organic compounds
O-Ethyl S-{(S)-1-oxo-1-[(R)-2-oxo-4-phenyloxazolidin-3-yl]propan-2-yl} carbonodithioate
aÁrea Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de La Reforma, Hidalgo, CP 42076, Mexico, and bInstituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, CP 58000, Mexico
*Correspondence e-mail: jpgarciam@gmail.com
In the title compound, C15H17NO4S2, synthesized by addition of O-ethylxanthic acid potassium salt to a diastereomeric mixture of (4R)-3-(2-chloropropanoyl)-4-phenyloxazolidin-2-one, the oxazolidinone ring has a twist conformation on the C—C bond. The phenyl ring is inclined to the mean plane of the oxazolidinone ring by 76.4 (3)°. In the chain the methine H atom is involved in a C—H⋯S and a C—H⋯O intramolecular interaction. In the crystal, molecules are linked by C—H⋯π interactions, forming chains along [001]. The S configuration at the C atom to which the xanthate group is attached was determined by comparison to the known R configuration of the C atom to which the phenyl group is attached.
CCDC reference: 995594
Related literature
For the use of chiral oxazolidinones auxiliaries in ); Ager et al. (1997). For the oral activity of oxazolidinonas against multidrug-resistant Gram-positive bacteria, see: Müller & Schimz (1999). For our work on the synthesis of novel see for example: López-Ruiz et al. (2011). For the crystal structures of similar compounds, see: Bartczak et al. (2001); Kruszynski et al. (2001); Wouters et al. (1997). For the crystal structures of 3,4-disubstituted oxazolidinone derivatives, see: Marsh et al. (1992); Evain et al. (2002); Hwang et al. (2006). For standard bond lengths, see: Allen et al. (1987). For ring puckering analysis, see: Cremer & Pople (1975).
see: Evans (1982Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 1999); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 995594
10.1107/S1600536814007636/su2715sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814007636/su2715Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814007636/su2715Isup3.cml
For the preparation of the title compound, a solution of (4R)-4-phenyloxazolidin-2-one (10.70 mmol) in distilled THF (25 ml) was cooled to 195 K under a nitrogen atmosphere, and a solution of n-butyllithium in hexane (12.95 mmol) was added dropwise. After 2-chloropropanoyl chloride (10.79 mmol) was introduced dropwise and stirring was continued at 195 K for 6 h. Then the reaction mixture was diluted with
of NH3SO4 and extracted with dichloromethane (3 × 10 ml). The combined organic layers were washed with water and brine, dried over anhydrous Na2SO4 and concentrated under vacuum. Purification by column on silica gel (eluent: hexane/ethyl acetate 9:1) gave the diastereomeric mixture of (4R)-3- (2-Chloropropanoyl)-4-phenyloxazolidin-2-one in 98% yield. To a solution of this diastereomeric mixture (31.19 mmol) in acetone at 273 K was added the O-Ethylxanthic acid potassium salt (46.78 mmol) and the reaction was stirred at room temperature for 12 h. Then the reaction mixture was diluted with a of NH3SO4 and extracted with dichloromethane (3 × 10 ml). The organic layer was dried over anhydrous Na2SO4 and concentrated under vacuum. Purification by column on silica gel (eluent: hexane/ethyl acetate 9:1) gave the diastereomeric mixture of (4R)-3-((2R)-(2-O-Ethyl carbonodithioate) propanoyl)-4-phenyloxazolidin-2-one in a 77% of yield. Block-like colourless crystals of the title compound were obtained by slow evaporation of an hexane/ethyl acetate (9:1) solution. Spectroscopic data for the title compound are available in the archived CIF.The H atoms were inlcuded in calculated positions and treated as riding atoms: C-H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.
Data collection: SMART (Bruker, 1999); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).C15H17NO4S2 | F(000) = 356 |
Mr = 339.42 | Dx = 1.369 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 1321 reflections |
a = 10.8558 (15) Å | θ = 1.7–26.0° |
b = 6.1867 (9) Å | µ = 0.34 mm−1 |
c = 12.3057 (17) Å | T = 293 K |
β = 94.911 (4)° | Block, colourless |
V = 823.4 (2) Å3 | 0.2 × 0.17 × 0.16 mm |
Z = 2 |
Bruker SMART CCD diffractometer | 1681 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.152 |
Graphite monochromator | θmax = 26.0°, θmin = 1.7° |
ϕ and ω scans | h = −13→13 |
10191 measured reflections | k = −7→7 |
3223 independent reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.067 | H-atom parameters constrained |
wR(F2) = 0.191 | w = 1/[σ2(Fo2) + (0.0945P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.87 | (Δ/σ)max < 0.001 |
3223 reflections | Δρmax = 0.38 e Å−3 |
201 parameters | Δρmin = −0.35 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 6968 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.08 (18) |
C15H17NO4S2 | V = 823.4 (2) Å3 |
Mr = 339.42 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 10.8558 (15) Å | µ = 0.34 mm−1 |
b = 6.1867 (9) Å | T = 293 K |
c = 12.3057 (17) Å | 0.2 × 0.17 × 0.16 mm |
β = 94.911 (4)° |
Bruker SMART CCD diffractometer | 1681 reflections with I > 2σ(I) |
10191 measured reflections | Rint = 0.152 |
3223 independent reflections |
R[F2 > 2σ(F2)] = 0.067 | H-atom parameters constrained |
wR(F2) = 0.191 | Δρmax = 0.38 e Å−3 |
S = 0.87 | Δρmin = −0.35 e Å−3 |
3223 reflections | Absolute structure: Flack (1983), 6968 Friedel pairs |
201 parameters | Absolute structure parameter: 0.08 (18) |
1 restraint |
Experimental. Spectroscopic data for the title compound: 1H NMR (400 MHz, CDCl3)δ: 7.2 (m, 5H, CH, arom), 5.6 (q, 1H, CH (H-4), J= 7.3 Hz), 5.4 (dd, CH (H-9), J1= 3.2 Hz, J2=8.6 Hz), 4.7 (t, 1H (H-8a), CH2, J= 8.8 Hz), 4.6 (m, 2H, CH2(H-2)), 4.3 (dd, 1H (H-8 b), J1= 3.2 Hz, J2= 8.6 Hz), 1.4 (d,3H,CH3 (H-5), J= 7.3 Hz), 1.4 (t, 3H,CH3 (H-1), J= 7.3 Hz); 13C NMR (100 MHz, CDCl3) δ: 213 (CS), 171.05 (CO), 153.53 (CO), 138.74 (C), 129.33 (CH), 128.93 (2CH), 125.90 (CH), 70.35 (2CH2), 58.03 (CH), 57.94 (CH), 47.20 (CH), 15.80 (CH3), 13.60 (CH3). |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8431 (7) | 0.9153 (19) | 1.0271 (7) | 0.101 (3) | |
H1A | 0.8415 | 0.9226 | 0.9491 | 0.151* | |
H1B | 0.9209 | 0.9693 | 1.0591 | 0.151* | |
H1C | 0.7772 | 1.0015 | 1.0513 | 0.151* | |
C2 | 0.8275 (6) | 0.6889 (16) | 1.0609 (6) | 0.082 (2) | |
H2A | 0.8932 | 0.6011 | 1.0354 | 0.098* | |
H2B | 0.8328 | 0.6804 | 1.1399 | 0.098* | |
C3 | 0.6967 (6) | 0.5034 (10) | 0.9216 (5) | 0.0560 (17) | |
C4 | 0.5331 (5) | 0.2814 (10) | 0.7734 (5) | 0.0479 (15) | |
H4 | 0.6011 | 0.3210 | 0.7298 | 0.057* | |
C5 | 0.5440 (7) | 0.0432 (10) | 0.8030 (6) | 0.069 (2) | |
H5A | 0.4763 | 0.0023 | 0.8439 | 0.103* | |
H5B | 0.6206 | 0.0185 | 0.8462 | 0.103* | |
H5C | 0.5421 | −0.0415 | 0.7375 | 0.103* | |
C6 | 0.4117 (6) | 0.3295 (9) | 0.7086 (5) | 0.0459 (14) | |
C7 | 0.4827 (6) | 0.1846 (9) | 0.5343 (5) | 0.0481 (15) | |
C8 | 0.2958 (6) | 0.1740 (13) | 0.4298 (5) | 0.0613 (17) | |
H8A | 0.2566 | 0.0348 | 0.4153 | 0.074* | |
H8B | 0.2653 | 0.2748 | 0.3734 | 0.074* | |
C9 | 0.2687 (5) | 0.2584 (10) | 0.5439 (4) | 0.0458 (14) | |
H9 | 0.2434 | 0.4104 | 0.5388 | 0.055* | |
C10 | 0.1727 (5) | 0.1287 (9) | 0.5970 (4) | 0.0420 (14) | |
C11 | 0.0555 (5) | 0.2134 (10) | 0.6019 (5) | 0.0516 (16) | |
H11 | 0.0357 | 0.3479 | 0.5715 | 0.062* | |
C12 | −0.0328 (6) | 0.0959 (11) | 0.6529 (6) | 0.0632 (19) | |
H12 | −0.1116 | 0.1528 | 0.6567 | 0.076* | |
C13 | −0.0047 (6) | −0.1024 (13) | 0.6975 (5) | 0.066 (2) | |
H13 | −0.0641 | −0.1776 | 0.7324 | 0.080* | |
C14 | 0.1105 (7) | −0.1919 (11) | 0.6912 (6) | 0.0673 (19) | |
H14 | 0.1292 | −0.3279 | 0.7204 | 0.081* | |
C15 | 0.1990 (5) | −0.0740 (13) | 0.6399 (5) | 0.0583 (15) | |
H15 | 0.2770 | −0.1332 | 0.6346 | 0.070* | |
N1 | 0.3934 (4) | 0.2412 (7) | 0.6027 (4) | 0.0423 (11) | |
O1 | 0.7069 (4) | 0.6056 (9) | 1.0155 (4) | 0.0770 (15) | |
O2 | 0.3286 (4) | 0.4268 (9) | 0.7448 (3) | 0.0631 (11) | |
O3 | 0.5918 (4) | 0.1651 (7) | 0.5559 (4) | 0.0566 (12) | |
O4 | 0.4291 (4) | 0.1544 (7) | 0.4330 (3) | 0.0551 (11) | |
S1 | 0.80766 (14) | 0.4339 (4) | 0.84599 (14) | 0.0760 (6) | |
S2 | 0.53803 (14) | 0.4534 (3) | 0.89279 (13) | 0.0631 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.068 (5) | 0.143 (8) | 0.091 (6) | −0.024 (6) | −0.002 (4) | 0.019 (7) |
C2 | 0.054 (4) | 0.126 (8) | 0.063 (4) | 0.001 (4) | −0.010 (4) | −0.019 (5) |
C3 | 0.049 (3) | 0.072 (5) | 0.046 (4) | 0.001 (3) | 0.002 (3) | 0.003 (3) |
C4 | 0.040 (3) | 0.054 (4) | 0.051 (3) | 0.004 (3) | 0.011 (3) | −0.003 (3) |
C5 | 0.081 (5) | 0.067 (5) | 0.057 (4) | 0.006 (4) | 0.000 (4) | 0.006 (3) |
C6 | 0.048 (3) | 0.043 (3) | 0.048 (4) | −0.006 (3) | 0.011 (3) | −0.002 (3) |
C7 | 0.057 (4) | 0.038 (3) | 0.051 (4) | −0.003 (3) | 0.016 (3) | 0.002 (3) |
C8 | 0.053 (4) | 0.083 (5) | 0.048 (4) | −0.002 (3) | 0.005 (3) | −0.002 (4) |
C9 | 0.041 (3) | 0.050 (3) | 0.046 (3) | −0.002 (3) | 0.005 (3) | 0.002 (3) |
C10 | 0.045 (3) | 0.039 (3) | 0.042 (3) | −0.004 (3) | 0.003 (3) | −0.003 (3) |
C11 | 0.049 (4) | 0.056 (4) | 0.049 (4) | 0.007 (3) | 0.003 (3) | −0.002 (3) |
C12 | 0.040 (3) | 0.076 (5) | 0.075 (5) | −0.007 (4) | 0.010 (3) | −0.013 (4) |
C13 | 0.056 (4) | 0.085 (6) | 0.060 (4) | −0.034 (4) | 0.016 (3) | −0.003 (4) |
C14 | 0.060 (4) | 0.070 (5) | 0.071 (4) | −0.009 (4) | 0.000 (4) | 0.007 (4) |
C15 | 0.042 (3) | 0.060 (4) | 0.073 (4) | −0.001 (4) | 0.010 (3) | −0.003 (4) |
N1 | 0.034 (2) | 0.050 (3) | 0.044 (3) | 0.000 (2) | 0.009 (2) | 0.000 (2) |
O1 | 0.049 (3) | 0.116 (4) | 0.065 (3) | −0.009 (3) | 0.003 (2) | −0.028 (3) |
O2 | 0.047 (2) | 0.088 (3) | 0.055 (2) | 0.014 (3) | 0.0065 (19) | −0.019 (3) |
O3 | 0.044 (3) | 0.065 (3) | 0.063 (3) | 0.006 (2) | 0.015 (2) | −0.006 (2) |
O4 | 0.059 (3) | 0.061 (3) | 0.047 (3) | −0.001 (2) | 0.017 (2) | −0.004 (2) |
S1 | 0.0462 (9) | 0.1207 (15) | 0.0621 (10) | −0.0011 (13) | 0.0095 (7) | −0.0115 (13) |
S2 | 0.0438 (8) | 0.0872 (12) | 0.0585 (9) | −0.0036 (10) | 0.0067 (7) | −0.0216 (10) |
C1—C2 | 1.475 (13) | C7—O4 | 1.344 (7) |
C1—H1A | 0.9600 | C7—N1 | 1.382 (7) |
C1—H1B | 0.9600 | C8—O4 | 1.449 (8) |
C1—H1C | 0.9600 | C8—C9 | 1.550 (8) |
C2—O1 | 1.472 (8) | C8—H8A | 0.9700 |
C2—H2A | 0.9700 | C8—H8B | 0.9700 |
C2—H2B | 0.9700 | C9—N1 | 1.483 (7) |
C3—O1 | 1.313 (7) | C9—C10 | 1.507 (8) |
C3—S1 | 1.642 (6) | C9—H9 | 0.9800 |
C3—S2 | 1.756 (6) | C10—C15 | 1.381 (9) |
C4—C6 | 1.511 (8) | C10—C11 | 1.383 (8) |
C4—C5 | 1.520 (8) | C11—C12 | 1.395 (9) |
C4—S2 | 1.811 (6) | C11—H11 | 0.9300 |
C4—H4 | 0.9800 | C12—C13 | 1.367 (10) |
C5—H5A | 0.9600 | C12—H12 | 0.9300 |
C5—H5B | 0.9600 | C13—C14 | 1.376 (10) |
C5—H5C | 0.9600 | C13—H13 | 0.9300 |
C6—O2 | 1.201 (7) | C14—C15 | 1.399 (9) |
C6—N1 | 1.411 (7) | C14—H14 | 0.9300 |
C7—O3 | 1.198 (8) | C15—H15 | 0.9300 |
C2—C1—H1A | 109.5 | C9—C8—H8A | 110.6 |
C2—C1—H1B | 109.5 | O4—C8—H8B | 110.6 |
H1A—C1—H1B | 109.5 | C9—C8—H8B | 110.6 |
C2—C1—H1C | 109.5 | H8A—C8—H8B | 108.7 |
H1A—C1—H1C | 109.5 | N1—C9—C10 | 112.7 (5) |
H1B—C1—H1C | 109.5 | N1—C9—C8 | 100.5 (4) |
O1—C2—C1 | 110.2 (6) | C10—C9—C8 | 113.9 (5) |
O1—C2—H2A | 109.6 | N1—C9—H9 | 109.8 |
C1—C2—H2A | 109.6 | C10—C9—H9 | 109.8 |
O1—C2—H2B | 109.6 | C8—C9—H9 | 109.8 |
C1—C2—H2B | 109.6 | C15—C10—C11 | 119.2 (5) |
H2A—C2—H2B | 108.1 | C15—C10—C9 | 121.4 (5) |
O1—C3—S1 | 127.9 (5) | C11—C10—C9 | 119.3 (5) |
O1—C3—S2 | 105.7 (4) | C10—C11—C12 | 119.5 (6) |
S1—C3—S2 | 126.4 (4) | C10—C11—H11 | 120.2 |
C6—C4—C5 | 111.4 (5) | C12—C11—H11 | 120.2 |
C6—C4—S2 | 106.1 (4) | C13—C12—C11 | 120.6 (6) |
C5—C4—S2 | 112.3 (5) | C13—C12—H12 | 119.7 |
C6—C4—H4 | 109.0 | C11—C12—H12 | 119.7 |
C5—C4—H4 | 109.0 | C12—C13—C14 | 120.8 (6) |
S2—C4—H4 | 109.0 | C12—C13—H13 | 119.6 |
C4—C5—H5A | 109.5 | C14—C13—H13 | 119.6 |
C4—C5—H5B | 109.5 | C13—C14—C15 | 118.5 (7) |
H5A—C5—H5B | 109.5 | C13—C14—H14 | 120.7 |
C4—C5—H5C | 109.5 | C15—C14—H14 | 120.7 |
H5A—C5—H5C | 109.5 | C10—C15—C14 | 121.3 (6) |
H5B—C5—H5C | 109.5 | C10—C15—H15 | 119.4 |
O2—C6—N1 | 119.1 (5) | C14—C15—H15 | 119.4 |
O2—C6—C4 | 123.5 (5) | C7—N1—C6 | 127.6 (5) |
N1—C6—C4 | 117.3 (5) | C7—N1—C9 | 112.3 (5) |
O3—C7—O4 | 122.3 (5) | C6—N1—C9 | 118.2 (4) |
O3—C7—N1 | 128.5 (6) | C3—O1—C2 | 120.5 (5) |
O4—C7—N1 | 109.3 (5) | C7—O4—C8 | 111.5 (5) |
O4—C8—C9 | 105.7 (5) | C3—S2—C4 | 103.2 (3) |
O4—C8—H8A | 110.6 | ||
C5—C4—C6—O2 | 108.2 (7) | O3—C7—N1—C9 | 177.2 (6) |
S2—C4—C6—O2 | −14.3 (7) | O4—C7—N1—C9 | −1.9 (6) |
C5—C4—C6—N1 | −67.3 (7) | O2—C6—N1—C7 | 158.5 (6) |
S2—C4—C6—N1 | 170.3 (4) | C4—C6—N1—C7 | −25.8 (8) |
O4—C8—C9—N1 | −8.7 (6) | O2—C6—N1—C9 | −4.6 (8) |
O4—C8—C9—C10 | −129.5 (5) | C4—C6—N1—C9 | 171.1 (5) |
N1—C9—C10—C15 | −40.0 (8) | C10—C9—N1—C7 | 128.3 (5) |
C8—C9—C10—C15 | 73.6 (7) | C8—C9—N1—C7 | 6.7 (6) |
N1—C9—C10—C11 | 140.7 (5) | C10—C9—N1—C6 | −66.1 (6) |
C8—C9—C10—C11 | −105.7 (6) | C8—C9—N1—C6 | 172.3 (5) |
C15—C10—C11—C12 | 1.9 (9) | S1—C3—O1—C2 | 5.3 (10) |
C9—C10—C11—C12 | −178.7 (5) | S2—C3—O1—C2 | −175.1 (6) |
C10—C11—C12—C13 | −0.3 (10) | C1—C2—O1—C3 | 92.6 (8) |
C11—C12—C13—C14 | −1.2 (10) | O3—C7—O4—C8 | 176.3 (6) |
C12—C13—C14—C15 | 1.1 (10) | N1—C7—O4—C8 | −4.5 (6) |
C11—C10—C15—C14 | −2.0 (9) | C9—C8—O4—C7 | 8.6 (7) |
C9—C10—C15—C14 | 178.6 (6) | O1—C3—S2—C4 | −172.4 (5) |
C13—C14—C15—C10 | 0.5 (10) | S1—C3—S2—C4 | 7.2 (5) |
O3—C7—N1—C6 | 13.3 (10) | C6—C4—S2—C3 | −149.4 (4) |
O4—C7—N1—C6 | −165.8 (5) | C5—C4—S2—C3 | 88.8 (5) |
Cg is the centroid of the C10–C15 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···S1 | 0.98 | 2.65 | 3.180 (9) | 114 |
C4—H4···O3 | 0.98 | 2.34 | 2.895 (10) | 115 |
C2—H2B···Cgi | 0.97 | 2.90 | 3.807 (8) | 156 |
Symmetry code: (i) −x+1, y+1/2, −z+2. |
Cg is the centroid of the C10–C15 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···S1 | 0.98 | 2.65 | 3.180 (9) | 114 |
C4—H4···O3 | 0.98 | 2.34 | 2.895 (10) | 115 |
C2—H2B···Cgi | 0.97 | 2.90 | 3.807 (8) | 156 |
Symmetry code: (i) −x+1, y+1/2, −z+2. |
Acknowledgements
Financial support from CONACYT (project No. 183980) and CIC–UMSNH is gratefully acknowledged. JM is grateful to CONACYT for a scholarship (grant: 186053) to support his studies. YLC is grateful to CONACYT (project No. 183980) for providing a license to use the Cambridge Structural Database. We are indebted to Dr Rosa Santillan and Marco A. Leyva-Ramírez (CINVESTAV–IPN) for helpful discussions.
References
Ager, D. J., Prakash, I. & Schaad, D. R. (1997). Aldrichim. Acta, 30, 3–12. CAS Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bartczak, T. J., Kruszynski, R., Chilmonczyk, Z. & Cybulski, J. (2001). Acta Cryst. E57, o341–o343. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Evain, M., Pauvert, M., Collet, S. & Guingant, A. (2002). Acta Cryst. E58, o1121–o1122. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Evans, D. A. (1982). Aldrichim. Acta, 15, 23–32. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hwang, I.-C., Jang, J. H., Kim, T. H. & Ha, K. (2006). Acta Cryst. C62, o196–o198. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kruszynski, R., Bartczak, T. J., Chilmonczyk, Z. & Cybulski, J. (2001). Acta Cryst. E57, o469–o471. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
López-Ruiz, H., Cortés-Hernández, M., Rojas-Lima, S. & Höpfl, H. (2011). J. Mex. Chem. Soc. 55, 168–175. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marsh, R. E., Schaefer, W. P., Kukkola, P. J. & Myers, A. G. (1992). Acta Cryst. C48, 1622–1624. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Müller, M. & Schimz, K.-L. (1999). Cell. Mol. Life Sci. 56, 280–285. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wouters, J., Ooms, F. & Durant, F. (1997). Acta Cryst. C53, 895–897. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Oxazolidinones and their derivatives show interesting chemical and biological activities. The use of chiral oxazolidinones auxiliaries in asymmetric synthesis has found wide application in a variety of stereoselective reactions over the last two decades (Evans, 1982; Ager et al., 1997). In addition oxazolidinonas represent a novel class of synthetic antimicrobial agents, the most promising feature of these compounds is their oral activity against multidrug-resistant Gram-positive bacteria which have created tremendous therapeutic problems in recent years (Müller et al., 1999). Based on this, and as part of our ongoing research program directed toward the synthesis of novel heterocyclic compounds (see for example: López-Ruiz et al., 2011) we report herein on the use of (R)-4-phenyloxazolidin-2-one for the synthesis of the title xanthate-oxazilidinone derivative, which has potential applications as a chiral auxiliary in asymmetric reactions.
The title compound was obtained by addition of O-Ethylxanthic acid potassium salt to a diastereomeric mixture of (4R)-3-(2-Chloropropanoyl)-4-phenyloxazolidin-2-one in acetone.
The absolute configuration of the newly created stereogenic carbon, C4, could be deduced from the relative configuration of carbon atom C9, see Fig. 1. The oxazolidinone ring has a twisted conformation on bond C9—C8 [puckering parameters (Cremer & Pople, 1975), ϕ = 313 (4)°] similar to the twisted conformation on bond C6—C8 for the axazolidinone ring in the 3-amino-2-oxazolidinone derivatives [ϕ = 53.6174° and ϕ = 54.0837°] (Bartczak et al., 2001; Kruszynski et al., 2001) and the same conformation was observed for unsubstituted 2-oxazolidinone (Wouters et al., 1997).
The bond angles around atom N1 in the oxazolidinone ring are in agreement with the observed tendencies for the bond angles in 3,4-disustituted oxazolidinone derivatives (Marsh et al., 1992; Evain et al., 2002; Hwang et al., 2006). The C9—N1, C7—N1 and C6—N1 bond distances, 1.483 (7), 1.382 (8) and 1.411 (8) Å, respectively, are slightly longer than the average values reported for Csp3—N(3) and Csp2—N(3) in γ-lactams [C*—N(—C*)—C=O (endo) = 1.462 and C*—N(—C*)—C=O = 1.347 Å respectively] (Allen et al., 1987).
The C7═O3 bond length 1.198 (8) Å is slightly shorter than a Csp2=O(1) in γ-lactams [C*—N(—C*)—C=O = 1.225 Å] and close to normal Csp2=O(1) in γ-lactones [C*—C(=O)—O—C* = 1.201 Å]. The C8—O4 bond, 1.449 (8) is slightly shorter than the Csp3—O(2) [C*—O—C(=O) = 1.464 Å] in γ-lactones while C7—O4 bond 1.343 (7) Å is close to normal Csp2=O(2) in γ-lactones [C*—C(═O)—O—C* = 1.350 Å]. Moreover the C4—S2 and C3=S1 bond distances are 1.811 (6) and 1.642 (7) Å respectively being slightly shorter than Csp3—S(2) and Csp2═S(1) [C—CH—S—C = 1.819 and (X)2—C═S (X = C, N, O, S) = 1.671 Å, respectively].
In the crystal, molecules are linked via C-H···π interactions forming zigzag chains along [001]; (Table 1 and Fig. 2).