105.10 (19) | C15—N2—C29—C30 | −108.76 (16) |
N2—C15—C16—C21 | −76.9 (2) | C15—C16—C17—N3 | −2.0 (2) |
N2—C29—C30—O3 | 168.26 (12) | C15—C16—C17—C18 | 179.64 (17) |
N3—C17—C18—C19 | −178.64 (19) | C15—C16—C21—C20 | 179.7 (2) |
C1—C2—C3—C4 | 0.2 (4) | C16—C17—C18—C19 | −0.2 (3) |
C1—C6—C7—N1 | 9.2 (3) | C17—C16—C21—C20 | −2.2 (3) |
C1—C6—C7—C8 | −165.92 (19) | C17—C18—C19—C20 | −0.7 (3) |
C2—C1—C6—C5 | −1.0 (3) | C18—C19—C20—C21 | 0.1 (4) |
C2—C1—C6—C7 | 175.2 (2) | C19—C20—C21—C16 | 1.4 (4) |
C2—C3—C4—C5 | −0.5 (4) | C21—C16—C17—N3 | −179.99 (17) |
C3—C4—C5—C6 | 0.1 (3) | C21—C16—C17—C18 | 1.6 (3) |
C4—C5—C6—C1 | 0.7 (3) | C22—C23—C24—C25 | −0.7 (5) |
C4—C5—C6—C7 | −175.39 (17) | C22—C27—C28—C29 | 81.6 (2) |
C5—C6—C7—N1 | −174.82 (16) | C23—C22—C27—C26 | 1.9 (3) |
C5—C6—C7—C8 | 10.1 (3) | C23—C22—C27—C28 | −176.0 (2) |
C6—C1—C2—C3 | 0.6 (4) | C23—C24—C25—C26 | 2.3 (5) |
C6—C7—C8—N2 | 174.14 (16) | C24—C25—C26—C27 | −1.8 (5) |
C6—C7—C8—C9 | −9.5 (3) | C25—C26—C27—C22 | −0.3 (4) |
C7—N1—C15—N2 | −0.83 (18) | C25—C26—C27—C28 | 177.6 (2) |
C7—N1—C15—C16 | −177.60 (16) | C26—C27—C28—C29 | −96.2 (2) |
C7—C8—C9—C10 | 92.6 (2) | C27—C22—C23—C24 | −1.4 (4) |
C7—C8—C9—C14 | −82.8 (2) | C27—C28—C29—N2 | −69.13 (18) |
C8—N2—C15—N1 | −0.02 (18) | C27—C28—C29—C30 | 164.25 (14) |
C8—N2—C15—C16 | 176.79 (15) | C28—C29—C30—O3 | −64.08 (18) |
C8—N2—C29—C28 | −67.3 (2) | C29—N2—C8—C7 | −169.57 (14) |
C8—N2—C29—C30 | 60.1 (2) | C29—N2—C8—C9 | 13.8 (2) |
C8—C9—C10—C11 | −177.23 (16) | C29—N2—C15—N1 | 170.96 (14) |
C8—C9—C14—C13 | 176.89 (19) | C29—N2—C15—C16 | −12.2 (2) |
C9—C10—C11—C12 | 0.8 (3) |
Cg1 and Cg2 are the centroids of the C9–C14 and C22–C27 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Cg1 | 0.93 | 2.84 | 3.715 (2) | 157 |
C21—H21···Cg2 | 0.93 | 2.81 | 3.501 (2) | 132 |
O3—H3···N1i | 0.90 (3) | 1.89 (3) | 2.7935 (17) | 179 (3) |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
Cg1 and Cg2 are the centroids of the C9–C14 and C22–C27 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Cg1 | 0.93 | 2.84 | 3.715 (2) | 157 |
C21—H21···Cg2 | 0.93 | 2.81 | 3.501 (2) | 132 |
O3—H3···N1i | 0.90 (3) | 1.89 (3) | 2.7935 (17) | 179 (3) |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
Acknowledgements
The authors thank Ms Y. Zhu for technical assistance. This research was supported by the National Natural Science Foundation of China (No. 21172055) and the Program for Innovative Research Team from Zhengzhou (131PCXTD605).
References
Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Ding, J., Desikan, V., Han, X., Xiao, T., Ding, R., Jenks, W. & Armstrong, D. (2005). Org. Lett. 7, 7335–337. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gao, J., Wang, H., Yang, L., Xiao, Y. & Mao, P. (2013). Acta Cryst. E69, o1858. CSD CrossRef IUCr Journals Google Scholar
Gao, J., Yang, L., Mai, W., Yuan, J. & Mao, P. (2013). Acta Cryst. E69, o1379. CSD CrossRef IUCr Journals Google Scholar
Heightman, T. D. & Vasella, A. T. (1999). Angew. Chem. Int. Ed. 38, 750–770. CrossRef CAS Google Scholar
Mao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418–2425. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wasserscheid, P. & Keim, W. (2000). Angew. Chem. Int. Ed. 39, 3772–3789. Web of Science CrossRef CAS Google Scholar
Xiao, Y., Yang, L., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o264. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, L., Xiao, Y., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o1670. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Imidazole and its derivatives attracted research interest due to their important roles in the field of biology, medicine and chemistry. Imidazoles containing chiral N-substituent have high potentiality for application in coordination chemistry and transition metal catalysis (Ding et al., 2005; Heightman & Vasella, 1999; Wasserscheid & Keim, 2000). Our group is interested in the synthesis and application of chiral imidazolium compounds derived from natural amino acids (Gao, Yang et al., 2013; Gao, Wang et al., 2013; Mao et al., 2010; Yang et al., 2012; Xiao et al., 2012). Here we present the synthesis of a chiral nirtrophenyl-substituted imidazole derivative obtained from the condensation of a chiral aminoalcohol, nitrobenzaldehyde, ammonium acetate and benzyl. The synthetic procedure provides valuable information for the research and development of novel chiral catalysts.
The molecular structure of the title compound is shown in Figure 1. As expected, the imidazole core (C7/C8/N2/C15/N1) is essentially planar (r.m.s. deviation = 0.0056 Å). The dihedral angles it forms with the o-nitrobenzene ring and the two phenyl substituents (C1—C6, C9—C14) are 77.34 (6), 12.56 (6) and 87.04 (6)°, respectively. Two intramolecular C—H···π interactions stabilizing the molecular conformation are observed (Table 1). In the crystal, molecules are linked by O—H···N hydrogen bonds (Table 1), forming chains running parallel to the b axis.