organic compounds
4-Chloro-N′-[(E)-2-chlorobenzylidene]benzohydrazide monohydrate
aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eAnalytical Development Division, Manchester Metropolitan University, Manchester M1 5GD, England, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
The title compound, C14H10Cl2N2O·H2O, has a nearly planar extended conformation [C—N—N—C = −173.66 (15)°]. The dihedral angle between the aromatic rings is 4.6 (2)°. The water molecules alternate with benzohydrazide molecules in chains formed by O—H⋯O hydrogen bonds which run parallel to the a axis. These chains are linked to neighboring chains through N—H⋯O and C—H⋯O interactions, forming a layer parallel to (001).
CCDC reference: 998358
Related literature
For the biological activity of hydrazone compounds, see: Koopaei et al. (2013); Almasirad et al. (2005, 2006). For a similar structure, see: Cao (2009).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2013); cell SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
CCDC reference: 998358
10.1107/S1600536814008885/rz5119sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814008885/rz5119Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814008885/rz5119Isup3.cml
The compound was prepared by refluxing a mixture of 4-chlorobenzohydrazide (1 mmol, 171 mg)) with 2-chlorobenzaldehyde (1 mmol, 141 mg) in ethanol (30 mL) for 5h in the presence of a catalytic amount of glacial acetic acid. The mixture was cooled and the precipitate was filtered off, dried and recrystallized from ethanol to give pale brown crystals of poor quality. Slow evaporation of an aqueous ethanolic solution of the product afforded colorless block-like crystals of sufficient quality for x-ray diffraction. M. p. 452 454 K
H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference Fourier map and initially refined independently to ensure their initial positions were valid. In the final
their coordinates adjusted to give N—H = 0.91 and O—H = 0.84 Å. All hydrogen atoms were then included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The asymmetric unit of the title compound showing one of the O—H···O interactions as a dotted line. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Packing of the title compound viewed down the a axis showing hydrogen interactions as dotted lines. |
C14H10Cl2N2O·H2O | F(000) = 640 |
Mr = 311.16 | Dx = 1.471 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 7842 reflections |
a = 4.6160 (5) Å | θ = 2.3–28.1° |
b = 12.8664 (15) Å | µ = 0.46 mm−1 |
c = 23.681 (3) Å | T = 150 K |
β = 92.6760 (17)° | Column, colourless |
V = 1404.9 (3) Å3 | 0.17 × 0.08 × 0.06 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 3511 independent reflections |
Radiation source: fine-focus sealed tube | 2604 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.064 |
Detector resolution: 8.3660 pixels mm-1 | θmax = 28.4°, θmin = 1.8° |
ϕ and ω scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −16→17 |
Tmin = 0.78, Tmax = 0.97 | l = −31→31 |
24861 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: mixed |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0341P)2 + 0.6801P] where P = (Fo2 + 2Fc2)/3 |
3511 reflections | (Δ/σ)max = 0.001 |
181 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C14H10Cl2N2O·H2O | V = 1404.9 (3) Å3 |
Mr = 311.16 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 4.6160 (5) Å | µ = 0.46 mm−1 |
b = 12.8664 (15) Å | T = 150 K |
c = 23.681 (3) Å | 0.17 × 0.08 × 0.06 mm |
β = 92.6760 (17)° |
Bruker SMART APEX CCD diffractometer | 3511 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | 2604 reflections with I > 2σ(I) |
Tmin = 0.78, Tmax = 0.97 | Rint = 0.064 |
24861 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.31 e Å−3 |
3511 reflections | Δρmin = −0.29 e Å−3 |
181 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.46090 (11) | 0.93219 (4) | 0.06216 (2) | 0.0343 (2) | |
Cl2 | 1.10272 (13) | 1.00504 (4) | 0.41832 (2) | 0.0434 (2) | |
O1 | 0.4046 (3) | 0.64950 (9) | 0.23672 (6) | 0.0271 (4) | |
N1 | 0.5525 (3) | 0.80924 (11) | 0.26635 (6) | 0.0213 (4) | |
N2 | 0.7522 (3) | 0.76724 (11) | 0.30567 (6) | 0.0223 (4) | |
C1 | 0.1777 (3) | 0.79601 (13) | 0.19187 (7) | 0.0195 (5) | |
C2 | 0.0963 (4) | 0.90021 (13) | 0.19483 (8) | 0.0229 (5) | |
C3 | −0.1015 (4) | 0.94238 (14) | 0.15527 (8) | 0.0246 (5) | |
C4 | −0.2175 (4) | 0.87909 (14) | 0.11261 (7) | 0.0228 (5) | |
C5 | −0.1440 (4) | 0.77569 (14) | 0.10916 (8) | 0.0267 (6) | |
C6 | 0.0548 (4) | 0.73438 (14) | 0.14875 (8) | 0.0248 (5) | |
C7 | 0.3874 (3) | 0.74541 (13) | 0.23339 (7) | 0.0202 (5) | |
C8 | 0.8769 (4) | 0.83478 (14) | 0.33826 (7) | 0.0235 (5) | |
C9 | 1.0970 (4) | 0.80330 (14) | 0.38149 (7) | 0.0231 (5) | |
C10 | 1.2181 (4) | 0.87532 (15) | 0.41988 (8) | 0.0277 (6) | |
C11 | 1.4287 (4) | 0.84754 (16) | 0.46082 (8) | 0.0337 (6) | |
C12 | 1.5197 (4) | 0.74555 (17) | 0.46427 (8) | 0.0338 (6) | |
C13 | 1.4015 (4) | 0.67216 (16) | 0.42740 (8) | 0.0315 (6) | |
C14 | 1.1943 (4) | 0.70056 (15) | 0.38619 (8) | 0.0266 (6) | |
O2 | 0.9062 (3) | 0.53028 (10) | 0.23079 (6) | 0.0339 (4) | |
H1 | 0.54250 | 0.87980 | 0.26400 | 0.0260* | |
H2 | 0.17730 | 0.94280 | 0.22430 | 0.0280* | |
H3 | −0.15640 | 1.01340 | 0.15740 | 0.0300* | |
H5 | −0.22840 | 0.73310 | 0.08000 | 0.0320* | |
H6 | 0.10770 | 0.66320 | 0.14640 | 0.0300* | |
H8 | 0.82620 | 0.90610 | 0.33440 | 0.0280* | |
H11 | 1.50920 | 0.89820 | 0.48620 | 0.0400* | |
H12 | 1.66410 | 0.72570 | 0.49210 | 0.0410* | |
H13 | 1.46280 | 0.60180 | 0.43030 | 0.0380* | |
H14 | 1.11690 | 0.64950 | 0.36070 | 0.0320* | |
H2A | 1.04760 | 0.57140 | 0.23300 | 0.0410* | |
H2B | 0.76260 | 0.56910 | 0.23510 | 0.0410* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0347 (3) | 0.0399 (3) | 0.0273 (3) | 0.0029 (2) | −0.0098 (2) | 0.0061 (2) |
Cl2 | 0.0618 (4) | 0.0240 (3) | 0.0424 (3) | −0.0030 (2) | −0.0175 (3) | −0.0013 (2) |
O1 | 0.0226 (6) | 0.0179 (6) | 0.0401 (8) | 0.0003 (5) | −0.0062 (5) | 0.0002 (5) |
N1 | 0.0193 (7) | 0.0184 (7) | 0.0258 (8) | 0.0001 (5) | −0.0042 (6) | 0.0022 (6) |
N2 | 0.0193 (7) | 0.0230 (8) | 0.0242 (8) | 0.0020 (6) | −0.0027 (6) | 0.0039 (6) |
C1 | 0.0179 (8) | 0.0201 (8) | 0.0206 (9) | −0.0016 (6) | 0.0013 (6) | 0.0017 (7) |
C2 | 0.0244 (9) | 0.0201 (8) | 0.0240 (9) | −0.0011 (7) | −0.0024 (7) | −0.0016 (7) |
C3 | 0.0249 (9) | 0.0217 (9) | 0.0272 (10) | 0.0027 (7) | 0.0000 (7) | 0.0015 (7) |
C4 | 0.0202 (8) | 0.0295 (9) | 0.0186 (9) | −0.0006 (7) | 0.0001 (7) | 0.0041 (7) |
C5 | 0.0326 (10) | 0.0268 (10) | 0.0203 (9) | −0.0043 (8) | −0.0035 (7) | −0.0030 (7) |
C6 | 0.0288 (9) | 0.0208 (9) | 0.0247 (9) | 0.0001 (7) | 0.0009 (7) | −0.0020 (7) |
C7 | 0.0166 (8) | 0.0192 (8) | 0.0251 (9) | −0.0010 (6) | 0.0028 (6) | 0.0003 (7) |
C8 | 0.0233 (9) | 0.0228 (9) | 0.0243 (9) | 0.0000 (7) | −0.0004 (7) | 0.0018 (7) |
C9 | 0.0202 (8) | 0.0265 (9) | 0.0223 (9) | −0.0036 (7) | −0.0009 (7) | 0.0027 (7) |
C10 | 0.0308 (10) | 0.0265 (10) | 0.0256 (10) | −0.0037 (7) | −0.0018 (8) | 0.0043 (8) |
C11 | 0.0366 (11) | 0.0383 (11) | 0.0252 (10) | −0.0077 (9) | −0.0082 (8) | 0.0010 (9) |
C12 | 0.0294 (10) | 0.0461 (12) | 0.0252 (10) | 0.0031 (9) | −0.0055 (8) | 0.0089 (9) |
C13 | 0.0305 (10) | 0.0340 (11) | 0.0298 (11) | 0.0069 (8) | −0.0003 (8) | 0.0058 (8) |
C14 | 0.0263 (9) | 0.0272 (10) | 0.0261 (10) | −0.0004 (7) | −0.0011 (7) | 0.0014 (8) |
O2 | 0.0232 (6) | 0.0178 (6) | 0.0601 (10) | −0.0009 (5) | −0.0037 (6) | 0.0041 (6) |
Cl1—C4 | 1.7410 (18) | C8—C9 | 1.465 (2) |
Cl2—C10 | 1.752 (2) | C9—C10 | 1.397 (3) |
O1—C7 | 1.239 (2) | C9—C14 | 1.399 (3) |
O2—H2B | 0.8400 | C10—C11 | 1.387 (3) |
O2—H2A | 0.8400 | C11—C12 | 1.379 (3) |
N1—C7 | 1.345 (2) | C12—C13 | 1.381 (3) |
N1—N2 | 1.389 (2) | C13—C14 | 1.383 (3) |
N2—C8 | 1.281 (2) | C2—H2 | 0.9500 |
N1—H1 | 0.9100 | C3—H3 | 0.9500 |
C1—C6 | 1.393 (2) | C5—H5 | 0.9500 |
C1—C2 | 1.395 (2) | C6—H6 | 0.9500 |
C1—C7 | 1.496 (2) | C8—H8 | 0.9500 |
C2—C3 | 1.388 (3) | C11—H11 | 0.9500 |
C3—C4 | 1.386 (3) | C12—H12 | 0.9500 |
C4—C5 | 1.376 (3) | C13—H13 | 0.9500 |
C5—C6 | 1.387 (3) | C14—H14 | 0.9500 |
H2A—O2—H2B | 103.00 | Cl2—C10—C11 | 117.56 (15) |
N2—N1—C7 | 119.47 (14) | C10—C11—C12 | 119.22 (18) |
N1—N2—C8 | 113.93 (14) | C11—C12—C13 | 120.19 (18) |
N2—N1—H1 | 117.00 | C12—C13—C14 | 120.34 (19) |
C7—N1—H1 | 123.00 | C9—C14—C13 | 120.97 (18) |
C2—C1—C7 | 123.55 (15) | C3—C2—H2 | 120.00 |
C2—C1—C6 | 118.86 (15) | C1—C2—H2 | 120.00 |
C6—C1—C7 | 117.58 (15) | C2—C3—H3 | 121.00 |
C1—C2—C3 | 120.81 (16) | C4—C3—H3 | 121.00 |
C2—C3—C4 | 118.82 (16) | C6—C5—H5 | 120.00 |
Cl1—C4—C3 | 119.00 (14) | C4—C5—H5 | 120.00 |
C3—C4—C5 | 121.56 (17) | C1—C6—H6 | 120.00 |
Cl1—C4—C5 | 119.44 (14) | C5—C6—H6 | 120.00 |
C4—C5—C6 | 119.18 (17) | C9—C8—H8 | 120.00 |
C1—C6—C5 | 120.77 (16) | N2—C8—H8 | 120.00 |
N1—C7—C1 | 116.57 (14) | C10—C11—H11 | 120.00 |
O1—C7—C1 | 120.85 (15) | C12—C11—H11 | 120.00 |
O1—C7—N1 | 122.58 (15) | C13—C12—H12 | 120.00 |
N2—C8—C9 | 120.72 (16) | C11—C12—H12 | 120.00 |
C10—C9—C14 | 117.26 (16) | C12—C13—H13 | 120.00 |
C8—C9—C14 | 121.76 (16) | C14—C13—H13 | 120.00 |
C8—C9—C10 | 120.99 (16) | C9—C14—H14 | 120.00 |
Cl2—C10—C9 | 120.42 (14) | C13—C14—H14 | 120.00 |
C9—C10—C11 | 122.01 (18) | ||
C7—N1—N2—C8 | −173.66 (15) | C3—C4—C5—C6 | −1.2 (3) |
N2—N1—C7—O1 | 0.3 (2) | C4—C5—C6—C1 | 0.5 (3) |
N2—N1—C7—C1 | −179.81 (13) | N2—C8—C9—C10 | −175.19 (17) |
N1—N2—C8—C9 | −178.99 (15) | N2—C8—C9—C14 | 4.7 (3) |
C6—C1—C2—C3 | −0.6 (3) | C8—C9—C10—Cl2 | 1.6 (2) |
C7—C1—C2—C3 | −179.41 (16) | C8—C9—C10—C11 | −179.38 (17) |
C2—C1—C6—C5 | 0.4 (3) | C14—C9—C10—Cl2 | −178.37 (14) |
C7—C1—C6—C5 | 179.20 (16) | C14—C9—C10—C11 | 0.7 (3) |
C2—C1—C7—O1 | 163.87 (16) | C8—C9—C14—C13 | −179.76 (17) |
C2—C1—C7—N1 | −16.0 (2) | C10—C9—C14—C13 | 0.2 (3) |
C6—C1—C7—O1 | −14.9 (2) | Cl2—C10—C11—C12 | 178.38 (15) |
C6—C1—C7—N1 | 165.23 (15) | C9—C10—C11—C12 | −0.7 (3) |
C1—C2—C3—C4 | 0.0 (3) | C10—C11—C12—C13 | −0.1 (3) |
C2—C3—C4—Cl1 | −178.89 (14) | C11—C12—C13—C14 | 1.0 (3) |
C2—C3—C4—C5 | 0.9 (3) | C12—C13—C14—C9 | −1.0 (3) |
Cl1—C4—C5—C6 | 178.61 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.91 | 1.95 | 2.8510 (19) | 168 |
O2—H2A···O1ii | 0.84 | 1.93 | 2.7632 (19) | 172 |
O2—H2B···O1 | 0.84 | 1.95 | 2.7864 (19) | 172 |
C2—H2···O2i | 0.95 | 2.43 | 3.286 (2) | 150 |
C8—H8···O2i | 0.95 | 2.44 | 3.242 (2) | 143 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.91 | 1.95 | 2.8510 (19) | 168 |
O2—H2A···O1ii | 0.84 | 1.93 | 2.7632 (19) | 172 |
O2—H2B···O1 | 0.84 | 1.95 | 2.7864 (19) | 172 |
C2—H2···O2i | 0.95 | 2.43 | 3.286 (2) | 150 |
C8—H8···O2i | 0.95 | 2.44 | 3.242 (2) | 143 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x+1, y, z. |
Acknowledgements
We thank Tulane University for support of the Tulane Crystallography Laboratory.
References
Almasirad, A., Hosseini, R., Jalalizadeh, H., Rahimi-Moghaddam, Z., Abaeian, N., Janafrooz, M., Abbaspour, M., Ziaee, V., Dalvandi, A. & Shafiee, A. (2006). Biol. Pharm. Bull. 29, 1180–1185. Web of Science CrossRef PubMed CAS Google Scholar
Almasirad, A., Tajik, M., Bakhtiari, D., Shafiee, A., Abdollahi, M., Zamani, M. J. & Esmaily, H. (2005). J. Pharm. Pharm. Sci. 8, 419–425. Web of Science PubMed CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cao, G.-B. (2009). Acta Cryst. E65, o2384. Web of Science CSD CrossRef IUCr Journals Google Scholar
Koopaei, M. N., Assarzadeh, M. J., Almasirad, A., Ghasemi-Niri, S. F., Amini, M., Kebriaeezadeh, A., Koopaei, N. N., Ghadimi, M. & Tabei, A. (2013). Iran. J. Pharm. Res. 12, 721–727. CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Use of non-steroidal anti-inflammatory drugs (NSAIDs) in treatment of pain and inflammation is usually associated with undesirable side effect such as gastrointestinal toxins and ulceration. Recently arylhydrazone scaffold compounds have showed safer profiles of activity and enhanced efficacy in the battle of pain in inflammatory diseases (Koopaei et al., 2013). They have been depicted as dual COX/5-LO inhibitors (Almasirad et al., 2005; Almasirad et al., 2006). In this context and as part of our on-going study in the synthesis of safe profiles of anti-inflammatory pro-drugs we report the synthesis and crystal structure of the title compound.
The title compound (I) in Fig. 1 is in the "extended" conformation with the ring C1–C6 making a dihedral angle of 15.3 (1)° with the mean plane of the C1/C7/N1/O1 unit while the ring C9–C14 makes a dihedral angle of 4.6 (2)° with the plane of the C8/C9/N2 unit. The bond lengths and angles of (I) are normal and comparable with those observed for a similar compound (Cao, 2009).
The lattice water molecules alternate with molecules of (I) in chains formed by O2—H2A(or B)···O1 hydrogen bonds (Table 1 and Fig. 2) which run parallel to the a axis. These chains are linked to neighboring chains through N1—H1···O2 and C8—H8···O2 interactions. In these, the mean plane of the benzohydrazide molecule is inclined approximately 48° to (110).