organic compounds
Ethyl 2-amino-4-(3-nitrophenyl)-4H-1-benzothieno[3,2-b]pyran-3-carboxylate
aDépartement de Chimie, Faculté des Sciences, Dhar Mehraz, BP 1796 Atlas, 30000 Fes, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: elyazidimohamed@hotmail.com
The molecule of the title compound, C20H16N2O5S, is built up by one fused five-membered and two fused six-membered rings linked to ethoxycarbonyl and 3-nitrophenyl groups. The benzothienopyran ring system is nearly planar (r.m.s deviation = 0.0392 Å) and forms a dihedral angle of 86.90 (6)° with the aromatic ring of the nitrobenzene group. In the crystal, molecules are linked by N—H⋯O hydrogen bonds and by π–π interactions between the phenyl ring and the six-membered heterocyle [intercentroid distance = 3.5819 (8) Å], forming a three-dimensional network.
CCDC reference: 997474
Related literature
For background to the organic synthesis of the title compound, see: House (1972); Kabashima et al. (2000); Jung (1991). For the preparation of using condensation reactions, see: Boughaleb et al. (2011); Cabiddu et al. (2002); Pradhan & Asish (2005).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 997474
10.1107/S1600536814008538/rz5118sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814008538/rz5118Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814008538/rz5118Isup3.cml
In a 100 ml flask equipped with a condenser was dissolved 4 mmol of (Z)-2-(3-nitrobenzylidene)-1-benzo[b]thiophen-3(2H)-one and 5 mmol of ethyl cyanoacetate in 30 ml of ethanol. Then, 1 ml of piperidine was added, and the reaction mixture was refluxed for 6 h. Thin layer
revealed the formation of a single product. The organic phase was evaporated under reduce pressure. The resulting residue was recristallized from ethanol (Yield: 68%; m.p.: 493 K).H atoms were located in a difference map and treated as riding with C–H = 0.93–0.97 Å, N–H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or Uiso(H) = 1.5 Ueq(C) for methyl H atoms. Two ouliers (0 0 1, 0 1 0) were omitted in the last cycles of refinement.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).C20H16N2O5S | Z = 2 |
Mr = 396.41 | F(000) = 412 |
Triclinic, P1 | Dx = 1.399 Mg m−3 |
Hall symbol: -P 1 | Melting point: 493 K |
a = 8.3670 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.4319 (2) Å | Cell parameters from 4857 reflections |
c = 12.8948 (4) Å | θ = 2.5–28.7° |
α = 102.505 (1)° | µ = 0.21 mm−1 |
β = 106.493 (1)° | T = 296 K |
γ = 94.840 (1)° | Block, colourless |
V = 940.96 (4) Å3 | 0.42 × 0.31 × 0.26 mm |
Bruker X8 APEX diffractometer | 4857 independent reflections |
Radiation source: fine-focus sealed tube | 3954 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ϕ and ω scans | θmax = 28.7°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −11→11 |
Tmin = 0.673, Tmax = 0.746 | k = −12→12 |
20668 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0782P)2 + 0.1615P] where P = (Fo2 + 2Fc2)/3 |
4857 reflections | (Δ/σ)max = 0.001 |
253 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C20H16N2O5S | γ = 94.840 (1)° |
Mr = 396.41 | V = 940.96 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.3670 (2) Å | Mo Kα radiation |
b = 9.4319 (2) Å | µ = 0.21 mm−1 |
c = 12.8948 (4) Å | T = 296 K |
α = 102.505 (1)° | 0.42 × 0.31 × 0.26 mm |
β = 106.493 (1)° |
Bruker X8 APEX diffractometer | 4857 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3954 reflections with I > 2σ(I) |
Tmin = 0.673, Tmax = 0.746 | Rint = 0.025 |
20668 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.37 e Å−3 |
4857 reflections | Δρmin = −0.25 e Å−3 |
253 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.03581 (19) | 0.74569 (16) | 0.51586 (12) | 0.0444 (3) | |
C2 | 1.1714 (2) | 0.7184 (2) | 0.59752 (14) | 0.0572 (4) | |
H2 | 1.1539 | 0.6646 | 0.6469 | 0.069* | |
C3 | 1.3318 (2) | 0.7739 (2) | 0.60256 (14) | 0.0596 (4) | |
H3 | 1.4239 | 0.7566 | 0.6561 | 0.072* | |
C4 | 1.3590 (2) | 0.8552 (2) | 0.52938 (14) | 0.0553 (4) | |
H4 | 1.4689 | 0.8908 | 0.5347 | 0.066* | |
C5 | 1.22638 (19) | 0.88383 (17) | 0.44927 (13) | 0.0472 (3) | |
H5 | 1.2455 | 0.9388 | 0.4010 | 0.057* | |
C6 | 1.06239 (17) | 0.82841 (14) | 0.44214 (11) | 0.0388 (3) | |
C7 | 0.90329 (17) | 0.83869 (14) | 0.36665 (11) | 0.0366 (3) | |
C8 | 0.76677 (17) | 0.76734 (14) | 0.37893 (11) | 0.0373 (3) | |
C9 | 0.59063 (16) | 0.75463 (14) | 0.30354 (11) | 0.0356 (3) | |
H9 | 0.5205 | 0.7943 | 0.3487 | 0.043* | |
C10 | 0.59569 (16) | 0.84817 (14) | 0.22130 (11) | 0.0361 (3) | |
C11 | 0.74244 (17) | 0.91953 (14) | 0.21693 (11) | 0.0371 (3) | |
C12 | 0.43789 (18) | 0.86851 (15) | 0.14814 (12) | 0.0418 (3) | |
C13 | 0.1380 (2) | 0.8102 (3) | 0.0990 (2) | 0.0859 (7) | |
H13A | 0.1389 | 0.8011 | 0.0228 | 0.103* | |
H13B | 0.1031 | 0.9034 | 0.1248 | 0.103* | |
C14 | 0.0200 (2) | 0.6887 (2) | 0.1031 (2) | 0.0785 (6) | |
H14A | −0.0914 | 0.6910 | 0.0564 | 0.118* | |
H14B | 0.0192 | 0.6988 | 0.1787 | 0.118* | |
H14C | 0.0549 | 0.5969 | 0.0770 | 0.118* | |
C15 | 0.51766 (16) | 0.59335 (14) | 0.24462 (11) | 0.0363 (3) | |
C16 | 0.5980 (2) | 0.50862 (16) | 0.17907 (13) | 0.0486 (3) | |
H16 | 0.6969 | 0.5507 | 0.1710 | 0.058* | |
C17 | 0.5336 (2) | 0.36266 (18) | 0.12555 (16) | 0.0598 (4) | |
H17 | 0.5895 | 0.3077 | 0.0820 | 0.072* | |
C18 | 0.3863 (2) | 0.29794 (17) | 0.13649 (15) | 0.0592 (5) | |
H18 | 0.3414 | 0.2000 | 0.1008 | 0.071* | |
C19 | 0.30905 (19) | 0.38353 (17) | 0.20176 (14) | 0.0516 (4) | |
C20 | 0.37110 (17) | 0.52953 (16) | 0.25679 (12) | 0.0439 (3) | |
H20 | 0.3155 | 0.5835 | 0.3010 | 0.053* | |
N1 | 0.75846 (17) | 0.99963 (14) | 0.14576 (11) | 0.0500 (3) | |
H1A | 0.8569 | 1.0394 | 0.1494 | 0.060* | |
H1B | 0.6704 | 1.0114 | 0.0963 | 0.060* | |
N2 | 0.1493 (2) | 0.3189 (2) | 0.21188 (16) | 0.0745 (5) | |
O1 | 0.89774 (12) | 0.91629 (11) | 0.28705 (8) | 0.0435 (2) | |
O2 | 0.41926 (14) | 0.93260 (13) | 0.07393 (10) | 0.0551 (3) | |
O3 | 0.30471 (13) | 0.80479 (15) | 0.16981 (11) | 0.0597 (3) | |
O4 | 0.0661 (2) | 0.3993 (2) | 0.2526 (2) | 0.1098 (7) | |
O5 | 0.1064 (2) | 0.1868 (2) | 0.17700 (19) | 0.1165 (7) | |
S1 | 0.82193 (5) | 0.68473 (5) | 0.48947 (3) | 0.05225 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0450 (7) | 0.0467 (7) | 0.0397 (7) | 0.0057 (6) | 0.0084 (6) | 0.0138 (6) |
C2 | 0.0577 (10) | 0.0676 (10) | 0.0468 (8) | 0.0126 (8) | 0.0067 (7) | 0.0273 (7) |
C3 | 0.0479 (9) | 0.0773 (11) | 0.0482 (9) | 0.0150 (8) | 0.0012 (7) | 0.0211 (8) |
C4 | 0.0391 (8) | 0.0712 (10) | 0.0487 (9) | 0.0056 (7) | 0.0063 (6) | 0.0119 (7) |
C5 | 0.0410 (7) | 0.0539 (8) | 0.0423 (7) | 0.0017 (6) | 0.0072 (6) | 0.0130 (6) |
C6 | 0.0404 (7) | 0.0371 (6) | 0.0342 (6) | 0.0037 (5) | 0.0068 (5) | 0.0064 (5) |
C7 | 0.0392 (7) | 0.0346 (6) | 0.0343 (6) | 0.0025 (5) | 0.0082 (5) | 0.0107 (5) |
C8 | 0.0394 (7) | 0.0373 (6) | 0.0343 (6) | 0.0030 (5) | 0.0083 (5) | 0.0126 (5) |
C9 | 0.0349 (6) | 0.0380 (6) | 0.0360 (6) | 0.0032 (5) | 0.0121 (5) | 0.0129 (5) |
C10 | 0.0377 (7) | 0.0355 (6) | 0.0373 (6) | 0.0054 (5) | 0.0113 (5) | 0.0139 (5) |
C11 | 0.0380 (6) | 0.0356 (6) | 0.0386 (7) | 0.0054 (5) | 0.0106 (5) | 0.0131 (5) |
C12 | 0.0388 (7) | 0.0452 (7) | 0.0477 (8) | 0.0116 (5) | 0.0156 (6) | 0.0197 (6) |
C13 | 0.0361 (9) | 0.1282 (19) | 0.1168 (18) | 0.0216 (10) | 0.0176 (10) | 0.0839 (16) |
C14 | 0.0483 (10) | 0.0803 (13) | 0.0881 (15) | 0.0057 (9) | 0.0018 (10) | 0.0096 (11) |
C15 | 0.0341 (6) | 0.0387 (6) | 0.0365 (6) | 0.0011 (5) | 0.0075 (5) | 0.0166 (5) |
C16 | 0.0476 (8) | 0.0441 (7) | 0.0552 (9) | 0.0014 (6) | 0.0198 (7) | 0.0119 (6) |
C17 | 0.0684 (11) | 0.0455 (8) | 0.0610 (10) | 0.0067 (7) | 0.0188 (9) | 0.0067 (7) |
C18 | 0.0655 (10) | 0.0412 (7) | 0.0560 (9) | −0.0078 (7) | −0.0024 (8) | 0.0160 (7) |
C19 | 0.0409 (7) | 0.0545 (8) | 0.0533 (8) | −0.0106 (6) | −0.0014 (6) | 0.0292 (7) |
C20 | 0.0358 (7) | 0.0509 (7) | 0.0467 (8) | −0.0001 (6) | 0.0094 (6) | 0.0228 (6) |
N1 | 0.0416 (6) | 0.0573 (7) | 0.0569 (8) | 0.0010 (5) | 0.0113 (6) | 0.0342 (6) |
N2 | 0.0517 (9) | 0.0814 (11) | 0.0832 (11) | −0.0221 (8) | 0.0030 (8) | 0.0424 (9) |
O1 | 0.0356 (5) | 0.0502 (5) | 0.0465 (5) | −0.0001 (4) | 0.0085 (4) | 0.0239 (4) |
O2 | 0.0458 (6) | 0.0699 (7) | 0.0608 (7) | 0.0148 (5) | 0.0145 (5) | 0.0404 (6) |
O3 | 0.0343 (5) | 0.0866 (8) | 0.0737 (8) | 0.0155 (5) | 0.0171 (5) | 0.0496 (7) |
O4 | 0.0650 (10) | 0.1204 (15) | 0.1621 (19) | −0.0096 (10) | 0.0533 (12) | 0.0581 (14) |
O5 | 0.0925 (12) | 0.0841 (11) | 0.1571 (18) | −0.0447 (9) | 0.0255 (12) | 0.0378 (11) |
S1 | 0.0472 (2) | 0.0633 (3) | 0.0485 (2) | −0.00050 (17) | 0.00801 (16) | 0.03121 (18) |
C1—C2 | 1.396 (2) | C12—O3 | 1.3482 (17) |
C1—C6 | 1.405 (2) | C13—O3 | 1.446 (2) |
C1—S1 | 1.7449 (16) | C13—C14 | 1.469 (3) |
C2—C3 | 1.377 (3) | C13—H13A | 0.9700 |
C2—H2 | 0.9300 | C13—H13B | 0.9700 |
C3—C4 | 1.392 (3) | C14—H14A | 0.9600 |
C3—H3 | 0.9300 | C14—H14B | 0.9600 |
C4—C5 | 1.376 (2) | C14—H14C | 0.9600 |
C4—H4 | 0.9300 | C15—C20 | 1.3843 (18) |
C5—C6 | 1.397 (2) | C15—C16 | 1.388 (2) |
C5—H5 | 0.9300 | C16—C17 | 1.383 (2) |
C6—C7 | 1.4338 (18) | C16—H16 | 0.9300 |
C7—C8 | 1.3423 (18) | C17—C18 | 1.386 (3) |
C7—O1 | 1.3768 (15) | C17—H17 | 0.9300 |
C8—C9 | 1.4959 (18) | C18—C19 | 1.371 (3) |
C8—S1 | 1.7378 (14) | C18—H18 | 0.9300 |
C9—C10 | 1.5261 (17) | C19—C20 | 1.384 (2) |
C9—C15 | 1.5308 (17) | C19—N2 | 1.473 (2) |
C9—H9 | 0.9800 | C20—H20 | 0.9300 |
C10—C11 | 1.3712 (18) | N1—H1A | 0.8600 |
C10—C12 | 1.4436 (19) | N1—H1B | 0.8600 |
C11—N1 | 1.3356 (17) | N2—O4 | 1.208 (3) |
C11—O1 | 1.3633 (16) | N2—O5 | 1.214 (2) |
C12—O2 | 1.2195 (17) | ||
C2—C1—C6 | 120.99 (15) | O3—C13—C14 | 108.58 (16) |
C2—C1—S1 | 127.04 (13) | O3—C13—H13A | 110.0 |
C6—C1—S1 | 111.96 (11) | C14—C13—H13A | 110.0 |
C3—C2—C1 | 117.84 (16) | O3—C13—H13B | 110.0 |
C3—C2—H2 | 121.1 | C14—C13—H13B | 110.0 |
C1—C2—H2 | 121.1 | H13A—C13—H13B | 108.4 |
C2—C3—C4 | 121.46 (15) | C13—C14—H14A | 109.5 |
C2—C3—H3 | 119.3 | C13—C14—H14B | 109.5 |
C4—C3—H3 | 119.3 | H14A—C14—H14B | 109.5 |
C5—C4—C3 | 121.21 (16) | C13—C14—H14C | 109.5 |
C5—C4—H4 | 119.4 | H14A—C14—H14C | 109.5 |
C3—C4—H4 | 119.4 | H14B—C14—H14C | 109.5 |
C4—C5—C6 | 118.47 (15) | C20—C15—C16 | 119.01 (13) |
C4—C5—H5 | 120.8 | C20—C15—C9 | 120.39 (12) |
C6—C5—H5 | 120.8 | C16—C15—C9 | 120.59 (11) |
C5—C6—C1 | 120.03 (13) | C17—C16—C15 | 121.20 (15) |
C5—C6—C7 | 130.31 (13) | C17—C16—H16 | 119.4 |
C1—C6—C7 | 109.65 (12) | C15—C16—H16 | 119.4 |
C8—C7—O1 | 124.23 (12) | C16—C17—C18 | 120.27 (17) |
C8—C7—C6 | 115.68 (12) | C16—C17—H17 | 119.9 |
O1—C7—C6 | 120.09 (11) | C18—C17—H17 | 119.9 |
C7—C8—C9 | 124.19 (12) | C19—C18—C17 | 117.59 (14) |
C7—C8—S1 | 111.37 (10) | C19—C18—H18 | 121.2 |
C9—C8—S1 | 124.38 (10) | C17—C18—H18 | 121.2 |
C8—C9—C10 | 107.83 (10) | C18—C19—C20 | 123.38 (14) |
C8—C9—C15 | 110.43 (11) | C18—C19—N2 | 118.73 (15) |
C10—C9—C15 | 112.40 (10) | C20—C19—N2 | 117.87 (17) |
C8—C9—H9 | 108.7 | C19—C20—C15 | 118.54 (15) |
C10—C9—H9 | 108.7 | C19—C20—H20 | 120.7 |
C15—C9—H9 | 108.7 | C15—C20—H20 | 120.7 |
C11—C10—C12 | 118.22 (12) | C11—N1—H1A | 120.0 |
C11—C10—C9 | 123.25 (12) | C11—N1—H1B | 120.0 |
C12—C10—C9 | 118.45 (11) | H1A—N1—H1B | 120.0 |
N1—C11—O1 | 109.61 (11) | O4—N2—O5 | 123.09 (19) |
N1—C11—C10 | 127.07 (13) | O4—N2—C19 | 118.92 (16) |
O1—C11—C10 | 123.32 (12) | O5—N2—C19 | 118.0 (2) |
O2—C12—O3 | 121.52 (13) | C11—O1—C7 | 116.95 (10) |
O2—C12—C10 | 126.91 (13) | C12—O3—C13 | 117.57 (13) |
O3—C12—C10 | 111.56 (12) | C8—S1—C1 | 91.31 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O2 | 0.86 | 2.09 | 2.6950 (17) | 127 |
N1—H1B···O2i | 0.86 | 2.30 | 3.0327 (17) | 143 |
N1—H1A···O5ii | 0.86 | 2.30 | 3.1489 (19) | 169 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) x+1, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O2 | 0.86 | 2.09 | 2.6950 (17) | 127.3 |
N1—H1B···O2i | 0.86 | 2.30 | 3.0327 (17) | 143.0 |
N1—H1A···O5ii | 0.86 | 2.30 | 3.1489 (19) | 168.9 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) x+1, y+1, z. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Boughaleb, A., Zouihri, H., Gmouh, S., Kerbal, A. & El yazidi, M. (2011). Acta Cryst. E67, o2106. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cabiddu, M. G., Cabiddu, S., Cadoni, E., De Montis, S., Fattuoni, C., Melis, S. & Usai, M. (2002). Synthesis, 7, 875–878. CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
House, H. O. (1972). Modern Synthetic Reactions, 2nd ed., pp. 581–595. New York: Benjamin. Google Scholar
Jung, M. E. (1991). Comprehensive Organic Synthesis, Vol. 4, edited by B. M. Trost, I. Fleming & M. F. Semmelhack, pp. 1–68. Oxford: Pergamon Press. Google Scholar
Kabashima, H., Tsuji, H., Shibuya, T. & Hattori, H. (2000). J. Mol. Catal. A Chem. 155, 23–29. Web of Science CrossRef CAS Google Scholar
Pradhan, T. K. & Asish, D. (2005). Tetrahedron Lett. 61, 9007–9017. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The Michael reaction is one of the most efficient methods for effecting carbon–carbon bond formation and has wide synthetic applications (House, 1972; Kabashima et al., 2000). This reaction and its close variants have been extensively used in organic synthesis (Jung, 1991). Generally, Michael additions are conducted in a suitable solvent in the presence of a strong base either at room or at elevated temperatures. In continuing our previous works on the preparation of hetrocyclic compounds by using condensation reactions (Boughaleb et al., 2011), we now wish to describe the behavior of ethylcyanoacetate with respect to (Z)-2-(3-nitrobenzylidene)-1-benzo[b]thiophen-3(2H)-one and derivatives in ethanol, with the presence of piperidine as a basic catalyst (Cabiddu et al., 2002; Pradhan & Asish, 2005). We have shown that cyclocondensation start with a Michael 1,4-additon, followed by intramolecular cyclization via nucleophilic addition of the hydroxyl group to the cyano group and not onto the carboxylate, to afford the tricyclic heterocycle ethyl2-amino-4-(3-nitrophenyl)-4H-1-benzothieno[3,2-b]pyran-3-carboxylate.
The molecule of the title compound, is formed by tree fused rings linked to an ethyl-3-carboxylate nd a 3-nitrophenyl group as shown in Fig. 1. The three fused rings (S1/C1–C11/O1) are almost coplanar, with the maximum deviation from the mean plane of -0.089 (2) Å at C9, and make a dihedral angle of 86.90 (6)° with the plane through the attached nitrophenyl group.
In the crystal, molecules are linked by N—H···O hydrogen bonds and by π–π interactions in a three-dimensional network as shown in Fig. 2 and Table 1.