organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o598-o599

(E)-2-{[4-(Di­methyl­amino)­benzyl­­idene]amino}-5-nitro­phenol

aChemistry Department, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Keene State College, Keene, NH 03410, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 4 March 2014; accepted 16 April 2014; online 26 April 2014)

The title Schiff base compound, C15H15N3O3, crystallizes with two mol­ecules (A and B) in the asymmetric unit. Each mol­ecule adopts an E conformation around the C= N imine bond. The two mol­ecules have minor differences in their conformations. In mol­ecule A, the dihedral angle between the nitro group and its benzene ring is 2.1 (2)° and that between the two benzene rings is 0.88 (7)°, while the corresponding angles for mol­ecule B are 5.7 (1) and 2.45 (6)°, respectively. In each mol­ecule, there is an intra­molecular O—H⋯N hydrogen bond. In the crystal, inversion-related mol­ecules are linked via O—H⋯O hydrogen bonds forming AA and BB dimers. These dimers are linked via C—H⋯O hydrogen bonds involving the nitro O atoms, forming AAA and BBB slabs that lie parallel to one another and to (010).

Related literature

For related structures, see: Rodríguez et al. (2012[Rodríguez, M., Maldonado, J. L., Ramos-Ortíz, G., Domínguez, O., Ochoa, M. E., Santillan, R., Farfán, N., Meneses-Nava, M. A. & Barbosa-García, O. (2012). Polyhedron, 43, 194-200.]); Valkonen et al. (2012[Valkonen, A., Kolehmainen, E., Grzegórska, A., Ośmiałowski, B., Gawinecki, R. & Rissanen, K. (2012). Acta Cryst. C68, o279-o282.]); Gül et al. (2007[Gül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2902.]); Reyes et al. (2004[Reyes, H., García, C., Farfán, N., Santillan, R., Lacroix, P. G., Lepetit, C. & Nakatani, K. (2004). J. Organomet. Chem. 689, 2303-2310.]); Hijji et al. (2014[Hijji, Y., Azemati, S., Butcher, R. J. & Jasinski, J. P. (2014). Acta Cryst. E70, o451-o452.]). For the applications of Schiff bases as anion sensors, see: Hijji et al. (2009[Hijji, Y. M., Barare, B., Kennedy, A. P. & Butcher, R. (2009). Sens. Actuators B Chem. 136, 297-302.]), and in non-linear optics, see: Muñoz et al. (2008[Muñoz, B. M., Santillan, R., Rodríguez, M., Méndez, J. M., Romero, M., Farfán, N., Lacroix, P. G., Nakatani, K., Ramos-Ortíz, G. & Maldonado, J. L. (2008). J. Organomet. Chem. 693, 1321-1334.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3O3

  • Mr = 285.30

  • Triclinic, [P \overline 1]

  • a = 6.1435 (3) Å

  • b = 14.3844 (8) Å

  • c = 15.8516 (9) Å

  • α = 108.038 (5)°

  • β = 91.258 (4)°

  • γ = 96.033 (4)°

  • V = 1322.37 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 123 K

  • 0.32 × 0.24 × 0.19 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.938, Tmax = 1.000

  • 9056 measured reflections

  • 9056 independent reflections

  • 7791 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.04

  • 9056 reflections

  • 392 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N2A 0.85 (2) 1.99 (2) 2.5860 (16) 126 (2)
O1A—H1A⋯O1Ai 0.85 (2) 2.41 (2) 2.8738 (16) 114.7 (19)
O1B—H1B⋯N2B 0.84 (2) 1.993 (19) 2.5896 (16) 127.5 (19)
O1B—H1B⋯O1Bii 0.84 (2) 2.45 (2) 2.8853 (15) 113.7 (17)
C7B—H7BA⋯O1Biii 0.95 2.58 3.1870 (17) 122
C15A—H15C⋯O3Aiv 0.98 2.59 3.3989 (19) 141
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) x-1, y, z; (iv) x-1, y, z-1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are used as ligands to form complexes with metals and borane and such complexes have application in non-linear optical dyes (Rodríguez et al., 2012; Reyes et al., 2004) and as anion sensors (Hijji et al., 2009; Muñoz et al. 2008). Related structures were reported by (Gül et al., 2007; Muñoz et al., 2008; Valkonen et al., 2012; Hijji et al., 2014).

The title compound is a Schiff base prepared by the reaction of 4-di­methyl­amino­benzaldehyde with 2-amino-5-nitro­phenol under microwave conditions.It crystallized with two molecules (A and B) in the asymmetric unit, Fig. 1. Each molecule adopts an E conformation about the C=N imine bond: C7AN2A in A and C7BN2B in B. The two molecules in the asymmetric unit have minor differences in their conformations: In molecule A the dihedral angle between the nitro group (N1A/O2A/O3A) and its benzene ring (C1A—C6A) is 2.1 (2)° and between the two benzene rings (C1A—C6A and C8A—C13A) is only 0.88 (7)°, while for molecule B the corresponding angles are 5.7 (1)° and 2.45 (6)°, respectively. For each molecule there is an intra­molecular hydrogen bond (Table 1 and Fig. 1) involving the OH group.

In the crystal, inversion related individual molecules are linked via O—H···O hydrogen bonds forming A—A and B—B dimers (Table 1 and Fig. 2). These dimers are linked via C—H···O hydrogen bonds involving the nitro group O atoms forming -A—A—A- and -B—B—B- slabs that lie parallel to one another and to (010) - see Fig. 3.

In a related 4-nitro­phenyl derivative (Hijji et al., 2014) there are no inter­molecular C—H···O hydrogen bonds involving the nitro group.

Experimental top

4-dimethamino­benzaldehyde (0.150 g, 1.0 mmol) and 5-nitro-2-amino phenol (0.15 g, 1.0mmol) were placed in a Biotage microwave tube. The mixture was heated in the Biotage initiator microwave for 5 min at 393 K. Upon cooling a brown solid formed. It was dissolved in ethanol and allowed to recrystallize to provide purple crystals (0.20g, 70% yield; M.p. 495-498 K). A sample was recrystallized from ethanol by slow evaporation to provide crystals suitable for X-ray diffraction analysis. Spectroscopic data for the title compound is available in the archived CIF.

Refinement top

The hydroxyl H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.95 and 0.99 Å for CH and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Related literature top

For related structures, see: Rodríguez et al. (2012); Valkonen et al. (2012); Gül et al. (2007); Reyes et al. (2004); Hijji et al. (2014). For the applications of Schiff bases as anion sensors, see: Hijji et al. (2009), and in non-linear optics, see: Muñoz et al. (2008).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. The intramolecular N—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. Crystal packing diagram for the title compound viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 3] Fig. 3. The -A-A-A- and -B-B-B- slabs that lie parallel to one another and to (010)
(E)-2-{[4-(Dimethylamino)benzylidene]amino}-5-nitrophenol top
Crystal data top
C15H15N3O3Z = 4
Mr = 285.30F(000) = 600
Triclinic, P1Dx = 1.433 Mg m3
a = 6.1435 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 14.3844 (8) ÅCell parameters from 3857 reflections
c = 15.8516 (9) Åθ = 5.0–74.3°
α = 108.038 (5)°µ = 0.84 mm1
β = 91.258 (4)°T = 123 K
γ = 96.033 (4)°Block, yellow-brown
V = 1322.37 (13) Å30.32 × 0.24 × 0.19 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
9056 independent reflections
Radiation source: Enhance (Cu) X-ray Source7791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.5081 pixels mm-1θmax = 74.2°, θmin = 5.0°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1717
Tmin = 0.938, Tmax = 1.000l = 1919
9056 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0805P)2 + 0.1015P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
9056 reflectionsΔρmax = 0.32 e Å3
392 parametersΔρmin = 0.21 e Å3
Crystal data top
C15H15N3O3γ = 96.033 (4)°
Mr = 285.30V = 1322.37 (13) Å3
Triclinic, P1Z = 4
a = 6.1435 (3) ÅCu Kα radiation
b = 14.3844 (8) ŵ = 0.84 mm1
c = 15.8516 (9) ÅT = 123 K
α = 108.038 (5)°0.32 × 0.24 × 0.19 mm
β = 91.258 (4)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
9056 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
7791 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 1.000Rint = 0.034
9056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.32 e Å3
9056 reflectionsΔρmin = 0.21 e Å3
392 parameters
Special details top

Experimental. Spectroscopic data for the title compound : 1H-NMR (400 MHz) δ ppm (DMSO-d6): 10.07 (s, 1H), 9.74 (s, 1H), 7.768 (d, J = 8.86 Hz, 1H), 7.68 (d, J = 8.97, 2H), 7.606 (dd, J = 8.87, 2.5 Hz, 1 H), 7.49 (d, J = 2.5 Hz, 1H), 6.78 (d, J = 8.97, 2 H), 6.63 (d, J = 8.87, 1 H), 3.069 (s, 6 H). 13C-NMR (DMSO-d6, 100 MHz) δ ppm: 189.82, 154.16, 145.54, 142.41, 135.46, 131.50, 124.48, 118.29, 111.12, 111.02, 108.59, 39.60.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A1.00034 (17)0.44325 (8)0.56033 (7)0.0261 (2)
H1A0.918 (4)0.4353 (16)0.5142 (16)0.045 (6)*
O2A1.05386 (18)0.41323 (9)0.86286 (8)0.0311 (3)
O3A0.7307 (2)0.35008 (10)0.88265 (8)0.0384 (3)
N1A0.8610 (2)0.38209 (9)0.83748 (8)0.0239 (3)
N2A0.60070 (19)0.38449 (8)0.49667 (8)0.0185 (2)
N3A0.22830 (19)0.38081 (9)0.11251 (8)0.0224 (3)
C1A0.8619 (2)0.41242 (10)0.61406 (10)0.0190 (3)
C2A0.9351 (2)0.41382 (10)0.69739 (10)0.0202 (3)
H2AA1.08320.43630.71850.024*
C3A0.7849 (2)0.38121 (10)0.74952 (9)0.0194 (3)
C4A0.5674 (2)0.34761 (10)0.72071 (10)0.0217 (3)
H4AA0.46880.32590.75790.026*
C5A0.4968 (2)0.34643 (10)0.63666 (10)0.0201 (3)
H5AA0.34870.32320.61600.024*
C6A0.6411 (2)0.37909 (9)0.58198 (9)0.0173 (3)
C7A0.4114 (2)0.35695 (9)0.45511 (9)0.0179 (3)
H7AA0.29490.33220.48360.021*
C8A0.3686 (2)0.36216 (9)0.36702 (9)0.0179 (3)
C9A0.1576 (2)0.33220 (10)0.32528 (10)0.0189 (3)
H9AA0.04450.30810.35570.023*
C10A0.1101 (2)0.33680 (10)0.24159 (10)0.0204 (3)
H10A0.03440.31580.21530.024*
C11A0.2740 (2)0.37246 (10)0.19399 (9)0.0174 (3)
C12A0.4886 (2)0.40115 (10)0.23598 (10)0.0197 (3)
H12A0.60330.42390.20540.024*
C13A0.5328 (2)0.39655 (10)0.31967 (9)0.0188 (3)
H13A0.67720.41700.34630.023*
C14A0.4024 (3)0.40912 (13)0.06081 (10)0.0286 (3)
H14A0.47980.47330.09510.043*
H14B0.33830.41330.00510.043*
H14C0.50580.35970.04760.043*
C15A0.0107 (2)0.34709 (12)0.06894 (10)0.0267 (3)
H15A0.09820.38110.10740.040*
H15B0.02130.27600.05760.040*
H15C0.00500.36150.01250.040*
O1B0.52861 (17)0.06146 (8)0.59158 (7)0.0240 (2)
H1B0.449 (3)0.0669 (15)0.5502 (15)0.038 (6)*
O2B0.62214 (19)0.12261 (10)0.91582 (8)0.0358 (3)
O3B0.3155 (2)0.17004 (9)0.96784 (8)0.0363 (3)
N1B0.4363 (2)0.14478 (9)0.90623 (9)0.0259 (3)
N2B0.16151 (19)0.12088 (8)0.55922 (8)0.0189 (2)
N3B0.22861 (19)0.09965 (9)0.17216 (8)0.0224 (3)
C1B0.4096 (2)0.09763 (9)0.66287 (9)0.0182 (3)
C2B0.4863 (2)0.10243 (10)0.74690 (10)0.0204 (3)
H2BA0.62310.08080.75620.024*
C3B0.3569 (2)0.13995 (10)0.81726 (9)0.0208 (3)
C4B0.1556 (2)0.17232 (10)0.80674 (10)0.0223 (3)
H4BA0.07030.19700.85630.027*
C5B0.0825 (2)0.16755 (10)0.72168 (10)0.0199 (3)
H5BA0.05400.18980.71310.024*
C6B0.2071 (2)0.13050 (9)0.64878 (9)0.0175 (3)
C7B0.0179 (2)0.14324 (9)0.53189 (9)0.0183 (3)
H7BA0.12180.16830.57410.022*
C8B0.0682 (2)0.13184 (9)0.43956 (9)0.0176 (3)
C9B0.2682 (2)0.15614 (9)0.41343 (10)0.0185 (3)
H9BA0.36870.18060.45730.022*
C10B0.3238 (2)0.14565 (10)0.32598 (9)0.0189 (3)
H10B0.46130.16260.31070.023*
C11B0.1782 (2)0.10990 (9)0.25881 (9)0.0180 (3)
C12B0.0245 (2)0.08440 (10)0.28521 (10)0.0194 (3)
H12B0.12550.05970.24160.023*
C13B0.0761 (2)0.09487 (10)0.37254 (10)0.0185 (3)
H13B0.21200.07680.38820.022*
C14B0.0722 (3)0.06855 (12)0.10417 (10)0.0280 (3)
H14D0.02770.00510.10430.042*
H14E0.05700.11790.11670.042*
H14F0.14060.06170.04580.042*
C15B0.4374 (2)0.12439 (12)0.14568 (10)0.0269 (3)
H15D0.45640.19190.18100.040*
H15E0.55670.07880.15560.040*
H15F0.43980.11920.08250.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0198 (5)0.0421 (6)0.0185 (5)0.0004 (4)0.0012 (4)0.0136 (4)
O2A0.0304 (6)0.0392 (6)0.0236 (6)0.0026 (5)0.0085 (5)0.0109 (5)
O3A0.0428 (7)0.0556 (8)0.0218 (6)0.0061 (6)0.0043 (5)0.0239 (5)
N1A0.0321 (7)0.0237 (6)0.0170 (6)0.0046 (5)0.0035 (5)0.0078 (5)
N2A0.0214 (6)0.0205 (5)0.0140 (6)0.0031 (4)0.0001 (4)0.0059 (4)
N3A0.0194 (6)0.0333 (6)0.0164 (6)0.0037 (5)0.0002 (5)0.0101 (5)
C1A0.0206 (7)0.0203 (6)0.0166 (7)0.0039 (5)0.0027 (5)0.0057 (5)
C2A0.0195 (6)0.0218 (6)0.0189 (7)0.0039 (5)0.0022 (5)0.0057 (5)
C3A0.0270 (7)0.0183 (6)0.0135 (7)0.0045 (5)0.0016 (5)0.0054 (5)
C4A0.0259 (7)0.0213 (6)0.0192 (7)0.0005 (5)0.0012 (6)0.0093 (5)
C5A0.0210 (6)0.0212 (6)0.0180 (7)0.0012 (5)0.0022 (5)0.0075 (5)
C6A0.0218 (6)0.0146 (6)0.0157 (7)0.0033 (5)0.0010 (5)0.0048 (5)
C7A0.0205 (6)0.0178 (6)0.0164 (7)0.0043 (5)0.0024 (5)0.0063 (5)
C8A0.0209 (6)0.0158 (6)0.0168 (7)0.0037 (5)0.0003 (5)0.0045 (5)
C9A0.0205 (6)0.0200 (6)0.0170 (7)0.0008 (5)0.0014 (5)0.0075 (5)
C10A0.0168 (6)0.0224 (6)0.0212 (7)0.0004 (5)0.0016 (5)0.0066 (5)
C11A0.0199 (6)0.0194 (6)0.0134 (7)0.0052 (5)0.0004 (5)0.0051 (5)
C12A0.0184 (6)0.0232 (6)0.0180 (7)0.0023 (5)0.0020 (5)0.0073 (5)
C13A0.0175 (6)0.0215 (6)0.0171 (7)0.0023 (5)0.0012 (5)0.0055 (5)
C14A0.0266 (8)0.0452 (9)0.0170 (7)0.0020 (6)0.0009 (6)0.0150 (6)
C15A0.0245 (7)0.0421 (9)0.0158 (7)0.0054 (6)0.0025 (6)0.0124 (6)
O1B0.0217 (5)0.0353 (6)0.0183 (5)0.0089 (4)0.0041 (4)0.0111 (4)
O2B0.0342 (6)0.0509 (7)0.0255 (6)0.0093 (5)0.0065 (5)0.0158 (5)
O3B0.0494 (7)0.0472 (7)0.0149 (6)0.0183 (6)0.0031 (5)0.0094 (5)
N1B0.0347 (7)0.0252 (6)0.0186 (7)0.0039 (5)0.0035 (5)0.0081 (5)
N2B0.0219 (6)0.0201 (5)0.0150 (6)0.0024 (4)0.0004 (4)0.0062 (4)
N3B0.0192 (6)0.0340 (6)0.0160 (6)0.0058 (5)0.0017 (5)0.0099 (5)
C1B0.0194 (6)0.0189 (6)0.0171 (7)0.0007 (5)0.0020 (5)0.0073 (5)
C2B0.0198 (6)0.0213 (6)0.0217 (7)0.0026 (5)0.0014 (5)0.0093 (5)
C3B0.0284 (7)0.0195 (6)0.0141 (7)0.0006 (5)0.0029 (6)0.0059 (5)
C4B0.0284 (7)0.0212 (6)0.0172 (7)0.0049 (5)0.0034 (6)0.0049 (5)
C5B0.0215 (6)0.0211 (6)0.0179 (7)0.0053 (5)0.0009 (5)0.0064 (5)
C6B0.0206 (6)0.0156 (6)0.0169 (7)0.0001 (5)0.0001 (5)0.0066 (5)
C7B0.0185 (6)0.0174 (6)0.0185 (7)0.0008 (5)0.0013 (5)0.0054 (5)
C8B0.0190 (6)0.0161 (6)0.0177 (7)0.0000 (5)0.0006 (5)0.0060 (5)
C9B0.0199 (6)0.0183 (6)0.0174 (7)0.0036 (5)0.0028 (5)0.0049 (5)
C10B0.0179 (6)0.0203 (6)0.0195 (7)0.0046 (5)0.0006 (5)0.0069 (5)
C11B0.0190 (6)0.0183 (6)0.0172 (7)0.0005 (5)0.0012 (5)0.0069 (5)
C12B0.0174 (6)0.0234 (6)0.0186 (7)0.0046 (5)0.0033 (5)0.0077 (5)
C13B0.0162 (6)0.0208 (6)0.0203 (7)0.0032 (5)0.0005 (5)0.0087 (5)
C14B0.0273 (7)0.0424 (9)0.0168 (7)0.0085 (6)0.0036 (6)0.0112 (6)
C15B0.0269 (7)0.0395 (8)0.0171 (7)0.0103 (6)0.0012 (6)0.0109 (6)
Geometric parameters (Å, º) top
O1A—C1A1.3532 (18)O1B—C1B1.3545 (17)
O1A—H1A0.85 (2)O1B—H1B0.84 (2)
O2A—N1A1.2339 (17)O2B—N1B1.2357 (18)
O3A—N1A1.2318 (18)O3B—N1B1.2268 (18)
N1A—C3A1.4566 (18)N1B—C3B1.4609 (18)
N2A—C7A1.2853 (19)N2B—C7B1.2827 (18)
N2A—C6A1.3966 (18)N2B—C6B1.4021 (18)
N3A—C11A1.3596 (19)N3B—C11B1.3605 (19)
N3A—C15A1.4542 (19)N3B—C15B1.4535 (18)
N3A—C14A1.4611 (19)N3B—C14B1.4569 (18)
C1A—C2A1.379 (2)C1B—C2B1.382 (2)
C1A—C6A1.4184 (19)C1B—C6B1.4132 (19)
C2A—C3A1.392 (2)C2B—C3B1.387 (2)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.389 (2)C3B—C4B1.391 (2)
C4A—C5A1.387 (2)C4B—C5B1.391 (2)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.3985 (19)C5B—C6B1.3960 (19)
C5A—H5AA0.9500C5B—H5BA0.9500
C7A—C8A1.441 (2)C7B—C8B1.444 (2)
C7A—H7AA0.9500C7B—H7BA0.9500
C8A—C9A1.4047 (19)C8B—C9B1.4002 (19)
C8A—C13A1.4083 (19)C8B—C13B1.4099 (19)
C9A—C10A1.375 (2)C9B—C10B1.378 (2)
C9A—H9AA0.9500C9B—H9BA0.9500
C10A—C11A1.418 (2)C10B—C11B1.4135 (19)
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.4245 (19)C11B—C12B1.4239 (19)
C12A—C13A1.371 (2)C12B—C13B1.372 (2)
C12A—H12A0.9500C12B—H12B0.9500
C13A—H13A0.9500C13B—H13B0.9500
C14A—H14A0.9800C14B—H14D0.9800
C14A—H14B0.9800C14B—H14E0.9800
C14A—H14C0.9800C14B—H14F0.9800
C15A—H15A0.9800C15B—H15D0.9800
C15A—H15B0.9800C15B—H15E0.9800
C15A—H15C0.9800C15B—H15F0.9800
C1A—O1A—H1A102.7 (15)C1B—O1B—H1B101.7 (14)
O3A—N1A—O2A122.88 (13)O3B—N1B—O2B123.00 (13)
O3A—N1A—C3A118.47 (12)O3B—N1B—C3B118.68 (12)
O2A—N1A—C3A118.63 (13)O2B—N1B—C3B118.32 (13)
C7A—N2A—C6A122.31 (12)C7B—N2B—C6B122.21 (12)
C11A—N3A—C15A120.42 (12)C11B—N3B—C15B120.50 (12)
C11A—N3A—C14A121.04 (12)C11B—N3B—C14B121.35 (12)
C15A—N3A—C14A117.87 (12)C15B—N3B—C14B118.08 (12)
O1A—C1A—C2A120.56 (12)O1B—C1B—C2B120.39 (12)
O1A—C1A—C6A117.96 (13)O1B—C1B—C6B118.22 (13)
C2A—C1A—C6A121.48 (13)C2B—C1B—C6B121.39 (13)
C1A—C2A—C3A117.87 (13)C1B—C2B—C3B117.73 (13)
C1A—C2A—H2AA121.1C1B—C2B—H2BA121.1
C3A—C2A—H2AA121.1C3B—C2B—H2BA121.1
C4A—C3A—C2A122.61 (13)C2B—C3B—C4B123.07 (13)
C4A—C3A—N1A119.16 (13)C2B—C3B—N1B118.07 (13)
C2A—C3A—N1A118.22 (12)C4B—C3B—N1B118.87 (13)
C5A—C4A—C3A118.76 (13)C3B—C4B—C5B118.20 (13)
C5A—C4A—H4AA120.6C3B—C4B—H4BA120.9
C3A—C4A—H4AA120.6C5B—C4B—H4BA120.9
C4A—C5A—C6A120.78 (13)C4B—C5B—C6B120.85 (13)
C4A—C5A—H5AA119.6C4B—C5B—H5BA119.6
C6A—C5A—H5AA119.6C6B—C5B—H5BA119.6
N2A—C6A—C5A129.15 (13)C5B—C6B—N2B128.86 (12)
N2A—C6A—C1A112.36 (12)C5B—C6B—C1B118.77 (13)
C5A—C6A—C1A118.49 (13)N2B—C6B—C1B112.37 (12)
N2A—C7A—C8A122.61 (13)N2B—C7B—C8B122.64 (13)
N2A—C7A—H7AA118.7N2B—C7B—H7BA118.7
C8A—C7A—H7AA118.7C8B—C7B—H7BA118.7
C9A—C8A—C13A117.62 (13)C9B—C8B—C13B117.45 (13)
C9A—C8A—C7A120.11 (12)C9B—C8B—C7B120.10 (12)
C13A—C8A—C7A122.28 (12)C13B—C8B—C7B122.44 (12)
C10A—C9A—C8A121.78 (13)C10B—C9B—C8B122.06 (13)
C10A—C9A—H9AA119.1C10B—C9B—H9BA119.0
C8A—C9A—H9AA119.1C8B—C9B—H9BA119.0
C9A—C10A—C11A120.89 (13)C9B—C10B—C11B120.62 (12)
C9A—C10A—H10A119.6C9B—C10B—H10B119.7
C11A—C10A—H10A119.6C11B—C10B—H10B119.7
N3A—C11A—C10A121.71 (13)N3B—C11B—C10B121.70 (12)
N3A—C11A—C12A121.19 (13)N3B—C11B—C12B120.93 (12)
C10A—C11A—C12A117.09 (13)C10B—C11B—C12B117.37 (13)
C13A—C12A—C11A121.23 (13)C13B—C12B—C11B121.09 (12)
C13A—C12A—H12A119.4C13B—C12B—H12B119.5
C11A—C12A—H12A119.4C11B—C12B—H12B119.5
C12A—C13A—C8A121.36 (13)C12B—C13B—C8B121.41 (12)
C12A—C13A—H13A119.3C12B—C13B—H13B119.3
C8A—C13A—H13A119.3C8B—C13B—H13B119.3
N3A—C14A—H14A109.5N3B—C14B—H14D109.5
N3A—C14A—H14B109.5N3B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
N3A—C14A—H14C109.5N3B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
N3A—C15A—H15A109.5N3B—C15B—H15D109.5
N3A—C15A—H15B109.5N3B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
N3A—C15A—H15C109.5N3B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
O1A—C1A—C2A—C3A179.99 (12)O1B—C1B—C2B—C3B179.84 (12)
C6A—C1A—C2A—C3A0.1 (2)C6B—C1B—C2B—C3B0.53 (19)
C1A—C2A—C3A—C4A0.2 (2)C1B—C2B—C3B—C4B0.1 (2)
C1A—C2A—C3A—N1A179.76 (11)C1B—C2B—C3B—N1B179.69 (12)
O3A—N1A—C3A—C4A2.13 (19)O3B—N1B—C3B—C2B174.00 (13)
O2A—N1A—C3A—C4A179.11 (13)O2B—N1B—C3B—C2B5.6 (2)
O3A—N1A—C3A—C2A177.50 (13)O3B—N1B—C3B—C4B5.6 (2)
O2A—N1A—C3A—C2A1.26 (19)O2B—N1B—C3B—C4B174.83 (13)
C2A—C3A—C4A—C5A0.0 (2)C2B—C3B—C4B—C5B0.6 (2)
N1A—C3A—C4A—C5A179.58 (12)N1B—C3B—C4B—C5B179.79 (12)
C3A—C4A—C5A—C6A0.5 (2)C3B—C4B—C5B—C6B0.5 (2)
C7A—N2A—C6A—C5A0.7 (2)C4B—C5B—C6B—N2B179.40 (13)
C7A—N2A—C6A—C1A179.33 (12)C4B—C5B—C6B—C1B0.1 (2)
C4A—C5A—C6A—N2A179.26 (13)C7B—N2B—C6B—C5B3.0 (2)
C4A—C5A—C6A—C1A0.7 (2)C7B—N2B—C6B—C1B177.45 (12)
O1A—C1A—C6A—N2A0.45 (17)O1B—C1B—C6B—C5B179.73 (11)
C2A—C1A—C6A—N2A179.45 (12)C2B—C1B—C6B—C5B0.6 (2)
O1A—C1A—C6A—C5A179.58 (12)O1B—C1B—C6B—N2B0.71 (17)
C2A—C1A—C6A—C5A0.5 (2)C2B—C1B—C6B—N2B178.93 (12)
C6A—N2A—C7A—C8A179.89 (11)C6B—N2B—C7B—C8B178.80 (11)
N2A—C7A—C8A—C9A179.16 (12)N2B—C7B—C8B—C9B179.07 (13)
N2A—C7A—C8A—C13A1.0 (2)N2B—C7B—C8B—C13B0.2 (2)
C13A—C8A—C9A—C10A0.6 (2)C13B—C8B—C9B—C10B0.6 (2)
C7A—C8A—C9A—C10A179.49 (12)C7B—C8B—C9B—C10B179.44 (12)
C8A—C9A—C10A—C11A0.1 (2)C8B—C9B—C10B—C11B0.3 (2)
C15A—N3A—C11A—C10A4.0 (2)C15B—N3B—C11B—C10B0.7 (2)
C14A—N3A—C11A—C10A174.38 (13)C14B—N3B—C11B—C10B176.16 (13)
C15A—N3A—C11A—C12A177.25 (13)C15B—N3B—C11B—C12B179.00 (13)
C14A—N3A—C11A—C12A6.9 (2)C14B—N3B—C11B—C12B4.1 (2)
C9A—C10A—C11A—N3A177.64 (13)C9B—C10B—C11B—N3B179.46 (12)
C9A—C10A—C11A—C12A1.2 (2)C9B—C10B—C11B—C12B0.80 (19)
N3A—C11A—C12A—C13A177.30 (12)N3B—C11B—C12B—C13B179.83 (12)
C10A—C11A—C12A—C13A1.5 (2)C10B—C11B—C12B—C13B0.43 (19)
C11A—C12A—C13A—C8A0.8 (2)C11B—C12B—C13B—C8B0.5 (2)
C9A—C8A—C13A—C12A0.29 (19)C9B—C8B—C13B—C12B0.94 (19)
C7A—C8A—C13A—C12A179.84 (12)C7B—C8B—C13B—C12B179.79 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N2A0.85 (2)1.99 (2)2.5860 (16)126 (2)
O1A—H1A···O1Ai0.85 (2)2.41 (2)2.8738 (16)114.7 (19)
O1B—H1B···N2B0.84 (2)1.993 (19)2.5896 (16)127.5 (19)
O1B—H1B···O1Bii0.84 (2)2.45 (2)2.8853 (15)113.7 (17)
C7B—H7BA···O1Biii0.952.583.1870 (17)122
C15A—H15C···O3Aiv0.982.593.3989 (19)141
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N2A0.85 (2)1.99 (2)2.5860 (16)126 (2)
O1A—H1A···O1Ai0.85 (2)2.41 (2)2.8738 (16)114.7 (19)
O1B—H1B···N2B0.84 (2)1.993 (19)2.5896 (16)127.5 (19)
O1B—H1B···O1Bii0.84 (2)2.45 (2)2.8853 (15)113.7 (17)
C7B—H7BA···O1Biii0.952.583.1870 (17)122
C15A—H15C···O3Aiv0.982.593.3989 (19)141
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x1, y, z1.
 

Footnotes

Present Address: Department of Chemistry and Earth Sciences, Qatar University, PO Box 2713, Doha, Qatar.

Acknowledgements

YH thanks the Department of Chemistry and Earth Sciences at Qatar University for support. RJB acknowledges the National Science Foundation MRI program (CHE0619278) for funds to purchase the diffractometer and the Howard University Nanoscience Facility for access to liquid nitro­gen.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationGül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHijji, Y. M., Barare, B., Kennedy, A. P. & Butcher, R. (2009). Sens. Actuators B Chem. 136, 297–302.  Web of Science CrossRef CAS Google Scholar
First citationHijji, Y., Azemati, S., Butcher, R. J. & Jasinski, J. P. (2014). Acta Cryst. E70, o451–o452.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuñoz, B. M., Santillan, R., Rodríguez, M., Méndez, J. M., Romero, M., Farfán, N., Lacroix, P. G., Nakatani, K., Ramos-Ortíz, G. & Maldonado, J. L. (2008). J. Organomet. Chem. 693, 1321–1334.  Google Scholar
First citationReyes, H., García, C., Farfán, N., Santillan, R., Lacroix, P. G., Lepetit, C. & Nakatani, K. (2004). J. Organomet. Chem. 689, 2303–2310.  Web of Science CSD CrossRef CAS Google Scholar
First citationRodríguez, M., Maldonado, J. L., Ramos-Ortíz, G., Domínguez, O., Ochoa, M. E., Santillan, R., Farfán, N., Meneses-Nava, M. A. & Barbosa-García, O. (2012). Polyhedron, 43, 194–200.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValkonen, A., Kolehmainen, E., Grzegórska, A., Ośmiałowski, B., Gawinecki, R. & Rissanen, K. (2012). Acta Cryst. C68, o279–o282.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o598-o599
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds