organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o622-o623

3-[(4-Phen­­oxy­phen­yl)sulfan­yl]-5-phenyl-1H-1,2,4-triazole

aÉcole Supérieure des Sciences et de Technologie de Hammam Sousse (ESST), Rue Lamine Abassi 4011 Hammam Sousse, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et l'Environnement (LACReSNE), Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte, Tunisia, bInstitut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, BP 6759, 45067 Orléans Cedex 2, France, and cICMCB CNRS UPR 9048, Université de Bordeaux, 87 Avenue du Docteur Schweitzer, 33608 Pessac Cedex, France
*Correspondence e-mail: marchivie@icmcb-bordeaux.cnrs.fr

(Received 24 March 2014; accepted 11 April 2014; online 30 April 2014)

The title compound, C20H15N3OS, is V-shaped. In the 4-phen­oxy­phenyl group, the two rings are inclined to one another by 74.52 (13)°. These rings are inclined to the triazole ring by 72.20 (15) and 72.30 (15)°, respectively. The phenyl ring is inclined to the triazole ring by 10.85 (12)°. In the crystal, mol­ecules are linked via N—H⋯N hydrogen bonds, forming chains propagating along [010]. These chains are linked via pairs of C—H⋯S hydrogen bonds, forming sheets lying parallel to the ac plane.

Related literature

For the synthesis, properties and various biological activities of functionalizated 1,2,4-triazole derivatives, see: Holla et al. (2002[Holla, B. S., Poojary, K. N., Rao, B. S. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511-517.], 2003[Holla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759-767.]); Walczak et al. (2004[Walczak, K., Gondela, A. & Suwinski, J. (2004). Eur. J. Med. Chem. 39, 849-853.]); Zitouni et al. (2005[Zitouni, G. T., Kaplancikli, Z. A., Yildiz, M. T., Chevallet, P. & Kaya, D. (2005). Eur. J. Med. Chem. 40, 607-613.]); Prasad et al. (2009[Prasad, D. J., Ashok, M., Karegoudar, P., Boja, P., Holla, B. S. & SuchetaKumari, N. (2009). Eur. J. Med. Chem. 44, 551-557.]); Wael et al. (2012[Wael, A. El.-S., Omar, M. A., Hend, A. H. & Adel, A. H. A. (2012). Chin. J. Chem. 30, 77-83.]); Almasirad et al. (2004[Almasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezadeh, A., Mehrabi, N., Dalvandi, A. & Shafiee, A. (2004). Bioorg. Med. Chem. Lett. 14, 6057-60059.]); Amir & Shikha (2004[Amir, M. & Shikha, K. (2004). Eur. J. Med. Chem. 39, 535-545.]); Kane et al. (1988[Kane, J. M., Dudley, M. W., Sorensen, S. M. & Miller, F. P. (1988). J. Med. Chem. 31, 1253-1258.]); Akhtar et al. (2010[Akhtar, T., Hameed, K., Khan, K. M., Khan, A. & Choudhary, M. I. (2010). J. Enz. Inhib. Med. Chem. 25, 572-576.]). For the crystal structures of related N-free triazole derivatives, see for example: Qadeer et al. (2007[Qadeer, G., Rama, N. H., Zareef, M. & Li, X.-H. (2007). Acta Cryst. E63, o88-o89.]); and for N-subsituted derivatives, see for example: Zhao et al. (2010[Zhao, B., Liu, Z., Gao, Y., Song, B. & Deng, Q. (2010). Acta Cryst. E66, o2814.]); Wu et al. (2009[Wu, D.-Z., Liu, M.-C., Wu, H.-Y., Huang, X.-B. & Li, J.-J. (2009). Acta Cryst. E65, o676.]). Working with sulfur-containing heterocycles may provide unexpected results and the title compound was obtained within an unprecedented series of results, see: Ben Othman et al. (2014[Ben Othman, R., Massip, S., Marchivie, M., Jarry, C., Vercouillie, J., Chalon, S., Guillaumet, G., Suzenet, F. & Routier, S. (2014). Eur. J. Org. Chem. In the press. doi:10.1002/ejoc.201402193.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N3OS

  • Mr = 345.41

  • Monoclinic, P 21 /n

  • a = 16.6112 (12) Å

  • b = 5.8445 (5) Å

  • c = 17.5415 (10) Å

  • β = 93.131 (5)°

  • V = 1700.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.12 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.932, Tmax = 0.976

  • 44120 measured reflections

  • 3099 independent reflections

  • 2333 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.152

  • S = 1.02

  • 3099 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2i 0.91 (3) 2.05 (3) 2.944 (3) 170 (2)
C16—H16⋯S1ii 0.93 2.77 3.694 (2) 170
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y, -z.

Data collection: COLLECT (Bruker–Nonius, 1998)[Bruker-Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]; cell refinement: DIRAX/LSQ (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

From a medicinal chemistry point of view, it is of great interest to develop efficient methods for the synthesis and the functionalization of 1,2,4-triazoles, as they are known to possess a wide range of biological activities, such as, as anticancer (Holla et al., 2002, 2003) antitubercular (Walczak et al., 2004), antimicrobial (Zitouni et al., 2005; Prasad et al., 2009; Wael et al., 2012), anticonvulsant (Almasirad et al., 2004), anti-inflammatory, analgesic (Amir & Shikha, 2004), antidepressant (Kane et al., 1988), and urease inhibitors (Akhtar et al., 2010). Thus, the synthesis of 1,2,4-triazoles and the investigation of their chemical and biological behaviour have acquired more importance in recent decades for these reasons.

An efficient and convenient method was developed for the formation of substituted thiotriazoles via an organometallic addition and subsequent ring opening sequence of 3-substituted-[1,2,4]triazolo[3,4-][1,3,4]thiadiazole. This method is applicable to a wide range of substrates containing different functional groups and furnishes excellent yields of the corresponding unsubstituted 3 or 5-alkyl, aryl, alkynyl and alkenyl sulfanyl-1,2,4-triazole products.

Interestingly, working with sulfur-containing heterocycles may provide unexpected results and we report herein on the crystal structure of one derivative obtained within an unprecedented series of results (Ben Othman et al., 2014).

The molecular structure of the title molecule is illustrated in Fig. 1. The molecule is V-shaped about atom S1. In the 4-phenoxyphenyl group the two rings (C9-C14 and C15-C20) are inclined to one another by 74.52 (13) °. These rings are inclined to the triazole ring (N1-N3/C7/C8) by 72.20 (15) and 72.30 (15) °, respectively. The phenyl ring (C1-C6) is inclined to the triazole ring by 10.85 (12) °.

In the crystal, molecules are linked via N-H···N hydrogen bonds forming chains propagating along [010]; see Table 1 and Fig. 2. These chains are linked via pairs of C-H···S hydrogen bonds forming sheets lying parallel to the ac plane (Table 1 and Fig. 2).

Related literature top

For the synthesis, properties and various biological activities of functionalizated 1,2,4-triazole derivatives, see: Holla et al. (2002, 2003); Walczak et al. (2004); Zitouni et al. (2005); Prasad et al. (2009); Wael et al. (2012); Almasirad et al. (2004); Amir & Shikha (2004); Kane et al. (1988); Akhtar et al. (2010). For the crystal structures of related N-free triazole derivatives, see for example: Qadeer et al. (2007); and for N-subsituted derivatives, see for example: Zhao et al. (2010); Wu et al. (2009). Working with sulfur-containing heterocycles may provide unexpected results and the title compound was obtained within an unprecedented series of results, see: Ben Othman ( et al., 2014).

Experimental top

For the synthesis of the title compound, see Fig. 3. In a 25 ml flask, phenyl ZnBr solution in THF (1.5 mmol, 0.5M) was added drop wise under argon at room temperature to a solution of 3-Phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole (0.5 mmol) in THF (5 ml), and the mixture was stirred for 25 min (see Fig 3). At the end of the reaction, the mixture was quenched with 15 mL of an aqueous solution of saturated NH4Cl, and extracted with CH2Cl2 (2 × 20 ml). The extract was dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (eluent 6:4 petroleum ether/AcOEt). The title compound was obtained as a white solid in 80% yield. Rf = 0.60 (petroleum ether/EtOAc, 6:4); M.p. 318-320 K. HRMS (EI—MS): m/z calcd for C20H15N3OS: 346.10086 [M + H]+, found: 346.10112. Crystals of the title compound were obtained by vapor diffusion of petroleum ether into a solution of the title compound in a CH2Cl2/Et2O/pentane mixture. Spectroscopic data for the title compound is available in the archived CIF.

Refinement top

The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Bruker–Nonius, 1998); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A perspective view along the b axis of the crystal pack of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for calrity).
[Figure 3] Fig. 3. The synthetic route of the title compound.
3-[(4-Phenoxyphenyl)sulfanyl]-5-phenyl-1H-1,2,4-triazole top
Crystal data top
C20H15N3OSZ = 4
Mr = 345.41F(000) = 720
Monoclinic, P21/nDx = 1.349 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 16.6112 (12) ŵ = 0.20 mm1
b = 5.8445 (5) ÅT = 293 K
c = 17.5415 (10) ÅBlock, colourless
β = 93.131 (5)°0.35 × 0.25 × 0.12 mm
V = 1700.5 (2) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3099 independent reflections
Radiation source: sealed X-ray tube2333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
profile data from ϕ scans and ω scansθmax = 25.4°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.932, Tmax = 0.976k = 76
44120 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: mixed
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0707P)2 + 1.0533P]
where P = (Fo2 + 2Fc2)/3
3099 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C20H15N3OSV = 1700.5 (2) Å3
Mr = 345.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.6112 (12) ŵ = 0.20 mm1
b = 5.8445 (5) ÅT = 293 K
c = 17.5415 (10) Å0.35 × 0.25 × 0.12 mm
β = 93.131 (5)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3099 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2333 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.976Rint = 0.034
44120 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
3099 reflectionsΔρmin = 0.30 e Å3
207 parameters
Special details top

Experimental. Spectroscopic data for the title compound: IR (ATR diamond): ν (cm-1) = 3082, 2927, 2864, 1581, 1482, 1324, 1242, 1006, 869, 786, 601, 725, 688; 1H NMR (400 MHz, CDCl3) δ (p.p.m.) = 12.92 (br. s, 1H), 7.90 (d, J = 6.9 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.43–7.28 (m, 5H), 7.15 (t, J = 7.3 Hz, 1H), 6.96 (d, J = 7.8 Hz, 2H), 6.84 (d, J = 8.4 Hz, 2H); 13C NMR DEPT (101 MHz, CDCl3): δ (p.p.m.) = 134.9 (2CHAr), 130.2 (CHAr), 129.9 (2CHAr), 128.8 (2CHAr), 126.5 (2CHAr), 124.1 (CHAr), 119.7 (2CHAr), 119 (2CHAr).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.74490 (4)0.10572 (13)0.07643 (5)0.0708 (3)
N30.69265 (12)0.6140 (4)0.19811 (11)0.0507 (5)
N20.74402 (12)0.4385 (4)0.18506 (11)0.0540 (5)
N10.64442 (12)0.4567 (4)0.09308 (11)0.0539 (5)
C70.63379 (13)0.6216 (4)0.14328 (13)0.0474 (5)
C60.56826 (8)0.7865 (3)0.13936 (9)0.0518 (6)
C10.56878 (10)0.9796 (3)0.18563 (10)0.0661 (7)
H10.61091.00310.22190.079*
C20.50635 (12)1.1377 (3)0.17765 (12)0.0811 (9)
H20.50671.26690.20860.097*
C30.44340 (10)1.1026 (4)0.12341 (13)0.0885 (11)
H3A0.40161.20830.11810.106*
C40.44288 (9)0.9094 (4)0.07715 (11)0.0903 (11)
H40.40080.88590.04090.108*
C50.50531 (11)0.7514 (3)0.08512 (10)0.0746 (8)
H50.50500.62220.05420.090*
C90.85042 (16)0.1109 (4)0.09473 (14)0.0575 (6)
C121.01532 (19)0.0906 (5)0.1147 (2)0.0795 (9)
C80.71159 (14)0.3513 (4)0.12111 (13)0.0508 (6)
C140.89725 (16)0.2919 (5)0.07283 (17)0.0676 (7)
H140.87280.42050.05060.081*
C130.97963 (17)0.2836 (5)0.08361 (19)0.0751 (8)
H131.01100.40740.07000.090*
C100.8872 (2)0.0810 (5)0.12533 (18)0.0750 (8)
H100.85620.20390.14030.090*
C151.14533 (12)0.2518 (3)0.13117 (13)0.0779 (9)
C161.20579 (14)0.2829 (4)0.08041 (11)0.0981 (13)
H161.21140.17970.04070.118*
C171.25792 (12)0.4683 (5)0.08903 (12)0.0986 (12)
H171.29840.48910.05510.118*
C181.24959 (12)0.6225 (4)0.14841 (16)0.0937 (11)
H181.28450.74650.15420.112*
C191.18913 (14)0.5914 (3)0.19916 (12)0.0873 (10)
H191.18360.69450.23890.105*
C201.13700 (11)0.4060 (4)0.19055 (12)0.0786 (9)
H201.09660.38520.22450.094*
C110.9694 (2)0.0913 (5)0.1338 (2)0.0885 (10)
H110.99410.22380.15270.106*
H30.7060 (16)0.717 (5)0.2355 (16)0.070 (8)*
O11.09730 (15)0.0639 (4)0.1246 (2)0.1279 (16)0.997 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0633 (5)0.0627 (5)0.0859 (5)0.0058 (3)0.0005 (4)0.0210 (4)
N30.0525 (11)0.0532 (12)0.0451 (11)0.0006 (9)0.0107 (9)0.0013 (9)
N20.0555 (12)0.0555 (12)0.0496 (11)0.0026 (10)0.0097 (9)0.0026 (9)
N10.0519 (12)0.0602 (12)0.0485 (11)0.0047 (10)0.0077 (9)0.0014 (10)
C70.0451 (12)0.0534 (14)0.0431 (12)0.0078 (10)0.0040 (10)0.0065 (10)
C60.0446 (12)0.0599 (15)0.0501 (13)0.0055 (11)0.0035 (10)0.0106 (11)
C10.0546 (15)0.0708 (18)0.0727 (17)0.0024 (14)0.0016 (13)0.0024 (15)
C20.0718 (19)0.076 (2)0.098 (2)0.0122 (16)0.0194 (17)0.0087 (17)
C30.0581 (18)0.104 (3)0.104 (2)0.0201 (18)0.0124 (17)0.043 (2)
C40.0576 (17)0.124 (3)0.087 (2)0.0107 (19)0.0181 (16)0.026 (2)
C50.0611 (17)0.094 (2)0.0662 (17)0.0001 (16)0.0168 (13)0.0056 (16)
C90.0646 (16)0.0480 (14)0.0596 (15)0.0014 (12)0.0005 (12)0.0038 (11)
C120.0659 (18)0.0560 (18)0.114 (3)0.0176 (14)0.0201 (17)0.0137 (16)
C80.0505 (13)0.0522 (14)0.0492 (13)0.0070 (11)0.0020 (10)0.0019 (11)
C140.0598 (16)0.0539 (16)0.088 (2)0.0077 (13)0.0042 (14)0.0132 (14)
C130.0616 (17)0.0563 (17)0.107 (2)0.0024 (14)0.0034 (16)0.0073 (16)
C100.087 (2)0.0506 (16)0.086 (2)0.0012 (14)0.0052 (16)0.0067 (14)
C150.0549 (16)0.070 (2)0.106 (2)0.0231 (15)0.0157 (16)0.0158 (17)
C160.082 (2)0.137 (4)0.074 (2)0.050 (2)0.0119 (18)0.029 (2)
C170.069 (2)0.148 (4)0.079 (2)0.026 (2)0.0060 (17)0.027 (2)
C180.076 (2)0.094 (3)0.110 (3)0.0044 (19)0.005 (2)0.017 (2)
C190.081 (2)0.085 (2)0.096 (2)0.0046 (18)0.0003 (18)0.0168 (19)
C200.0653 (18)0.083 (2)0.088 (2)0.0146 (16)0.0087 (16)0.0074 (17)
C110.098 (2)0.0485 (17)0.116 (3)0.0183 (17)0.028 (2)0.0039 (16)
O10.0700 (17)0.0667 (17)0.242 (4)0.0247 (12)0.0404 (18)0.0344 (18)
Geometric parameters (Å, º) top
S1—C91.765 (3)C12—C131.374 (4)
S1—C81.740 (3)C12—C111.361 (5)
N3—N21.362 (3)C12—O11.372 (4)
N3—C71.334 (3)C14—H140.9300
N3—H30.91 (3)C14—C131.372 (4)
N2—C81.320 (3)C13—H130.9300
N1—C71.324 (3)C10—H100.9300
N1—C81.344 (3)C10—C111.366 (5)
C7—C61.453 (3)C15—C161.3900
C6—C11.3900C15—C201.3900
C6—C51.3900C15—O11.359 (3)
C1—H10.9300C16—H160.9300
C1—C21.3900C16—C171.3900
C2—H20.9300C17—H170.9300
C2—C31.3900C17—C181.3900
C3—H3A0.9300C18—H180.9300
C3—C41.3900C18—C191.3900
C4—H40.9300C19—H190.9300
C4—C51.3900C19—C201.3900
C5—H50.9300C20—H200.9300
C9—C141.380 (4)C11—H110.9300
C9—C101.372 (4)
C8—S1—C9103.95 (12)N2—C8—N1115.2 (2)
N2—N3—H3119.3 (18)N1—C8—S1119.43 (18)
C7—N3—N2110.2 (2)C9—C14—H14119.7
C7—N3—H3129.7 (18)C13—C14—C9120.5 (3)
C8—N2—N3101.72 (19)C13—C14—H14119.7
C7—N1—C8103.21 (19)C12—C13—H13120.4
N3—C7—C6125.0 (2)C14—C13—C12119.3 (3)
N1—C7—N3109.6 (2)C14—C13—H13120.4
N1—C7—C6125.33 (19)C9—C10—H10120.0
C1—C6—C7122.03 (14)C11—C10—C9120.0 (3)
C1—C6—C5120.0C11—C10—H10120.0
C5—C6—C7117.92 (14)C16—C15—C20120.0
C6—C1—H1120.0O1—C15—C16119.5 (2)
C2—C1—C6120.0O1—C15—C20120.4 (2)
C2—C1—H1120.0C15—C16—H16120.0
C1—C2—H2120.0C15—C16—C17120.0
C3—C2—C1120.0C17—C16—H16120.0
C3—C2—H2120.0C16—C17—H17120.0
C2—C3—H3A120.0C18—C17—C16120.0
C2—C3—C4120.0C18—C17—H17120.0
C4—C3—H3A120.0C17—C18—H18120.0
C3—C4—H4120.0C19—C18—C17120.0
C3—C4—C5120.0C19—C18—H18120.0
C5—C4—H4120.0C18—C19—H19120.0
C6—C5—H5120.0C18—C19—C20120.0
C4—C5—C6120.0C20—C19—H19120.0
C4—C5—H5120.0C15—C20—H20120.0
C14—C9—S1122.1 (2)C19—C20—C15120.0
C10—C9—S1118.3 (2)C19—C20—H20120.0
C10—C9—C14119.3 (3)C12—C11—C10120.6 (3)
C11—C12—C13120.2 (3)C12—C11—H11119.7
C11—C12—O1116.5 (3)C10—C11—H11119.7
O1—C12—C13123.2 (3)C15—O1—C12119.5 (2)
N2—C8—S1125.17 (19)
S1—C9—C14—C13175.8 (2)C9—C10—C11—C122.4 (5)
S1—C9—C10—C11174.0 (3)C8—S1—C9—C1457.9 (3)
N3—N2—C8—S1175.31 (18)C8—S1—C9—C10128.3 (2)
N3—N2—C8—N10.1 (3)C8—N1—C7—N30.4 (3)
N3—C7—C6—C112.0 (3)C8—N1—C7—C6179.7 (2)
N3—C7—C6—C5170.67 (19)C14—C9—C10—C110.0 (5)
N2—N3—C7—N10.5 (3)C13—C12—C11—C102.8 (6)
N2—N3—C7—C6179.66 (19)C13—C12—O1—C1524.8 (5)
N1—C7—C6—C1167.84 (18)C10—C9—C14—C132.0 (4)
N1—C7—C6—C59.5 (3)C15—C16—C17—C180.0
C7—N3—N2—C80.4 (2)C16—C15—C20—C190.0
C7—N1—C8—S1175.31 (17)C16—C15—O1—C12122.6 (3)
C7—N1—C8—N20.2 (3)C16—C17—C18—C190.0
C7—C6—C1—C2177.32 (18)C17—C18—C19—C200.0
C7—C6—C5—C4177.43 (17)C18—C19—C20—C150.0
C6—C1—C2—C30.0C20—C15—C16—C170.0
C1—C6—C5—C40.0C20—C15—O1—C1260.7 (4)
C1—C2—C3—C40.0C11—C12—C13—C140.8 (5)
C2—C3—C4—C50.0C11—C12—O1—C15158.7 (3)
C3—C4—C5—C60.0O1—C12—C13—C14177.2 (3)
C5—C6—C1—C20.0O1—C12—C11—C10179.5 (3)
C9—S1—C8—N234.3 (2)O1—C15—C16—C17176.7 (2)
C9—S1—C8—N1150.7 (2)O1—C15—C20—C19176.7 (2)
C9—C14—C13—C121.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i0.91 (3)2.05 (3)2.944 (3)170 (2)
C16—H16···S1ii0.932.773.694 (2)170
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i0.91 (3)2.05 (3)2.944 (3)170 (2)
C16—H16···S1ii0.932.773.694 (2)170
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y, z.
 

Acknowledgements

This result is part of a larger research program that was supported by grants from the Région Centre and the Labex IRON (ANR-11-LABX-0018–01).

References

First citationAkhtar, T., Hameed, K., Khan, K. M., Khan, A. & Choudhary, M. I. (2010). J. Enz. Inhib. Med. Chem. 25, 572–576.  Web of Science CrossRef CAS Google Scholar
First citationAlmasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezadeh, A., Mehrabi, N., Dalvandi, A. & Shafiee, A. (2004). Bioorg. Med. Chem. Lett. 14, 6057–60059.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAmir, M. & Shikha, K. (2004). Eur. J. Med. Chem. 39, 535–545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBen Othman, R., Massip, S., Marchivie, M., Jarry, C., Vercouillie, J., Chalon, S., Guillaumet, G., Suzenet, F. & Routier, S. (2014). Eur. J. Org. Chem. In the press. doi:10.1002/ejoc.201402193.  Google Scholar
First citationBruker–Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHolla, B. S., Poojary, K. N., Rao, B. S. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511–517.  CrossRef PubMed Google Scholar
First citationHolla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759–767.  Web of Science CrossRef PubMed Google Scholar
First citationKane, J. M., Dudley, M. W., Sorensen, S. M. & Miller, F. P. (1988). J. Med. Chem. 31, 1253–1258.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPrasad, D. J., Ashok, M., Karegoudar, P., Boja, P., Holla, B. S. & SuchetaKumari, N. (2009). Eur. J. Med. Chem. 44, 551–557.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQadeer, G., Rama, N. H., Zareef, M. & Li, X.-H. (2007). Acta Cryst. E63, o88–o89.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWael, A. El.-S., Omar, M. A., Hend, A. H. & Adel, A. H. A. (2012). Chin. J. Chem. 30, 77–83.  Google Scholar
First citationWalczak, K., Gondela, A. & Suwinski, J. (2004). Eur. J. Med. Chem. 39, 849–853.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, D.-Z., Liu, M.-C., Wu, H.-Y., Huang, X.-B. & Li, J.-J. (2009). Acta Cryst. E65, o676.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, B., Liu, Z., Gao, Y., Song, B. & Deng, Q. (2010). Acta Cryst. E66, o2814.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZitouni, G. T., Kaplancikli, Z. A., Yildiz, M. T., Chevallet, P. & Kaya, D. (2005). Eur. J. Med. Chem. 40, 607-613.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o622-o623
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds