organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o530-o531

9α-Hy­dr­oxy-12-{[4-(4-hy­dr­oxy­phen­yl)piperazin-1-yl]meth­yl}-4,8-di­methyl-3,14-dioxatri­cyclo­[9.3.0.02,4]tetra­dec-7-en-13-one

aLaboratoire de Chimie Biomoleculaire, Substances Naturelles et Réactivité URAC16, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, BP 1014, Avenue Ibn Battouta, Rabat, Morocco
*Correspondence e-mail: loubidim@gmail.com

(Received 24 March 2014; accepted 3 April 2014; online 9 April 2014)

The title compound, C25H34N2O5, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methylen-3, 14-dioxa-tri­cyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which in turn was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The mol­ecule comprises a ten-membered ring fused to a five-membered ring with an additional ep­oxy ring system fused to the ten-membered ring. The five-membered ring also carries a 4-hy­droxy­phenyl-piperazin-1-ylmethyl substituent. The ten-membered ring adopts an approximate chair–chair conformation, while the piperazine ring displays a chair conformation and the five-membered ring shows an envelope conformation with the C atom closest to the hy­droxy group forming the flap. Two C atoms in the phenyl ring and the O atom of the hydroxyl group are disordered over two sites, with an occupancy ratio of 0.53 (5):0.47 (5). An intra­molecular O—H⋯N hydrogen-bond stabilizes the mol­ecular conformation. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into zigzag chains running along the a-axis direction.

Related literature

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996[Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403-405.]); El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]). For the reactivity of this sesquiterpene, see: Hwang et al. (2006[Hwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83-91.]); Neelakantan et al. (2009[Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.]). For a related synthetic procedure, see: Moumou et al. (2012[Moumou, M., Benharref, A., Daran, J.-C., Mellouki, F. & Berraho, M. (2012). Acta Cryst. E68, o589-o590.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C25H34N2O5

  • Mr = 442.54

  • Monoclinic, C 2

  • a = 29.880 (5) Å

  • b = 6.841 (5) Å

  • c = 11.999 (5) Å

  • β = 102.307 (5)°

  • V = 2396 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.5 × 0.03 × 0.03 mm

Data collection
  • Bruker X8 APEX Diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.639, Tmax = 0.747

  • 13097 measured reflections

  • 2868 independent reflections

  • 1830 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.102

  • S = 1.08

  • 2868 reflections

  • 322 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1 0.82 2.22 3.030 (4) 169
C2—H2⋯O4i 0.98 2.45 3.243 (4) 138
C4—H4A⋯O2ii 0.97 2.43 3.315 (5) 151
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Our work lies within the framework of the evaluation of medicinal plants and in particular, Anvillea radiata. The main constituent of the chloroform extract of the aerial parts of this plant is 9α-hydroxypartenolide (Abdel Sattar et al., 1996; El Hassany et al., 2004). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies (Hwang et al., 2006; Neelakantan et al., 2009; Moumou et al., 2012), in order to prepare high value added products for use in industrial pharmacology. In this work we present the crystal structure of the title compound (I). The molecule is built up from fused five-and ten-membered rings with the hydroxyphenyl-pyperazine group as a substituent. An additional epoxy ring system is also fused to the ten-membered ring at C2 and C3. The molecular structure of (I), Fig.1, shows the lactone ring to adopt an envelope conformation, as indicated by the Cremer & Pople (1975) puckering parameters QT = 0.208 (3) Å and ϕ2 = 248.2 (7)°. The ten-membered ring displays an approximate chair-chair conformation, while the pyperazine ring has a perfect chair conformation with QT = 0.572 (3) Å, θ = 176.9 (3) and ϕ2 = 184 (5)°. An intramolecular O4—H4···N1 hydrogen bond is observed. In the crystal, C—H···O hydrogen bonds link the molecules into zigzag chains running along the a axis (Table 1, Fig 1).

Related literature top

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996); El Hassany et al. (2004). For the reactivity of this sesquiterpene, see: Hwang et al. (2006); Neelakantan et al. (2009). For a related synthetic procedure, see: Moumou et al. (2012). For conformational analysis, see: Cremer & Pople (1975)

Experimental top

A mixture of 9α-hydoxypartenolide (9α-hydroxy-4,8-dimethyl-12-methylene- 3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one) (1 g, 3.8 mmol) and one equivalent of 1-(4-hydroxyphenyl-piperazine) in EtOH (20 ml) was stirred for twelve hours at room temperature. The reaction was stopped by adding water (10 ml) and the solution extracted with chloroform (3 x 20 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 1.5 g (3.3 mmol) of the title compound (yield: 90%). Recrystallization was performed from ethyl acetate.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) and O–H = 0.82 Å with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl, OH). The O5, C22 and C21 atoms are disordered over two positions. The occupancy factors for these sites were refined and converged to the ratio 0.53 (5):0.47 (5). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and any references to the Flack parameter were removed.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. :The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. For clarity only the major disorder components of the disordered C21 C22 and O5 atoms are shown.
[Figure 2] Fig. 2. : Packing view showing the C–H···O and O–H···N hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding and the atoms of the minor disorder component have been omitted for clarity.
9α-Hydroxy-12-{[4-(4-hydroxyphenyl)piperazin-1-yl]methyl}-4,8-dimethyl-3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one top
Crystal data top
C25H34N2O5F(000) = 952
Mr = 442.54Dx = 1.227 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 4801 reflections
a = 29.880 (5) Åθ = 2.5–27.1°
b = 6.841 (5) ŵ = 0.09 mm1
c = 11.999 (5) ÅT = 296 K
β = 102.307 (5)°Needle, colourless
V = 2396 (2) Å30.5 × 0.03 × 0.03 mm
Z = 4
Data collection top
Bruker X8 APEX Diffractometer2868 independent reflections
Radiation source: fine-focus sealed tube1830 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 27.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3838
Tmin = 0.639, Tmax = 0.747k = 87
13097 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0408P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2868 reflectionsΔρmax = 0.14 e Å3
322 parametersΔρmin = 0.14 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (6)
Crystal data top
C25H34N2O5V = 2396 (2) Å3
Mr = 442.54Z = 4
Monoclinic, C2Mo Kα radiation
a = 29.880 (5) ŵ = 0.09 mm1
b = 6.841 (5) ÅT = 296 K
c = 11.999 (5) Å0.5 × 0.03 × 0.03 mm
β = 102.307 (5)°
Data collection top
Bruker X8 APEX Diffractometer2868 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1830 reflections with I > 2σ(I)
Tmin = 0.639, Tmax = 0.747Rint = 0.055
13097 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.102H-atom parameters constrained
S = 1.08Δρmax = 0.14 e Å3
2868 reflectionsΔρmin = 0.14 e Å3
322 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.81526 (10)0.5109 (5)0.7206 (2)0.0388 (7)
H10.83800.44210.77820.047*
C20.78537 (10)0.6359 (5)0.7759 (2)0.0425 (7)
H20.76810.73380.72450.051*
C30.79457 (11)0.6940 (5)0.8964 (2)0.0478 (8)
C40.77809 (13)0.8925 (6)0.9221 (3)0.0645 (10)
H4A0.76990.88980.99610.077*
H4B0.75080.92540.86550.077*
C50.81482 (14)1.0505 (5)0.9224 (3)0.0687 (11)
H5A0.80071.17870.91850.082*
H5B0.83761.04280.99310.082*
C60.83780 (13)1.0258 (5)0.8232 (3)0.0548 (9)
H60.81951.05030.75160.066*
C70.88024 (13)0.9743 (5)0.8241 (3)0.0544 (9)
C80.89540 (12)0.9174 (5)0.7157 (3)0.0545 (9)
H80.92830.94320.72730.065*
C90.88783 (10)0.6976 (5)0.6916 (2)0.0464 (8)
H9A0.90700.65800.63970.056*
H9B0.89850.62750.76250.056*
C100.83879 (10)0.6316 (4)0.6409 (2)0.0369 (7)
H100.82030.74900.61840.044*
C110.83398 (10)0.5009 (5)0.5360 (2)0.0420 (7)
H110.86240.42780.53930.050*
C120.79599 (11)0.3623 (5)0.5444 (2)0.0452 (8)
C130.83375 (13)0.6105 (6)0.9824 (2)0.0674 (11)
H13A0.85960.69700.99130.101*
H13B0.84190.48520.95660.101*
H13C0.82490.59571.05420.101*
C140.91847 (14)0.9532 (7)0.9290 (3)0.0855 (13)
H14A0.94271.04270.92410.128*
H14B0.93000.82180.93340.128*
H14C0.90690.98170.99590.128*
C150.82137 (11)0.6135 (5)0.4222 (2)0.0498 (8)
H15A0.82010.52230.35970.060*
H15B0.79110.67020.41500.060*
C160.89578 (11)0.6953 (5)0.3813 (3)0.0574 (9)
H16A0.88760.62750.30890.069*
H16B0.91060.60230.43850.069*
C170.92853 (12)0.8583 (6)0.3722 (3)0.0620 (10)
H17A0.93800.92130.44590.074*
H17B0.95560.80490.35080.074*
C180.83255 (11)0.9076 (5)0.3240 (3)0.0559 (9)
H18A0.80480.95890.34270.067*
H18B0.82420.83970.25160.067*
C190.86433 (12)1.0737 (5)0.3134 (3)0.0585 (10)
H19A0.84941.16100.25310.070*
H19B0.87091.14710.38410.070*
C200.93639 (12)1.1478 (5)0.2585 (3)0.0524 (8)
C21A0.9766 (11)1.167 (5)0.303 (2)0.103 (11)0.47 (5)
H21A0.98921.08380.36300.124*0.47 (5)
C22A1.0052 (11)1.307 (6)0.269 (3)0.184 (19)0.47 (5)
H22A1.03531.31610.30920.220*0.47 (5)
C21B0.9877 (9)1.150 (3)0.3049 (16)0.059 (4)0.53 (5)
H21B1.00101.06090.36050.071*0.53 (5)
C22B1.0145 (8)1.284 (2)0.2650 (12)0.066 (5)0.53 (5)
H22B1.04621.28400.28940.079*0.53 (5)
C230.99198 (17)1.4234 (8)0.1851 (4)0.0947 (15)
C240.94645 (15)1.4229 (6)0.1412 (3)0.0817 (13)
H240.93371.51590.08720.098*
C250.91882 (13)1.2851 (6)0.1763 (3)0.0616 (10)
H250.88761.28440.14400.074*
N10.85421 (8)0.7703 (4)0.41259 (18)0.0446 (6)
N20.90743 (9)1.0027 (4)0.2877 (2)0.0527 (7)
O10.78550 (7)0.3726 (3)0.64797 (15)0.0455 (5)
O20.75946 (8)0.5494 (4)0.85303 (16)0.0582 (7)
O30.87276 (10)1.0320 (4)0.62102 (19)0.0689 (7)
H30.87080.96900.56200.103*
O40.77554 (8)0.2523 (4)0.47254 (18)0.0653 (7)
O5A1.0188 (7)1.589 (4)0.174 (3)0.116 (8)0.47 (5)
H5A11.00531.65670.12080.173*0.47 (5)
O5B1.0186 (6)1.531 (3)0.1318 (16)0.080 (4)0.53 (5)
H5B11.00341.57040.07090.120*0.53 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0456 (18)0.0352 (17)0.0330 (13)0.0035 (15)0.0025 (12)0.0011 (13)
C20.0496 (19)0.0439 (19)0.0364 (14)0.0019 (15)0.0147 (13)0.0051 (13)
C30.059 (2)0.0478 (19)0.0391 (15)0.0061 (18)0.0159 (15)0.0022 (15)
C40.075 (2)0.069 (3)0.0551 (19)0.004 (2)0.0274 (18)0.0153 (19)
C50.089 (3)0.044 (2)0.078 (2)0.003 (2)0.028 (2)0.0179 (18)
C60.080 (3)0.0266 (18)0.0600 (19)0.0035 (18)0.0194 (18)0.0011 (15)
C70.068 (2)0.040 (2)0.0543 (18)0.0102 (19)0.0107 (17)0.0105 (16)
C80.061 (2)0.044 (2)0.0589 (19)0.0102 (18)0.0134 (16)0.0023 (16)
C90.051 (2)0.042 (2)0.0467 (16)0.0034 (16)0.0113 (14)0.0057 (15)
C100.0417 (17)0.0323 (17)0.0363 (14)0.0004 (14)0.0075 (12)0.0029 (12)
C110.0441 (18)0.046 (2)0.0355 (14)0.0034 (16)0.0082 (12)0.0079 (14)
C120.050 (2)0.0412 (19)0.0432 (16)0.0006 (17)0.0074 (14)0.0051 (15)
C130.091 (3)0.062 (2)0.0424 (17)0.003 (2)0.0015 (17)0.0021 (16)
C140.084 (3)0.102 (4)0.065 (2)0.012 (3)0.003 (2)0.029 (2)
C150.052 (2)0.059 (2)0.0403 (15)0.0026 (18)0.0136 (14)0.0042 (15)
C160.056 (2)0.055 (2)0.068 (2)0.0122 (19)0.0284 (17)0.0078 (18)
C170.057 (2)0.056 (2)0.079 (2)0.018 (2)0.0284 (18)0.0184 (19)
C180.053 (2)0.065 (2)0.0532 (18)0.0101 (19)0.0180 (16)0.0112 (17)
C190.061 (2)0.057 (2)0.0636 (19)0.0196 (19)0.0258 (17)0.0146 (17)
C200.051 (2)0.051 (2)0.0564 (19)0.0008 (18)0.0149 (17)0.0001 (17)
C21A0.026 (12)0.111 (16)0.168 (17)0.010 (9)0.009 (8)0.088 (13)
C22A0.034 (10)0.23 (3)0.27 (3)0.002 (12)0.005 (11)0.13 (3)
C21B0.025 (9)0.062 (8)0.085 (8)0.017 (6)0.002 (5)0.015 (7)
C22B0.041 (7)0.049 (8)0.097 (9)0.011 (5)0.005 (5)0.022 (6)
C230.072 (3)0.087 (4)0.116 (4)0.027 (3)0.001 (3)0.033 (3)
C240.080 (3)0.077 (3)0.079 (2)0.025 (3)0.003 (2)0.025 (2)
C250.062 (2)0.058 (2)0.059 (2)0.010 (2)0.0006 (17)0.0061 (19)
N10.0462 (16)0.0481 (16)0.0422 (13)0.0059 (13)0.0156 (11)0.0046 (12)
N20.0531 (17)0.0512 (18)0.0590 (15)0.0100 (15)0.0233 (13)0.0086 (14)
O10.0577 (14)0.0379 (12)0.0422 (11)0.0094 (11)0.0136 (9)0.0071 (9)
O20.0718 (16)0.0643 (17)0.0440 (11)0.0185 (14)0.0245 (10)0.0059 (11)
O30.100 (2)0.0462 (15)0.0619 (13)0.0122 (15)0.0210 (14)0.0062 (12)
O40.0738 (17)0.0670 (17)0.0549 (13)0.0186 (14)0.0136 (12)0.0250 (12)
O5A0.090 (7)0.087 (11)0.138 (16)0.065 (8)0.048 (9)0.047 (10)
O5B0.066 (5)0.084 (9)0.080 (6)0.054 (5)0.010 (5)0.029 (6)
Geometric parameters (Å, º) top
C1—O11.454 (3)C15—N11.475 (4)
C1—C21.490 (4)C15—H15A0.9700
C1—C101.542 (4)C15—H15B0.9700
C1—H10.9800C16—N11.464 (4)
C2—O21.454 (3)C16—C171.503 (5)
C2—C31.468 (4)C16—H16A0.9700
C2—H20.9800C16—H16B0.9700
C3—O21.455 (4)C17—N21.459 (4)
C3—C131.499 (4)C17—H17A0.9700
C3—C41.499 (5)C17—H17B0.9700
C4—C51.540 (5)C18—N11.462 (4)
C4—H4A0.9700C18—C191.504 (5)
C4—H4B0.9700C18—H18A0.9700
C5—C61.505 (5)C18—H18B0.9700
C5—H5A0.9700C19—N21.469 (4)
C5—H5B0.9700C19—H19A0.9700
C6—C71.314 (5)C19—H19B0.9700
C6—H60.9300C20—C21A1.21 (3)
C7—C141.516 (5)C20—C251.381 (5)
C7—C81.516 (4)C20—N21.409 (4)
C8—O31.426 (4)C20—C21B1.52 (3)
C8—C91.539 (5)C21A—C22A1.41 (4)
C8—H80.9800C21A—H21A0.9300
C9—C101.530 (4)C22A—C231.27 (3)
C9—H9A0.9700C22A—H22A0.9300
C9—H9B0.9700C21B—C22B1.37 (3)
C10—C111.526 (4)C21B—H21B0.9300
C10—H100.9800C22B—C231.415 (18)
C11—C121.499 (4)C22B—H22B0.9300
C11—C151.543 (4)C23—O5B1.340 (15)
C11—H110.9800C23—C241.350 (6)
C12—O41.208 (3)C23—O5A1.411 (17)
C12—O11.347 (3)C24—C251.377 (5)
C13—H13A0.9600C24—H240.9300
C13—H13B0.9600C25—H250.9300
C13—H13C0.9600O3—H30.8200
C14—H14A0.9600O5A—H5A10.8200
C14—H14B0.9600O5B—H5B10.8200
C14—H14C0.9600
O1—C1—C2107.0 (2)N1—C15—C11113.0 (2)
O1—C1—C10106.13 (18)N1—C15—H15A109.0
C2—C1—C10111.3 (2)C11—C15—H15A109.0
O1—C1—H1110.7N1—C15—H15B109.0
C2—C1—H1110.7C11—C15—H15B109.0
C10—C1—H1110.7H15A—C15—H15B107.8
O2—C2—C359.74 (17)N1—C16—C17111.1 (3)
O2—C2—C1120.0 (3)N1—C16—H16A109.4
C3—C2—C1126.1 (3)C17—C16—H16A109.4
O2—C2—H2113.5N1—C16—H16B109.4
C3—C2—H2113.5C17—C16—H16B109.4
C1—C2—H2113.5H16A—C16—H16B108.0
O2—C3—C259.63 (18)N2—C17—C16111.2 (3)
O2—C3—C13112.6 (3)N2—C17—H17A109.4
C2—C3—C13122.0 (3)C16—C17—H17A109.4
O2—C3—C4116.5 (3)N2—C17—H17B109.4
C2—C3—C4116.6 (3)C16—C17—H17B109.4
C13—C3—C4116.5 (3)H17A—C17—H17B108.0
C3—C4—C5111.8 (3)N1—C18—C19111.0 (3)
C3—C4—H4A109.3N1—C18—H18A109.4
C5—C4—H4A109.3C19—C18—H18A109.4
C3—C4—H4B109.3N1—C18—H18B109.4
C5—C4—H4B109.3C19—C18—H18B109.4
H4A—C4—H4B107.9H18A—C18—H18B108.0
C6—C5—C4111.4 (3)N2—C19—C18111.5 (3)
C6—C5—H5A109.4N2—C19—H19A109.3
C4—C5—H5A109.4C18—C19—H19A109.3
C6—C5—H5B109.4N2—C19—H19B109.3
C4—C5—H5B109.4C18—C19—H19B109.3
H5A—C5—H5B108.0H19A—C19—H19B108.0
C7—C6—C5128.8 (3)C21A—C20—C25115.6 (14)
C7—C6—H6115.6C21A—C20—N2124.6 (14)
C5—C6—H6115.6C25—C20—N2119.8 (3)
C6—C7—C14126.0 (3)C21A—C20—C21B7 (2)
C6—C7—C8121.7 (3)C25—C20—C21B117.1 (10)
C14—C7—C8112.2 (3)N2—C20—C21B122.9 (10)
O3—C8—C7111.4 (3)C20—C21A—C22A123 (2)
O3—C8—C9111.2 (3)C20—C21A—H21A118.3
C7—C8—C9110.7 (3)C22A—C21A—H21A118.3
O3—C8—H8107.8C23—C22A—C21A124 (2)
C7—C8—H8107.8C23—C22A—H22A118.2
C9—C8—H8107.8C21A—C22A—H22A118.2
C10—C9—C8116.9 (3)C22B—C21B—C20120.0 (17)
C10—C9—H9A108.1C22B—C21B—H21B120.0
C8—C9—H9A108.1C20—C21B—H21B120.0
C10—C9—H9B108.1C21B—C22B—C23117.2 (17)
C8—C9—H9B108.1C21B—C22B—H22B121.4
H9A—C9—H9B107.3C23—C22B—H22B121.4
C11—C10—C9114.5 (2)C22A—C23—O5B127.0 (17)
C11—C10—C1102.9 (2)C22A—C23—C24115.0 (15)
C9—C10—C1115.9 (2)O5B—C23—C24117.8 (8)
C11—C10—H10107.7C22A—C23—O5A119.3 (17)
C9—C10—H10107.7O5B—C23—O5A26.9 (13)
C1—C10—H10107.7C24—C23—O5A120.6 (10)
C12—C11—C10104.8 (2)C22A—C23—C22B13 (2)
C12—C11—C15109.2 (2)O5B—C23—C22B116.5 (12)
C10—C11—C15113.6 (3)C24—C23—C22B123.9 (9)
C12—C11—H11109.7O5A—C23—C22B114.0 (11)
C10—C11—H11109.7C23—C24—C25120.2 (4)
C15—C11—H11109.7C23—C24—H24119.9
O4—C12—O1120.6 (3)C25—C24—H24119.9
O4—C12—C11128.4 (3)C24—C25—C20121.5 (4)
O1—C12—C11110.9 (2)C24—C25—H25119.3
C3—C13—H13A109.5C20—C25—H25119.3
C3—C13—H13B109.5C18—N1—C16107.9 (2)
H13A—C13—H13B109.5C18—N1—C15109.0 (2)
C3—C13—H13C109.5C16—N1—C15112.3 (3)
H13A—C13—H13C109.5C20—N2—C17116.9 (3)
H13B—C13—H13C109.5C20—N2—C19115.6 (3)
C7—C14—H14A109.5C17—N2—C19110.2 (2)
C7—C14—H14B109.5C12—O1—C1110.8 (2)
H14A—C14—H14B109.5C2—O2—C360.63 (18)
C7—C14—H14C109.5C8—O3—H3109.5
H14A—C14—H14C109.5C23—O5A—H5A1109.5
H14B—C14—H14C109.5C23—O5B—H5B1109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.822.223.030 (4)169
C2—H2···O4i0.982.453.243 (4)138
C4—H4A···O2ii0.972.433.315 (5)151
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+3/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.822.223.030 (4)169
C2—H2···O4i0.982.453.243 (4)138
C4—H4A···O2ii0.972.433.315 (5)151
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+3/2, y+1/2, z+2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405.  CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83–91.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoumou, M., Benharref, A., Daran, J.-C., Mellouki, F. & Berraho, M. (2012). Acta Cryst. E68, o589–o590.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNeelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o530-o531
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds