organic compounds
2-Amino-6-methylpyridinium 4-methylbenzenesulfonate
aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, Tamil Nadu, India, and bDepartment of Physics, The New College (Autonomous), Chennai 600 014, Tamil Nadu, India
*Correspondence e-mail: mnizam_new@yahoo.in, professormohan@yahoo.co.in
In the 6H9N2+·C7H7O3S−, there are two independent 2-amino-6-methylpyridinium cations and two independent 4-methylbenzenesulfonate anions. Both cations are protonated at their pyridine N atoms and their geometries reveal amine–imine In the 4-methylbenzenesulfonate anions, the carboxylate groups are twisted out of the benzene ring planes by 88.4 (1) and 86.2 (2)°. In the crystal, the sulfonate O atoms of an anion interact with the protonated N atoms and the 2-amino groups of a cation via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. These motifs are connected via N—H⋯O hydrogen bonds, forming chains running along the a-axis direction. Within the chains there are weak C—H⋯O hydrogen bonds present. In addition, aromatic π–π stacking interactions [centroid–centroid distances = 3.771 (2), 3.599 (2), 3.599 (2) and 3.497 (2) Å] involving neighbouring chains are also observed.
of the title salt, CCCDC reference: 997539
Related literature
For crystal structures of related pyridine derivatives and their applications, see: Babu et al. (2014); Rajkumar et al. (2014); Jin et al. (2005). For unprotonated aminopyridine derivatives, see: Anderson et al. (2005). For the structure of amino-methylpyridinium, see: Nahringbauer & Kvick (1977). For details of sulfonates, see: Onoda et al. (2001); Baskar Raj et al. (2003). For applications of benzenesulfonic acid, see: Wang & Wei (2007). For simple organic–inorganic salts containing strong intermolecular hydrogen bonds, see: Sethuram et al. (2013a,b); Shihabuddeen Syed et al. (2013); Showrilu et al. (2013); Huq et al. (2013). For bond-length data, see: Allen et al. (1987). For studies on the tautomeric forms of 2-aminopyridine systems, see: Ishikawa et al. (2002). For graph-set analysis, see: Etter (1990); Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Supporting information
CCDC reference: 997539
10.1107/S1600536814008587/su2726sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814008587/su2726Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814008587/su2726Isup3.cml
2-Aminopyridine and its derivatives play an important role in heterocyclic chemistry. Pyridine heterocycles and their derivatives are present in many large molecules having photo-chemical, electro-chemical and catalytic applications (Babu et al., 2014). Simple organic-inorganic salts containing strong intermolecular hydrogen bonds have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (Sethuram, et al., 2013a,b; Huq et al., 2013; Shihabuddeen Syed et al., 2013; Showrilu et al., 2013). Hydrogen-bonding patterns involving sulfonate groups in biological systems and metal complexes are of current interest (Onoda et al., 2001). Such interactions can be utilized for designing supramolecular architectures (Baskar Raj et al., 2003). Benzenesulfonic acid, is a particularly strong organic acid which is capable of protonating N-containing heterocycles and other Lewis bases (Wang & Wei, 2007). We have recently reported the crystal structures of 2-amino-6-methylpyridinium 2,2,2-trichloroacetate (Babu et al., 2014) and 2-Amino-5-nitropyridinium hydrogen oxalate (Rajkumar et al., 2014). In continuation of our studies of pyridinium derivatives, the
determination of the title compound has been undertaken.The
of title salt, Fig. 1, consists of two crystallographically independent protonated 2-amino-6-methylpyridinium cation and two crystallographically independent 4-methyl benzenesulfonate anions. The normal probability plot analyses (International Tables for X-ray Crystallography, 1974, Vol. IV, pp. 293–309) for both bond lengths and angles show that the differences between the two symmetry independent molecules are of a statistical nature. All bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable with those in closely related structures (Babu et al., 2014; Rajkumar et al., 2014). A proton transfer from the carboxyl group of p-toluenesulfonic acid to atom N1 and N3 of 2-amino-6-methyl pyridine resulted in the formation of a salt. This protonation lead to the widening of the C8—N1—C12 and C21—N3—C25 angles of the pyridine rings to 124.0 (2) ° and 123.8 (2) °, compared to 115.3 (2) ° in the unprotonated aminopyridine (Anderson et al., 2005). This type of protonation is observed in various aminopyridine acid complexes (Babu et al., 2014; Rajkumar et al., 2014).In the cation, the N2—C8 [1.325 (2) Å] N4—C21 bonds [1.325 (2) Å] is shorter than the N1—C8 [1.347 (2) Å], N1—C12 [1.360 (2) Å], N3—C21[1.352 (2) Å] and N3—C25[1.362 (2) Å] bonds, and the C8—C9 [1.406 (3) Å], C10—C11 [1.398 (3) Å], C21—C22 [1.405 (3) Å] and C23—C24 [1.401 (3) Å] bonds are significantly longer than C9—C10 [1.357 (3) Å], C11—C12 [1.356 (3) Å]. C22—C23 [1.357 (3) Å] and C24—C25 [1.353 (3) Å] bonds, are similar to those in the amino-methylprydinium cation (Babu et al., 2014; Rajkumar et al., 2014). In contrast, in the solid state structure of amino-methylpyridinium, the N—C bond out of ring is clearly longer than that in the ring (Nahringbauer et al., 1977). The geometrical features of the amino-methylpyridinium cation (N1/N2/C1/C6 and N3/N4/C9—C13) resemble those observed in other 2-aminopyridinium structures (Babu et al., 2014; Rajkumar et al., 2014) that are believed to be involved in amine-imine
(Ishikawa et al., 2002). Similar features are also provided by cation amino-methylpyridinium (N3/N4/C7/C12). However, previous study show that a pyridinium cation always possesses an expanded angle of C—N—C in comparison with the parent pyridine (Jin et al., 2005).The examination of pyridinium rings shows that these units are planar with mean deviation of -0.006 (2) and 0.005 (2) Å for atoms C8 and C21, from the mean planes defined by the six constituent atoms. The dihedral angle between the 2-amino-6-methylpyridinium cation and 4-methylbenzenesulfonate anion group is 88.4 (2) and 86.2 (2)° for the both molecules, respectively. In both the molecules, the protonated 2-amino-6-methylpyridinium cation is essentially planar, with maximum deviations of -0.012 (2) for atom C13 and -0.006 (2) Å for atom C25.
In the crystal (Fig. 2), the protonated atoms (N1 and N3) and a nitrogen atom of the 2-amino groups (N2 and N4) of the 2-amino-6-methylpyridinium cations are hydrogen bonded to the carboxylate oxygen atoms (O1, O2, O3 and O4) of the sulfonate groups of the p-toluenesulfonate anions via a pair of intermolecular N—H···O hydrogen bonds (Table 1), forming a ring motif with a graph-set notation of R22(8) [Etter, 1990; Bernstein et al., 1995]. The sulfonate group mimics the carboxylate anion's mode of association, which is more commonly seen when binding with 2-aminopyrimidines. It is well known that sulfonates imitate carboxylates in forming such bidentate motifs (Baskar Raj et al., 2003).
Furthermore, these motifs are connected via N—H···O hydrogen bonds (Fig. 2 and Table 1), involving the 2-amino group of the 2-amino-6-methyl pyridinium cation and atoms O3 and O4 of an anion, to form a supramolecular chains along the a axis direction. Weak C—H···O hydrogen bonds, involving a pyridine group of the cation and an O atom of a sulfonate anion, within the chains are also observed (Fig. 2 and Table 1).
In addition, the cations of neighbouring chains are linked through aromatic π-π interactions with centroid distances Cg1···Cg1iii = 3.771 (2), Cg1···Cg2iv = 3.599 (2), Cg2···Cg1v = 3.599 (2) and Cg2···Cg2vi = 3.497 (2) Å [symmetry codes are as in Table 1 and (iii) = -x+1,-y+1,-z+2; (iv) = x, y, z+ (v) = x, y, z+1; (vi) = -x+1, -y, -z; Cg1 and Cg2 are the centroids of the N1/C8—C12 and N3/C21—C25 rings, respectively].
The identification of such supramolecular patterns will help us design and construct preferred hydrogen bonding patterns of drug like molecules.
Crystals of the title compound were obtained by slow evaporation of a 1:1 equimolar mixture of 2-amino-6-methylpyridine and benzenesulfonic acid in methanol at room temperature.
Crystal data, data collection and structure
details are summarized in Table 1. N-bound H atoms were located in a difference Fourier map and refined with distance restraints: N—H = 0.88 (1) and 0.90 (1) Å for NH2 and NH H atoms, respectively. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. A rotating group model was used for the methyl group.Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).Fig. 1. A view of the molecular structure of the two independent benezesulfonate anions and the two independent 2-amino-6-methylpyridinium cations of the title salt. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The crystal packing of the title compound, viewed along the b axis. The N—H···O and C—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity). |
C6H9N2+·C7H7O3S− | Z = 4 |
Mr = 280.35 | F(000) = 592 |
Triclinic, P1 | Dx = 1.369 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5343 (2) Å | Cell parameters from 6237 reflections |
b = 13.6212 (5) Å | θ = 2.0–28.1° |
c = 13.9887 (5) Å | µ = 0.24 mm−1 |
α = 106.307 (2)° | T = 293 K |
β = 97.946 (1)° | Block, colourless |
γ = 92.103 (2)° | 0.35 × 0.25 × 0.20 mm |
V = 1360.31 (8) Å3 |
Bruker Kappa APEXII CCD diffractometer | 6237 independent reflections |
Radiation source: fine-focus sealed tube | 4709 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω and ϕ scans | θmax = 27.5°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −9→9 |
Tmin = 0.920, Tmax = 0.953 | k = −17→17 |
32534 measured reflections | l = −18→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0502P)2 + 0.655P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
6237 reflections | Δρmax = 0.33 e Å−3 |
372 parameters | Δρmin = −0.37 e Å−3 |
6 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0067 (10) |
C6H9N2+·C7H7O3S− | γ = 92.103 (2)° |
Mr = 280.35 | V = 1360.31 (8) Å3 |
Triclinic, P1 | Z = 4 |
a = 7.5343 (2) Å | Mo Kα radiation |
b = 13.6212 (5) Å | µ = 0.24 mm−1 |
c = 13.9887 (5) Å | T = 293 K |
α = 106.307 (2)° | 0.35 × 0.25 × 0.20 mm |
β = 97.946 (1)° |
Bruker Kappa APEXII CCD diffractometer | 6237 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 4709 reflections with I > 2σ(I) |
Tmin = 0.920, Tmax = 0.953 | Rint = 0.026 |
32534 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 6 restraints |
wR(F2) = 0.119 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.33 e Å−3 |
6237 reflections | Δρmin = −0.37 e Å−3 |
372 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7573 (2) | 0.33148 (14) | 0.65370 (12) | 0.0340 (4) | |
C2 | 0.6441 (3) | 0.28156 (17) | 0.56563 (15) | 0.0510 (5) | |
H2 | 0.5822 | 0.2192 | 0.5594 | 0.061* | |
C3 | 0.6232 (3) | 0.32433 (19) | 0.48708 (16) | 0.0568 (6) | |
H3 | 0.5472 | 0.2897 | 0.4279 | 0.068* | |
C4 | 0.7111 (3) | 0.41650 (17) | 0.49332 (15) | 0.0450 (5) | |
C5 | 0.8219 (3) | 0.46630 (18) | 0.58213 (16) | 0.0525 (5) | |
H5 | 0.8818 | 0.5293 | 0.5886 | 0.063* | |
C6 | 0.8455 (3) | 0.42432 (17) | 0.66170 (15) | 0.0498 (5) | |
H6 | 0.9213 | 0.4590 | 0.7209 | 0.060* | |
C7 | 0.6848 (3) | 0.4621 (2) | 0.40658 (18) | 0.0658 (7) | |
H7A | 0.7653 | 0.4341 | 0.3602 | 0.099* | |
H7B | 0.7093 | 0.5352 | 0.4315 | 0.099* | |
H7C | 0.5630 | 0.4461 | 0.3727 | 0.099* | |
O1 | 0.63184 (18) | 0.20570 (11) | 0.73960 (10) | 0.0473 (3) | |
O2 | 0.80180 (19) | 0.36019 (11) | 0.84663 (10) | 0.0482 (3) | |
O3 | 0.95409 (17) | 0.22525 (12) | 0.74752 (10) | 0.0487 (4) | |
S1 | 0.78890 (6) | 0.27601 (4) | 0.75373 (3) | 0.03657 (13) | |
C14 | 0.1612 (2) | 0.16545 (14) | 0.35185 (12) | 0.0335 (4) | |
C15 | 0.2427 (3) | 0.07546 (17) | 0.34413 (15) | 0.0497 (5) | |
H15 | 0.2824 | 0.0416 | 0.2843 | 0.060* | |
C16 | 0.2656 (3) | 0.03531 (17) | 0.42480 (16) | 0.0532 (5) | |
H16 | 0.3205 | −0.0258 | 0.4186 | 0.064* | |
C17 | 0.2085 (3) | 0.08433 (16) | 0.51461 (14) | 0.0427 (4) | |
C18 | 0.1255 (3) | 0.17361 (18) | 0.52060 (15) | 0.0522 (5) | |
H18 | 0.0851 | 0.2074 | 0.5802 | 0.063* | |
C19 | 0.1007 (3) | 0.21434 (16) | 0.44031 (15) | 0.0471 (5) | |
H19 | 0.0434 | 0.2746 | 0.4459 | 0.057* | |
C20 | 0.2366 (3) | 0.0415 (2) | 0.60338 (17) | 0.0610 (6) | |
H20A | 0.3489 | 0.0705 | 0.6450 | 0.092* | |
H20B | 0.2384 | −0.0317 | 0.5797 | 0.092* | |
H20C | 0.1403 | 0.0584 | 0.6420 | 0.092* | |
O4 | −0.01417 (17) | 0.27792 (12) | 0.25616 (11) | 0.0496 (4) | |
O5 | 0.13593 (18) | 0.13852 (11) | 0.15948 (9) | 0.0471 (3) | |
O6 | 0.30945 (17) | 0.28838 (11) | 0.27035 (10) | 0.0453 (3) | |
S2 | 0.14592 (6) | 0.22210 (4) | 0.25238 (3) | 0.03629 (13) | |
C21 | 0.5816 (2) | 0.16145 (13) | 0.08860 (13) | 0.0327 (4) | |
C22 | 0.7160 (2) | 0.14424 (14) | 0.02675 (14) | 0.0368 (4) | |
H22 | 0.8366 | 0.1588 | 0.0550 | 0.044* | |
C23 | 0.6682 (2) | 0.10619 (15) | −0.07461 (14) | 0.0407 (4) | |
H23 | 0.7569 | 0.0954 | −0.1157 | 0.049* | |
C24 | 0.4871 (2) | 0.08288 (14) | −0.11818 (14) | 0.0392 (4) | |
H24 | 0.4556 | 0.0568 | −0.1877 | 0.047* | |
C25 | 0.3584 (2) | 0.09863 (13) | −0.05818 (13) | 0.0340 (4) | |
C26 | 0.1613 (2) | 0.07772 (16) | −0.09541 (15) | 0.0452 (5) | |
H26A | 0.1106 | 0.1403 | −0.0996 | 0.068* | |
H26B | 0.1047 | 0.0509 | −0.0496 | 0.068* | |
H26C | 0.1419 | 0.0285 | −0.1609 | 0.068* | |
N3 | 0.40875 (19) | 0.13737 (11) | 0.04333 (11) | 0.0325 (3) | |
N4 | 0.6161 (2) | 0.19844 (15) | 0.18808 (12) | 0.0445 (4) | |
C8 | 0.3602 (2) | 0.33977 (13) | 0.91967 (13) | 0.0334 (4) | |
C9 | 0.2264 (2) | 0.35815 (15) | 0.98204 (14) | 0.0393 (4) | |
H9 | 0.1055 | 0.3440 | 0.9543 | 0.047* | |
C10 | 0.2761 (3) | 0.39686 (16) | 1.08322 (15) | 0.0449 (5) | |
H10 | 0.1883 | 0.4085 | 1.1248 | 0.054* | |
C11 | 0.4573 (3) | 0.41950 (16) | 1.12590 (14) | 0.0432 (4) | |
H11 | 0.4896 | 0.4463 | 1.1953 | 0.052* | |
C12 | 0.5854 (2) | 0.40210 (13) | 1.06520 (13) | 0.0348 (4) | |
C13 | 0.7826 (3) | 0.42082 (16) | 1.10162 (15) | 0.0460 (5) | |
H13A | 0.8040 | 0.4713 | 1.1664 | 0.069* | |
H13B | 0.8402 | 0.4453 | 1.0547 | 0.069* | |
H13C | 0.8305 | 0.3580 | 1.1072 | 0.069* | |
N1 | 0.53289 (19) | 0.36343 (11) | 0.96397 (11) | 0.0326 (3) | |
N2 | 0.3236 (2) | 0.30260 (14) | 0.82019 (13) | 0.0449 (4) | |
H2A | 0.2112 (15) | 0.2825 (16) | 0.7953 (15) | 0.050 (6)* | |
H4B | 0.531 (2) | 0.2199 (16) | 0.2235 (14) | 0.050 (6)* | |
H4A | 0.7276 (16) | 0.2181 (17) | 0.2166 (16) | 0.058 (7)* | |
H2B | 0.409 (2) | 0.2798 (17) | 0.7850 (15) | 0.055 (7)* | |
H1A | 0.619 (2) | 0.3551 (17) | 0.9244 (14) | 0.051 (6)* | |
H3A | 0.322 (2) | 0.1430 (16) | 0.0815 (13) | 0.045 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0265 (8) | 0.0429 (10) | 0.0285 (8) | 0.0011 (7) | 0.0034 (6) | 0.0043 (7) |
C2 | 0.0497 (12) | 0.0530 (12) | 0.0423 (11) | −0.0155 (9) | −0.0094 (9) | 0.0114 (10) |
C3 | 0.0541 (13) | 0.0694 (15) | 0.0389 (11) | −0.0148 (11) | −0.0147 (9) | 0.0157 (10) |
C4 | 0.0383 (10) | 0.0593 (12) | 0.0387 (10) | 0.0060 (9) | 0.0052 (8) | 0.0166 (9) |
C5 | 0.0553 (13) | 0.0522 (12) | 0.0472 (12) | −0.0124 (10) | 0.0042 (10) | 0.0140 (10) |
C6 | 0.0486 (11) | 0.0569 (13) | 0.0341 (10) | −0.0154 (10) | −0.0048 (8) | 0.0050 (9) |
C7 | 0.0627 (15) | 0.0858 (18) | 0.0588 (15) | 0.0065 (13) | 0.0054 (11) | 0.0386 (14) |
O1 | 0.0392 (7) | 0.0579 (9) | 0.0471 (8) | −0.0029 (6) | 0.0109 (6) | 0.0176 (7) |
O2 | 0.0492 (8) | 0.0618 (9) | 0.0292 (7) | 0.0042 (7) | 0.0089 (6) | 0.0047 (6) |
O3 | 0.0341 (7) | 0.0696 (10) | 0.0431 (8) | 0.0140 (6) | 0.0050 (6) | 0.0164 (7) |
S1 | 0.0285 (2) | 0.0514 (3) | 0.0289 (2) | 0.00414 (18) | 0.00579 (16) | 0.00929 (19) |
C14 | 0.0279 (8) | 0.0418 (10) | 0.0281 (8) | 0.0000 (7) | 0.0043 (6) | 0.0060 (7) |
C15 | 0.0591 (13) | 0.0552 (13) | 0.0343 (10) | 0.0181 (10) | 0.0157 (9) | 0.0065 (9) |
C16 | 0.0624 (13) | 0.0512 (12) | 0.0461 (12) | 0.0192 (10) | 0.0076 (10) | 0.0129 (10) |
C17 | 0.0374 (10) | 0.0538 (12) | 0.0359 (10) | −0.0053 (8) | 0.0003 (8) | 0.0151 (9) |
C18 | 0.0590 (13) | 0.0651 (14) | 0.0342 (10) | 0.0124 (11) | 0.0193 (9) | 0.0106 (10) |
C19 | 0.0527 (12) | 0.0499 (12) | 0.0413 (11) | 0.0156 (9) | 0.0171 (9) | 0.0111 (9) |
C20 | 0.0603 (14) | 0.0771 (17) | 0.0494 (13) | −0.0044 (12) | −0.0013 (10) | 0.0302 (12) |
O4 | 0.0337 (7) | 0.0652 (9) | 0.0513 (8) | 0.0065 (6) | −0.0015 (6) | 0.0226 (7) |
O5 | 0.0446 (7) | 0.0630 (9) | 0.0281 (7) | −0.0099 (6) | 0.0044 (5) | 0.0064 (6) |
O6 | 0.0335 (7) | 0.0574 (9) | 0.0437 (7) | −0.0099 (6) | 0.0020 (6) | 0.0163 (6) |
S2 | 0.0269 (2) | 0.0506 (3) | 0.0298 (2) | −0.00331 (18) | 0.00094 (16) | 0.01147 (19) |
C21 | 0.0292 (8) | 0.0340 (9) | 0.0360 (9) | 0.0009 (7) | 0.0005 (7) | 0.0140 (7) |
C22 | 0.0264 (8) | 0.0400 (10) | 0.0446 (10) | 0.0042 (7) | 0.0037 (7) | 0.0140 (8) |
C23 | 0.0367 (9) | 0.0460 (11) | 0.0420 (10) | 0.0081 (8) | 0.0109 (8) | 0.0144 (9) |
C24 | 0.0405 (10) | 0.0438 (10) | 0.0328 (9) | 0.0034 (8) | 0.0024 (7) | 0.0117 (8) |
C25 | 0.0330 (9) | 0.0334 (9) | 0.0367 (9) | −0.0004 (7) | −0.0012 (7) | 0.0154 (7) |
C26 | 0.0346 (10) | 0.0527 (12) | 0.0464 (11) | −0.0040 (8) | −0.0051 (8) | 0.0177 (9) |
N3 | 0.0269 (7) | 0.0378 (8) | 0.0345 (8) | 0.0008 (6) | 0.0036 (6) | 0.0140 (6) |
N4 | 0.0319 (8) | 0.0622 (11) | 0.0351 (9) | −0.0002 (8) | 0.0003 (7) | 0.0098 (8) |
C8 | 0.0309 (8) | 0.0348 (9) | 0.0366 (9) | 0.0069 (7) | 0.0038 (7) | 0.0139 (7) |
C9 | 0.0303 (9) | 0.0456 (11) | 0.0445 (10) | 0.0088 (7) | 0.0074 (7) | 0.0154 (8) |
C10 | 0.0436 (10) | 0.0532 (12) | 0.0445 (11) | 0.0133 (9) | 0.0175 (9) | 0.0185 (9) |
C11 | 0.0497 (11) | 0.0494 (11) | 0.0316 (9) | 0.0083 (9) | 0.0052 (8) | 0.0133 (8) |
C12 | 0.0379 (9) | 0.0333 (9) | 0.0353 (9) | 0.0038 (7) | 0.0016 (7) | 0.0149 (7) |
C13 | 0.0397 (10) | 0.0508 (12) | 0.0457 (11) | −0.0001 (9) | −0.0040 (8) | 0.0167 (9) |
N1 | 0.0301 (7) | 0.0365 (8) | 0.0325 (8) | 0.0055 (6) | 0.0055 (6) | 0.0116 (6) |
N2 | 0.0328 (8) | 0.0611 (11) | 0.0365 (9) | 0.0045 (8) | 0.0028 (7) | 0.0081 (8) |
C1—C6 | 1.375 (3) | O6—S2 | 1.4497 (13) |
C1—C2 | 1.380 (2) | C21—N4 | 1.325 (2) |
C1—S1 | 1.7609 (18) | C21—N3 | 1.352 (2) |
C2—C3 | 1.375 (3) | C21—C22 | 1.405 (3) |
C2—H2 | 0.9300 | C22—C23 | 1.357 (3) |
C3—C4 | 1.372 (3) | C22—H22 | 0.9300 |
C3—H3 | 0.9300 | C23—C24 | 1.401 (3) |
C4—C5 | 1.378 (3) | C23—H23 | 0.9300 |
C4—C7 | 1.504 (3) | C24—C25 | 1.353 (3) |
C5—C6 | 1.381 (3) | C24—H24 | 0.9300 |
C5—H5 | 0.9300 | C25—N3 | 1.362 (2) |
C6—H6 | 0.9300 | C25—C26 | 1.493 (2) |
C7—H7A | 0.9600 | C26—H26A | 0.9600 |
C7—H7B | 0.9600 | C26—H26B | 0.9600 |
C7—H7C | 0.9600 | C26—H26C | 0.9600 |
O1—S1 | 1.4499 (14) | N3—H3A | 0.894 (9) |
O2—S1 | 1.4605 (14) | N4—H4B | 0.876 (9) |
O3—S1 | 1.4469 (13) | N4—H4A | 0.876 (10) |
C14—C15 | 1.375 (3) | C8—N2 | 1.325 (2) |
C14—C19 | 1.378 (3) | C8—N1 | 1.347 (2) |
C14—S2 | 1.7636 (18) | C8—C9 | 1.406 (3) |
C15—C16 | 1.379 (3) | C9—C10 | 1.357 (3) |
C15—H15 | 0.9300 | C9—H9 | 0.9300 |
C16—C17 | 1.382 (3) | C10—C11 | 1.398 (3) |
C16—H16 | 0.9300 | C10—H10 | 0.9300 |
C17—C18 | 1.375 (3) | C11—C12 | 1.356 (3) |
C17—C20 | 1.507 (3) | C11—H11 | 0.9300 |
C18—C19 | 1.380 (3) | C12—N1 | 1.360 (2) |
C18—H18 | 0.9300 | C12—C13 | 1.491 (3) |
C19—H19 | 0.9300 | C13—H13A | 0.9600 |
C20—H20A | 0.9600 | C13—H13B | 0.9600 |
C20—H20B | 0.9600 | C13—H13C | 0.9600 |
C20—H20C | 0.9600 | N1—H1A | 0.900 (9) |
O4—S2 | 1.4485 (14) | N2—H2A | 0.873 (10) |
O5—S2 | 1.4582 (14) | N2—H2B | 0.877 (10) |
C6—C1—C2 | 119.11 (18) | O4—S2—C14 | 106.93 (8) |
C6—C1—S1 | 120.76 (13) | O6—S2—C14 | 106.19 (8) |
C2—C1—S1 | 120.13 (15) | O5—S2—C14 | 106.66 (8) |
C3—C2—C1 | 119.76 (19) | N4—C21—N3 | 118.92 (16) |
C3—C2—H2 | 120.1 | N4—C21—C22 | 123.44 (16) |
C1—C2—H2 | 120.1 | N3—C21—C22 | 117.63 (16) |
C4—C3—C2 | 122.01 (18) | C23—C22—C21 | 119.40 (16) |
C4—C3—H3 | 119.0 | C23—C22—H22 | 120.3 |
C2—C3—H3 | 119.0 | C21—C22—H22 | 120.3 |
C3—C4—C5 | 117.70 (19) | C22—C23—C24 | 120.92 (17) |
C3—C4—C7 | 120.99 (19) | C22—C23—H23 | 119.5 |
C5—C4—C7 | 121.3 (2) | C24—C23—H23 | 119.5 |
C4—C5—C6 | 121.2 (2) | C25—C24—C23 | 119.41 (17) |
C4—C5—H5 | 119.4 | C25—C24—H24 | 120.3 |
C6—C5—H5 | 119.4 | C23—C24—H24 | 120.3 |
C1—C6—C5 | 120.25 (18) | C24—C25—N3 | 118.87 (16) |
C1—C6—H6 | 119.9 | C24—C25—C26 | 124.50 (17) |
C5—C6—H6 | 119.9 | N3—C25—C26 | 116.63 (16) |
C4—C7—H7A | 109.5 | C25—C26—H26A | 109.5 |
C4—C7—H7B | 109.5 | C25—C26—H26B | 109.5 |
H7A—C7—H7B | 109.5 | H26A—C26—H26B | 109.5 |
C4—C7—H7C | 109.5 | C25—C26—H26C | 109.5 |
H7A—C7—H7C | 109.5 | H26A—C26—H26C | 109.5 |
H7B—C7—H7C | 109.5 | H26B—C26—H26C | 109.5 |
O3—S1—O1 | 113.06 (9) | C21—N3—C25 | 123.75 (15) |
O3—S1—O2 | 111.56 (8) | C21—N3—H3A | 119.2 (13) |
O1—S1—O2 | 111.86 (8) | C25—N3—H3A | 117.0 (13) |
O3—S1—C1 | 107.19 (8) | C21—N4—H4B | 121.1 (15) |
O1—S1—C1 | 106.16 (8) | C21—N4—H4A | 118.4 (16) |
O2—S1—C1 | 106.52 (9) | H4B—N4—H4A | 118 (2) |
C15—C14—C19 | 119.43 (18) | N2—C8—N1 | 119.09 (16) |
C15—C14—S2 | 120.43 (14) | N2—C8—C9 | 123.12 (16) |
C19—C14—S2 | 120.03 (15) | N1—C8—C9 | 117.77 (16) |
C14—C15—C16 | 120.19 (18) | C10—C9—C8 | 119.13 (17) |
C14—C15—H15 | 119.9 | C10—C9—H9 | 120.4 |
C16—C15—H15 | 119.9 | C8—C9—H9 | 120.4 |
C15—C16—C17 | 121.08 (19) | C9—C10—C11 | 121.08 (18) |
C15—C16—H16 | 119.5 | C9—C10—H10 | 119.5 |
C17—C16—H16 | 119.5 | C11—C10—H10 | 119.5 |
C18—C17—C16 | 117.94 (18) | C12—C11—C10 | 119.44 (18) |
C18—C17—C20 | 120.96 (19) | C12—C11—H11 | 120.3 |
C16—C17—C20 | 121.1 (2) | C10—C11—H11 | 120.3 |
C17—C18—C19 | 121.60 (18) | C11—C12—N1 | 118.61 (17) |
C17—C18—H18 | 119.2 | C11—C12—C13 | 124.54 (17) |
C19—C18—H18 | 119.2 | N1—C12—C13 | 116.85 (16) |
C14—C19—C18 | 119.74 (19) | C12—C13—H13A | 109.5 |
C14—C19—H19 | 120.1 | C12—C13—H13B | 109.5 |
C18—C19—H19 | 120.1 | H13A—C13—H13B | 109.5 |
C17—C20—H20A | 109.5 | C12—C13—H13C | 109.5 |
C17—C20—H20B | 109.5 | H13A—C13—H13C | 109.5 |
H20A—C20—H20B | 109.5 | H13B—C13—H13C | 109.5 |
C17—C20—H20C | 109.5 | C8—N1—C12 | 123.96 (15) |
H20A—C20—H20C | 109.5 | C8—N1—H1A | 118.4 (14) |
H20B—C20—H20C | 109.5 | C12—N1—H1A | 117.6 (14) |
O4—S2—O6 | 112.84 (9) | C8—N2—H2A | 115.9 (15) |
O4—S2—O5 | 112.66 (8) | C8—N2—H2B | 120.4 (15) |
O6—S2—O5 | 111.06 (8) | H2A—N2—H2B | 120 (2) |
C6—C1—C2—C3 | 0.9 (3) | C15—C14—S2—O4 | 151.01 (16) |
S1—C1—C2—C3 | −178.58 (18) | C19—C14—S2—O4 | −32.74 (18) |
C1—C2—C3—C4 | −0.5 (4) | C15—C14—S2—O6 | −88.27 (17) |
C2—C3—C4—C5 | −0.4 (4) | C19—C14—S2—O6 | 87.97 (17) |
C2—C3—C4—C7 | −179.5 (2) | C15—C14—S2—O5 | 30.25 (18) |
C3—C4—C5—C6 | 0.8 (3) | C19—C14—S2—O5 | −153.50 (15) |
C7—C4—C5—C6 | 179.9 (2) | N4—C21—C22—C23 | −179.93 (18) |
C2—C1—C6—C5 | −0.5 (3) | N3—C21—C22—C23 | 1.0 (3) |
S1—C1—C6—C5 | 178.96 (17) | C21—C22—C23—C24 | −0.7 (3) |
C4—C5—C6—C1 | −0.3 (3) | C22—C23—C24—C25 | 0.0 (3) |
C6—C1—S1—O3 | −81.39 (18) | C23—C24—C25—N3 | 0.3 (3) |
C2—C1—S1—O3 | 98.11 (17) | C23—C24—C25—C26 | 179.47 (17) |
C6—C1—S1—O1 | 157.51 (16) | N4—C21—N3—C25 | −179.79 (17) |
C2—C1—S1—O1 | −22.99 (19) | C22—C21—N3—C25 | −0.7 (3) |
C6—C1—S1—O2 | 38.15 (18) | C24—C25—N3—C21 | 0.0 (3) |
C2—C1—S1—O2 | −142.35 (17) | C26—C25—N3—C21 | −179.21 (16) |
C19—C14—C15—C16 | −0.9 (3) | N2—C8—C9—C10 | −179.67 (19) |
S2—C14—C15—C16 | 175.40 (17) | N1—C8—C9—C10 | −1.1 (3) |
C14—C15—C16—C17 | −0.3 (3) | C8—C9—C10—C11 | 0.6 (3) |
C15—C16—C17—C18 | 1.0 (3) | C9—C10—C11—C12 | −0.3 (3) |
C15—C16—C17—C20 | −178.9 (2) | C10—C11—C12—N1 | 0.4 (3) |
C16—C17—C18—C19 | −0.6 (3) | C10—C11—C12—C13 | −178.58 (18) |
C20—C17—C18—C19 | 179.3 (2) | N2—C8—N1—C12 | 179.90 (17) |
C15—C14—C19—C18 | 1.2 (3) | C9—C8—N1—C12 | 1.3 (3) |
S2—C14—C19—C18 | −175.05 (16) | C11—C12—N1—C8 | −0.9 (3) |
C17—C18—C19—C14 | −0.5 (3) | C13—C12—N1—C8 | 178.12 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 0.90 (1) | 1.88 (1) | 2.772 (2) | 171 (2) |
N2—H2A···O3i | 0.87 (1) | 2.01 (1) | 2.880 (2) | 174 (2) |
N2—H2B···O1 | 0.88 (1) | 2.07 (1) | 2.919 (2) | 162 (2) |
N3—H3A···O5 | 0.89 (1) | 1.90 (1) | 2.789 (2) | 174 (2) |
N4—H4A···O4ii | 0.88 (1) | 2.02 (1) | 2.882 (2) | 167 (2) |
N4—H4B···O6 | 0.88 (1) | 2.04 (1) | 2.883 (2) | 162 (2) |
C22—H22···O5ii | 0.93 | 2.58 | 3.455 (2) | 157 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C6H9N2+·C7H7O3S− |
Mr | 280.35 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.5343 (2), 13.6212 (5), 13.9887 (5) |
α, β, γ (°) | 106.307 (2), 97.946 (1), 92.103 (2) |
V (Å3) | 1360.31 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.35 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.920, 0.953 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32534, 6237, 4709 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.119, 1.06 |
No. of reflections | 6237 |
No. of parameters | 372 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.37 |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 0.900 (9) | 1.880 (10) | 2.772 (2) | 171 (2) |
N2—H2A···O3i | 0.873 (10) | 2.011 (10) | 2.880 (2) | 174 (2) |
N2—H2B···O1 | 0.877 (10) | 2.074 (12) | 2.919 (2) | 162 (2) |
N3—H3A···O5 | 0.894 (9) | 1.899 (10) | 2.789 (2) | 174 (2) |
N4—H4A···O4ii | 0.876 (10) | 2.022 (11) | 2.882 (2) | 167 (2) |
N4—H4B···O6 | 0.876 (9) | 2.036 (12) | 2.883 (2) | 162 (2) |
C22—H22···O5ii | 0.93 | 2.58 | 3.455 (2) | 156.9 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
Acknowledgements
The authors are thankful to the SAIF, IIT Madras, for the data collection.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Babu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391–o392. CSD CrossRef CAS IUCr Journals Google Scholar
Baskar Raj, S., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76. Web of Science CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Huq, C. A. M. A., Fouzia, S. & NizamMohideen, M. (2013). Acta Cryst. E69, o1766–o1767. CSD CrossRef CAS IUCr Journals Google Scholar
Ishikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305–2312. Web of Science CrossRef CAS Google Scholar
Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Onoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516–521. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rajkumar, M. A., Xavier, S. S. J., Anbarasu, S., Devarajan, P. A. & NizamMohideen, M. (2014). Acta Cryst. E70, o473–o474. CSD CrossRef CAS IUCr Journals Google Scholar
Sethuram, M., Bhargavi, G., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013a). Acta Cryst. E69, o1301–o1302. CSD CrossRef CAS IUCr Journals Google Scholar
Sethuram, M., Rajasekharan, M. V., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013b). Acta Cryst. E69, o957–o958. CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shihabuddeen Syed, A., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, i33. CrossRef IUCr Journals Google Scholar
Showrilu, K., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, m469–m470. CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, o1448–o1449. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.