organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o600-o601

2-Amino-6-methyl­pyridinium 4-methyl­benzene­sulfonate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, Tamil Nadu, India, and bDepartment of Physics, The New College (Autonomous), Chennai 600 014, Tamil Nadu, India
*Correspondence e-mail: mnizam_new@yahoo.in, professormohan@yahoo.co.in

(Received 10 April 2014; accepted 15 April 2014; online 26 April 2014)

In the asymmetric unit of the title salt, C6H9N2+·C7H7O3S, there are two independent 2-amino-6-methyl­pyridinium cations and two independent 4-methyl­benzene­sulfonate anions. Both cations are protonated at their pyridine N atoms and their geometries reveal amine–imine tautomerism. In the 4-methyl­benzene­sulfonate anions, the carboxyl­ate groups are twisted out of the benzene ring planes by 88.4 (1) and 86.2 (2)°. In the crystal, the sulfonate O atoms of an anion inter­act with the protonated N atoms and the 2-amino groups of a cation via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. These motifs are connected via N—H⋯O hydrogen bonds, forming chains running along the a-axis direction. Within the chains there are weak C—H⋯O hydrogen bonds present. In addition, aromatic ππ stacking inter­actions [centroid–centroid distances = 3.771 (2), 3.599 (2), 3.599 (2) and 3.497 (2) Å] involving neighbouring chains are also observed.

Related literature

For crystal structures of related pyridine derivatives and their applications, see: Babu et al. (2014[Babu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391-o392.]); Rajkumar et al. (2014[Rajkumar, M. A., Xavier, S. S. J., Anbarasu, S., Devarajan, P. A. & NizamMohideen, M. (2014). Acta Cryst. E70, o473-o474.]); Jin et al. (2005[Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43-m45.]). For unprotonated amino­pyridine derivatives, see: Anderson et al. (2005[Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350-o1353.]). For the structure of amino-methyl­pyridinium, see: Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]). For details of sulfonates, see: Onoda et al. (2001[Onoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516-521.]); Baskar Raj et al. (2003[Baskar Raj, S., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70-76.]). For applications of benzene­sulfonic acid, see: Wang & Wei (2007[Wang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, o1448-o1449.]). For simple organic–inorganic salts containing strong inter­molecular hydrogen bonds, see: Sethuram et al. (2013a[Sethuram, M., Bhargavi, G., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013a). Acta Cryst. E69, o1301-o1302.],b[Sethuram, M., Rajasekharan, M. V., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013b). Acta Cryst. E69, o957-o958.]); Shihabuddeen Syed et al. (2013[Shihabuddeen Syed, A., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, i33.]); Showrilu et al. (2013[Showrilu, K., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, m469-m470.]); Huq et al. (2013[Huq, C. A. M. A., Fouzia, S. & NizamMohideen, M. (2013). Acta Cryst. E69, o1766-o1767.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For studies on the tautomeric forms of 2-amino­pyridine systems, see: Ishikawa et al. (2002[Ishikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305-2312.]). For graph-set analysis, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H7O3S

  • Mr = 280.35

  • Triclinic, [P \overline 1]

  • a = 7.5343 (2) Å

  • b = 13.6212 (5) Å

  • c = 13.9887 (5) Å

  • α = 106.307 (2)°

  • β = 97.946 (1)°

  • γ = 92.103 (2)°

  • V = 1360.31 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.920, Tmax = 0.953

  • 32534 measured reflections

  • 6237 independent reflections

  • 4709 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.06

  • 6237 reflections

  • 372 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.90 (1) 1.88 (1) 2.772 (2) 171 (2)
N2—H2A⋯O3i 0.87 (1) 2.01 (1) 2.880 (2) 174 (2)
N2—H2B⋯O1 0.88 (1) 2.07 (1) 2.919 (2) 162 (2)
N3—H3A⋯O5 0.89 (1) 1.90 (1) 2.789 (2) 174 (2)
N4—H4A⋯O4ii 0.88 (1) 2.02 (1) 2.882 (2) 167 (2)
N4—H4B⋯O6 0.88 (1) 2.04 (1) 2.883 (2) 162 (2)
C22—H22⋯O5ii 0.93 2.58 3.455 (2) 157
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Introduction top

2-Amino­pyridine and its derivatives play an important role in heterocyclic chemistry. Pyridine heterocycles and their derivatives are present in many large molecules having photo-chemical, electro-chemical and catalytic applications (Babu et al., 2014). Simple organic-inorganic salts containing strong inter­molecular hydrogen bonds have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (Sethuram, et al., 2013a,b; Huq et al., 2013; Shihabuddeen Syed et al., 2013; Showrilu et al., 2013). Hydrogen-bonding patterns involving sulfonate groups in biological systems and metal complexes are of current inter­est (Onoda et al., 2001). Such inter­actions can be utilized for designing supra­molecular architectures (Baskar Raj et al., 2003). Benzene­sulfonic acid, is a particularly strong organic acid which is capable of protonating N-containing heterocycles and other Lewis bases (Wang & Wei, 2007). We have recently reported the crystal structures of 2-amino-6-methyl­pyridinium 2,2,2-tri­chloro­acetate (Babu et al., 2014) and 2-Amino-5-nitro­pyridinium hydrogen oxalate (Rajkumar et al., 2014). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

Comment / Result and Discussion top

The asymmetric unit of title salt, Fig. 1, consists of two crystallographically independent protonated 2-amino-6-methyl­pyridinium cation and two crystallographically independent 4-methyl benzene­sulfonate anions. The normal probability plot analyses (Inter­national Tables for X-ray Crystallography, 1974, Vol. IV, pp. 293–309) for both bond lengths and angles show that the differences between the two symmetry independent molecules are of a statistical nature. All bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable with those in closely related structures (Babu et al., 2014; Rajkumar et al., 2014). A proton transfer from the carboxyl group of p-toluene­sulfonic acid to atom N1 and N3 of 2-amino-6-methyl pyridine resulted in the formation of a salt. This protonation lead to the widening of the C8—N1—C12 and C21—N3—C25 angles of the pyridine rings to 124.0 (2) ° and 123.8 (2) °, compared to 115.3 (2) ° in the unprotonated amino­pyridine (Anderson et al., 2005). This type of protonation is observed in various amino­pyridine acid complexes (Babu et al., 2014; Rajkumar et al., 2014).

In the cation, the N2—C8 [1.325 (2) Å] N4—C21 bonds [1.325 (2) Å] is shorter than the N1—C8 [1.347 (2) Å], N1—C12 [1.360 (2) Å], N3—C21[1.352 (2) Å] and N3—C25[1.362 (2) Å] bonds, and the C8—C9 [1.406 (3) Å], C10—C11 [1.398 (3) Å], C21—C22 [1.405 (3) Å] and C23—C24 [1.401 (3) Å] bonds are significantly longer than C9—C10 [1.357 (3) Å], C11—C12 [1.356 (3) Å]. C22—C23 [1.357 (3) Å] and C24—C25 [1.353 (3) Å] bonds, are similar to those in the amino-methyl­prydinium cation (Babu et al., 2014; Rajkumar et al., 2014). In contrast, in the solid state structure of amino-methyl­pyridinium, the N—C bond out of ring is clearly longer than that in the ring (Nahringbauer et al., 1977). The geometrical features of the amino-methyl­pyridinium cation (N1/N2/C1/C6 and N3/N4/C9—C13) resemble those observed in other 2-amino­pyridinium structures (Babu et al., 2014; Rajkumar et al., 2014) that are believed to be involved in amine-imine tautomerism (Ishikawa et al., 2002). Similar features are also provided by cation amino-methyl­pyridinium (N3/N4/C7/C12). However, previous study show that a pyridinium cation always possesses an expanded angle of C—N—C in comparison with the parent pyridine (Jin et al., 2005).

The examination of pyridinium rings shows that these units are planar with mean deviation of -0.006 (2) and 0.005 (2) Å for atoms C8 and C21, from the mean planes defined by the six constituent atoms. The dihedral angle between the 2-amino-6-methyl­pyridinium cation and 4-methyl­benzene­sulfonate anion group is 88.4 (2) and 86.2 (2)° for the both molecules, respectively. In both the molecules, the protonated 2-amino-6-methyl­pyridinium cation is essentially planar, with maximum deviations of -0.012 (2) for atom C13 and -0.006 (2) Å for atom C25.

Hydrogen bonding inter­action / Inter­molecular N—H···O and C—H···O inter­action top

In the crystal (Fig. 2), the protonated atoms (N1 and N3) and a nitro­gen atom of the 2-amino groups (N2 and N4) of the 2-amino-6-methyl­pyridinium cations are hydrogen bonded to the carboxyl­ate oxygen atoms (O1, O2, O3 and O4) of the sulfonate groups of the p-toluene­sulfonate anions via a pair of inter­molecular N—H···O hydrogen bonds (Table 1), forming a ring motif with a graph-set notation of R22(8) [Etter, 1990; Bernstein et al., 1995]. The sulfonate group mimics the carboxyl­ate anion's mode of association, which is more commonly seen when binding with 2-amino­pyrimidines. It is well known that sulfonates imitate carboxyl­ates in forming such bidentate motifs (Baskar Raj et al., 2003).

Furthermore, these motifs are connected via N—H···O hydrogen bonds (Fig. 2 and Table 1), involving the 2-amino group of the 2-amino-6-methyl pyridinium cation and atoms O3 and O4 of an anion, to form a supra­molecular chains along the a axis direction. Weak C—H···O hydrogen bonds, involving a pyridine group of the cation and an O atom of a sulfonate anion, within the chains are also observed (Fig. 2 and Table 1).

Aromatic inter­action top

In addition, the cations of neighbouring chains are linked through aromatic π-π inter­actions with centroid distances Cg1···Cg1iii = 3.771 (2), Cg1···Cg2iv = 3.599 (2), Cg2···Cg1v = 3.599 (2) and Cg2···Cg2vi = 3.497 (2) Å [symmetry codes are as in Table 1 and (iii) = -x+1,-y+1,-z+2; (iv) = x, y, z+ (v) = x, y, z+1; (vi) = -x+1, -y, -z; Cg1 and Cg2 are the centroids of the N1/C8—C12 and N3/C21—C25 rings, respectively].

Uses top

The identification of such supra­molecular patterns will help us design and construct preferred hydrogen bonding patterns of drug like molecules.

Synthesis and crystallization top

Crystals of the title compound were obtained by slow evaporation of a 1:1 equimolar mixture of 2-amino-6-methyl­pyridine and benzene­sulfonic acid in methanol at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. N-bound H atoms were located in a difference Fourier map and refined with distance restraints: N—H = 0.88 (1) and 0.90 (1) Å for NH2 and NH H atoms, respectively. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. A rotating group model was used for the methyl group.

Related literature top

For crystal structures of related pyridine derivatives and their applications, see: Babu et al. (2014); Rajkumar et al. (2014); Jin et al. (2005). For unprotonated aminopyridine derivatives, see: Anderson et al. (2005). For the structure of amino-methylpyridinium, see: Nahringbauer & Kvick (1977). For details of sulfonates, see: Onoda et al. (2001); Baskar Raj et al. (2003). For applications of benzenesulfonic acid, see: Wang & Wei (2007). For simple organic–inorganic salts containing strong intermolecular hydrogen bonds, see: Sethuram et al. (2013a,b); Shihabuddeen Syed et al. (2013); Showrilu et al. (2013); Huq et al. (2013). For bond-length data, see: Allen et al. (1987). For studies on the tautomeric forms of 2-aminopyridine systems, see: Ishikawa et al. (2002). For graph-set analysis, see: Etter (1990); Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the two independent benezesulfonate anions and the two independent 2-amino-6-methylpyridinium cations of the title salt. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. The N—H···O and C—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
2-Amino-6-methylpyridinium 4-methylbenzenesulfonate top
Crystal data top
C6H9N2+·C7H7O3SZ = 4
Mr = 280.35F(000) = 592
Triclinic, P1Dx = 1.369 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5343 (2) ÅCell parameters from 6237 reflections
b = 13.6212 (5) Åθ = 2.0–28.1°
c = 13.9887 (5) ŵ = 0.24 mm1
α = 106.307 (2)°T = 293 K
β = 97.946 (1)°Block, colourless
γ = 92.103 (2)°0.35 × 0.25 × 0.20 mm
V = 1360.31 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6237 independent reflections
Radiation source: fine-focus sealed tube4709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.920, Tmax = 0.953k = 1717
32534 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.655P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6237 reflectionsΔρmax = 0.33 e Å3
372 parametersΔρmin = 0.37 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0067 (10)
Crystal data top
C6H9N2+·C7H7O3Sγ = 92.103 (2)°
Mr = 280.35V = 1360.31 (8) Å3
Triclinic, P1Z = 4
a = 7.5343 (2) ÅMo Kα radiation
b = 13.6212 (5) ŵ = 0.24 mm1
c = 13.9887 (5) ÅT = 293 K
α = 106.307 (2)°0.35 × 0.25 × 0.20 mm
β = 97.946 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6237 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4709 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.953Rint = 0.026
32534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0406 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.33 e Å3
6237 reflectionsΔρmin = 0.37 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7573 (2)0.33148 (14)0.65370 (12)0.0340 (4)
C20.6441 (3)0.28156 (17)0.56563 (15)0.0510 (5)
H20.58220.21920.55940.061*
C30.6232 (3)0.32433 (19)0.48708 (16)0.0568 (6)
H30.54720.28970.42790.068*
C40.7111 (3)0.41650 (17)0.49332 (15)0.0450 (5)
C50.8219 (3)0.46630 (18)0.58213 (16)0.0525 (5)
H50.88180.52930.58860.063*
C60.8455 (3)0.42432 (17)0.66170 (15)0.0498 (5)
H60.92130.45900.72090.060*
C70.6848 (3)0.4621 (2)0.40658 (18)0.0658 (7)
H7A0.76530.43410.36020.099*
H7B0.70930.53520.43150.099*
H7C0.56300.44610.37270.099*
O10.63184 (18)0.20570 (11)0.73960 (10)0.0473 (3)
O20.80180 (19)0.36019 (11)0.84663 (10)0.0482 (3)
O30.95409 (17)0.22525 (12)0.74752 (10)0.0487 (4)
S10.78890 (6)0.27601 (4)0.75373 (3)0.03657 (13)
C140.1612 (2)0.16545 (14)0.35185 (12)0.0335 (4)
C150.2427 (3)0.07546 (17)0.34413 (15)0.0497 (5)
H150.28240.04160.28430.060*
C160.2656 (3)0.03531 (17)0.42480 (16)0.0532 (5)
H160.32050.02580.41860.064*
C170.2085 (3)0.08433 (16)0.51461 (14)0.0427 (4)
C180.1255 (3)0.17361 (18)0.52060 (15)0.0522 (5)
H180.08510.20740.58020.063*
C190.1007 (3)0.21434 (16)0.44031 (15)0.0471 (5)
H190.04340.27460.44590.057*
C200.2366 (3)0.0415 (2)0.60338 (17)0.0610 (6)
H20A0.34890.07050.64500.092*
H20B0.23840.03170.57970.092*
H20C0.14030.05840.64200.092*
O40.01417 (17)0.27792 (12)0.25616 (11)0.0496 (4)
O50.13593 (18)0.13852 (11)0.15948 (9)0.0471 (3)
O60.30945 (17)0.28838 (11)0.27035 (10)0.0453 (3)
S20.14592 (6)0.22210 (4)0.25238 (3)0.03629 (13)
C210.5816 (2)0.16145 (13)0.08860 (13)0.0327 (4)
C220.7160 (2)0.14424 (14)0.02675 (14)0.0368 (4)
H220.83660.15880.05500.044*
C230.6682 (2)0.10619 (15)0.07461 (14)0.0407 (4)
H230.75690.09540.11570.049*
C240.4871 (2)0.08288 (14)0.11818 (14)0.0392 (4)
H240.45560.05680.18770.047*
C250.3584 (2)0.09863 (13)0.05818 (13)0.0340 (4)
C260.1613 (2)0.07772 (16)0.09541 (15)0.0452 (5)
H26A0.11060.14030.09960.068*
H26B0.10470.05090.04960.068*
H26C0.14190.02850.16090.068*
N30.40875 (19)0.13737 (11)0.04333 (11)0.0325 (3)
N40.6161 (2)0.19844 (15)0.18808 (12)0.0445 (4)
C80.3602 (2)0.33977 (13)0.91967 (13)0.0334 (4)
C90.2264 (2)0.35815 (15)0.98204 (14)0.0393 (4)
H90.10550.34400.95430.047*
C100.2761 (3)0.39686 (16)1.08322 (15)0.0449 (5)
H100.18830.40851.12480.054*
C110.4573 (3)0.41950 (16)1.12590 (14)0.0432 (4)
H110.48960.44631.19530.052*
C120.5854 (2)0.40210 (13)1.06520 (13)0.0348 (4)
C130.7826 (3)0.42082 (16)1.10162 (15)0.0460 (5)
H13A0.80400.47131.16640.069*
H13B0.84020.44531.05470.069*
H13C0.83050.35801.10720.069*
N10.53289 (19)0.36343 (11)0.96397 (11)0.0326 (3)
N20.3236 (2)0.30260 (14)0.82019 (13)0.0449 (4)
H2A0.2112 (15)0.2825 (16)0.7953 (15)0.050 (6)*
H4B0.531 (2)0.2199 (16)0.2235 (14)0.050 (6)*
H4A0.7276 (16)0.2181 (17)0.2166 (16)0.058 (7)*
H2B0.409 (2)0.2798 (17)0.7850 (15)0.055 (7)*
H1A0.619 (2)0.3551 (17)0.9244 (14)0.051 (6)*
H3A0.322 (2)0.1430 (16)0.0815 (13)0.045 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0265 (8)0.0429 (10)0.0285 (8)0.0011 (7)0.0034 (6)0.0043 (7)
C20.0497 (12)0.0530 (12)0.0423 (11)0.0155 (9)0.0094 (9)0.0114 (10)
C30.0541 (13)0.0694 (15)0.0389 (11)0.0148 (11)0.0147 (9)0.0157 (10)
C40.0383 (10)0.0593 (12)0.0387 (10)0.0060 (9)0.0052 (8)0.0166 (9)
C50.0553 (13)0.0522 (12)0.0472 (12)0.0124 (10)0.0042 (10)0.0140 (10)
C60.0486 (11)0.0569 (13)0.0341 (10)0.0154 (10)0.0048 (8)0.0050 (9)
C70.0627 (15)0.0858 (18)0.0588 (15)0.0065 (13)0.0054 (11)0.0386 (14)
O10.0392 (7)0.0579 (9)0.0471 (8)0.0029 (6)0.0109 (6)0.0176 (7)
O20.0492 (8)0.0618 (9)0.0292 (7)0.0042 (7)0.0089 (6)0.0047 (6)
O30.0341 (7)0.0696 (10)0.0431 (8)0.0140 (6)0.0050 (6)0.0164 (7)
S10.0285 (2)0.0514 (3)0.0289 (2)0.00414 (18)0.00579 (16)0.00929 (19)
C140.0279 (8)0.0418 (10)0.0281 (8)0.0000 (7)0.0043 (6)0.0060 (7)
C150.0591 (13)0.0552 (13)0.0343 (10)0.0181 (10)0.0157 (9)0.0065 (9)
C160.0624 (13)0.0512 (12)0.0461 (12)0.0192 (10)0.0076 (10)0.0129 (10)
C170.0374 (10)0.0538 (12)0.0359 (10)0.0053 (8)0.0003 (8)0.0151 (9)
C180.0590 (13)0.0651 (14)0.0342 (10)0.0124 (11)0.0193 (9)0.0106 (10)
C190.0527 (12)0.0499 (12)0.0413 (11)0.0156 (9)0.0171 (9)0.0111 (9)
C200.0603 (14)0.0771 (17)0.0494 (13)0.0044 (12)0.0013 (10)0.0302 (12)
O40.0337 (7)0.0652 (9)0.0513 (8)0.0065 (6)0.0015 (6)0.0226 (7)
O50.0446 (7)0.0630 (9)0.0281 (7)0.0099 (6)0.0044 (5)0.0064 (6)
O60.0335 (7)0.0574 (9)0.0437 (7)0.0099 (6)0.0020 (6)0.0163 (6)
S20.0269 (2)0.0506 (3)0.0298 (2)0.00331 (18)0.00094 (16)0.01147 (19)
C210.0292 (8)0.0340 (9)0.0360 (9)0.0009 (7)0.0005 (7)0.0140 (7)
C220.0264 (8)0.0400 (10)0.0446 (10)0.0042 (7)0.0037 (7)0.0140 (8)
C230.0367 (9)0.0460 (11)0.0420 (10)0.0081 (8)0.0109 (8)0.0144 (9)
C240.0405 (10)0.0438 (10)0.0328 (9)0.0034 (8)0.0024 (7)0.0117 (8)
C250.0330 (9)0.0334 (9)0.0367 (9)0.0004 (7)0.0012 (7)0.0154 (7)
C260.0346 (10)0.0527 (12)0.0464 (11)0.0040 (8)0.0051 (8)0.0177 (9)
N30.0269 (7)0.0378 (8)0.0345 (8)0.0008 (6)0.0036 (6)0.0140 (6)
N40.0319 (8)0.0622 (11)0.0351 (9)0.0002 (8)0.0003 (7)0.0098 (8)
C80.0309 (8)0.0348 (9)0.0366 (9)0.0069 (7)0.0038 (7)0.0139 (7)
C90.0303 (9)0.0456 (11)0.0445 (10)0.0088 (7)0.0074 (7)0.0154 (8)
C100.0436 (10)0.0532 (12)0.0445 (11)0.0133 (9)0.0175 (9)0.0185 (9)
C110.0497 (11)0.0494 (11)0.0316 (9)0.0083 (9)0.0052 (8)0.0133 (8)
C120.0379 (9)0.0333 (9)0.0353 (9)0.0038 (7)0.0016 (7)0.0149 (7)
C130.0397 (10)0.0508 (12)0.0457 (11)0.0001 (9)0.0040 (8)0.0167 (9)
N10.0301 (7)0.0365 (8)0.0325 (8)0.0055 (6)0.0055 (6)0.0116 (6)
N20.0328 (8)0.0611 (11)0.0365 (9)0.0045 (8)0.0028 (7)0.0081 (8)
Geometric parameters (Å, º) top
C1—C61.375 (3)O6—S21.4497 (13)
C1—C21.380 (2)C21—N41.325 (2)
C1—S11.7609 (18)C21—N31.352 (2)
C2—C31.375 (3)C21—C221.405 (3)
C2—H20.9300C22—C231.357 (3)
C3—C41.372 (3)C22—H220.9300
C3—H30.9300C23—C241.401 (3)
C4—C51.378 (3)C23—H230.9300
C4—C71.504 (3)C24—C251.353 (3)
C5—C61.381 (3)C24—H240.9300
C5—H50.9300C25—N31.362 (2)
C6—H60.9300C25—C261.493 (2)
C7—H7A0.9600C26—H26A0.9600
C7—H7B0.9600C26—H26B0.9600
C7—H7C0.9600C26—H26C0.9600
O1—S11.4499 (14)N3—H3A0.894 (9)
O2—S11.4605 (14)N4—H4B0.876 (9)
O3—S11.4469 (13)N4—H4A0.876 (10)
C14—C151.375 (3)C8—N21.325 (2)
C14—C191.378 (3)C8—N11.347 (2)
C14—S21.7636 (18)C8—C91.406 (3)
C15—C161.379 (3)C9—C101.357 (3)
C15—H150.9300C9—H90.9300
C16—C171.382 (3)C10—C111.398 (3)
C16—H160.9300C10—H100.9300
C17—C181.375 (3)C11—C121.356 (3)
C17—C201.507 (3)C11—H110.9300
C18—C191.380 (3)C12—N11.360 (2)
C18—H180.9300C12—C131.491 (3)
C19—H190.9300C13—H13A0.9600
C20—H20A0.9600C13—H13B0.9600
C20—H20B0.9600C13—H13C0.9600
C20—H20C0.9600N1—H1A0.900 (9)
O4—S21.4485 (14)N2—H2A0.873 (10)
O5—S21.4582 (14)N2—H2B0.877 (10)
C6—C1—C2119.11 (18)O4—S2—C14106.93 (8)
C6—C1—S1120.76 (13)O6—S2—C14106.19 (8)
C2—C1—S1120.13 (15)O5—S2—C14106.66 (8)
C3—C2—C1119.76 (19)N4—C21—N3118.92 (16)
C3—C2—H2120.1N4—C21—C22123.44 (16)
C1—C2—H2120.1N3—C21—C22117.63 (16)
C4—C3—C2122.01 (18)C23—C22—C21119.40 (16)
C4—C3—H3119.0C23—C22—H22120.3
C2—C3—H3119.0C21—C22—H22120.3
C3—C4—C5117.70 (19)C22—C23—C24120.92 (17)
C3—C4—C7120.99 (19)C22—C23—H23119.5
C5—C4—C7121.3 (2)C24—C23—H23119.5
C4—C5—C6121.2 (2)C25—C24—C23119.41 (17)
C4—C5—H5119.4C25—C24—H24120.3
C6—C5—H5119.4C23—C24—H24120.3
C1—C6—C5120.25 (18)C24—C25—N3118.87 (16)
C1—C6—H6119.9C24—C25—C26124.50 (17)
C5—C6—H6119.9N3—C25—C26116.63 (16)
C4—C7—H7A109.5C25—C26—H26A109.5
C4—C7—H7B109.5C25—C26—H26B109.5
H7A—C7—H7B109.5H26A—C26—H26B109.5
C4—C7—H7C109.5C25—C26—H26C109.5
H7A—C7—H7C109.5H26A—C26—H26C109.5
H7B—C7—H7C109.5H26B—C26—H26C109.5
O3—S1—O1113.06 (9)C21—N3—C25123.75 (15)
O3—S1—O2111.56 (8)C21—N3—H3A119.2 (13)
O1—S1—O2111.86 (8)C25—N3—H3A117.0 (13)
O3—S1—C1107.19 (8)C21—N4—H4B121.1 (15)
O1—S1—C1106.16 (8)C21—N4—H4A118.4 (16)
O2—S1—C1106.52 (9)H4B—N4—H4A118 (2)
C15—C14—C19119.43 (18)N2—C8—N1119.09 (16)
C15—C14—S2120.43 (14)N2—C8—C9123.12 (16)
C19—C14—S2120.03 (15)N1—C8—C9117.77 (16)
C14—C15—C16120.19 (18)C10—C9—C8119.13 (17)
C14—C15—H15119.9C10—C9—H9120.4
C16—C15—H15119.9C8—C9—H9120.4
C15—C16—C17121.08 (19)C9—C10—C11121.08 (18)
C15—C16—H16119.5C9—C10—H10119.5
C17—C16—H16119.5C11—C10—H10119.5
C18—C17—C16117.94 (18)C12—C11—C10119.44 (18)
C18—C17—C20120.96 (19)C12—C11—H11120.3
C16—C17—C20121.1 (2)C10—C11—H11120.3
C17—C18—C19121.60 (18)C11—C12—N1118.61 (17)
C17—C18—H18119.2C11—C12—C13124.54 (17)
C19—C18—H18119.2N1—C12—C13116.85 (16)
C14—C19—C18119.74 (19)C12—C13—H13A109.5
C14—C19—H19120.1C12—C13—H13B109.5
C18—C19—H19120.1H13A—C13—H13B109.5
C17—C20—H20A109.5C12—C13—H13C109.5
C17—C20—H20B109.5H13A—C13—H13C109.5
H20A—C20—H20B109.5H13B—C13—H13C109.5
C17—C20—H20C109.5C8—N1—C12123.96 (15)
H20A—C20—H20C109.5C8—N1—H1A118.4 (14)
H20B—C20—H20C109.5C12—N1—H1A117.6 (14)
O4—S2—O6112.84 (9)C8—N2—H2A115.9 (15)
O4—S2—O5112.66 (8)C8—N2—H2B120.4 (15)
O6—S2—O5111.06 (8)H2A—N2—H2B120 (2)
C6—C1—C2—C30.9 (3)C15—C14—S2—O4151.01 (16)
S1—C1—C2—C3178.58 (18)C19—C14—S2—O432.74 (18)
C1—C2—C3—C40.5 (4)C15—C14—S2—O688.27 (17)
C2—C3—C4—C50.4 (4)C19—C14—S2—O687.97 (17)
C2—C3—C4—C7179.5 (2)C15—C14—S2—O530.25 (18)
C3—C4—C5—C60.8 (3)C19—C14—S2—O5153.50 (15)
C7—C4—C5—C6179.9 (2)N4—C21—C22—C23179.93 (18)
C2—C1—C6—C50.5 (3)N3—C21—C22—C231.0 (3)
S1—C1—C6—C5178.96 (17)C21—C22—C23—C240.7 (3)
C4—C5—C6—C10.3 (3)C22—C23—C24—C250.0 (3)
C6—C1—S1—O381.39 (18)C23—C24—C25—N30.3 (3)
C2—C1—S1—O398.11 (17)C23—C24—C25—C26179.47 (17)
C6—C1—S1—O1157.51 (16)N4—C21—N3—C25179.79 (17)
C2—C1—S1—O122.99 (19)C22—C21—N3—C250.7 (3)
C6—C1—S1—O238.15 (18)C24—C25—N3—C210.0 (3)
C2—C1—S1—O2142.35 (17)C26—C25—N3—C21179.21 (16)
C19—C14—C15—C160.9 (3)N2—C8—C9—C10179.67 (19)
S2—C14—C15—C16175.40 (17)N1—C8—C9—C101.1 (3)
C14—C15—C16—C170.3 (3)C8—C9—C10—C110.6 (3)
C15—C16—C17—C181.0 (3)C9—C10—C11—C120.3 (3)
C15—C16—C17—C20178.9 (2)C10—C11—C12—N10.4 (3)
C16—C17—C18—C190.6 (3)C10—C11—C12—C13178.58 (18)
C20—C17—C18—C19179.3 (2)N2—C8—N1—C12179.90 (17)
C15—C14—C19—C181.2 (3)C9—C8—N1—C121.3 (3)
S2—C14—C19—C18175.05 (16)C11—C12—N1—C80.9 (3)
C17—C18—C19—C140.5 (3)C13—C12—N1—C8178.12 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.90 (1)1.88 (1)2.772 (2)171 (2)
N2—H2A···O3i0.87 (1)2.01 (1)2.880 (2)174 (2)
N2—H2B···O10.88 (1)2.07 (1)2.919 (2)162 (2)
N3—H3A···O50.89 (1)1.90 (1)2.789 (2)174 (2)
N4—H4A···O4ii0.88 (1)2.02 (1)2.882 (2)167 (2)
N4—H4B···O60.88 (1)2.04 (1)2.883 (2)162 (2)
C22—H22···O5ii0.932.583.455 (2)157
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H7O3S
Mr280.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5343 (2), 13.6212 (5), 13.9887 (5)
α, β, γ (°)106.307 (2), 97.946 (1), 92.103 (2)
V3)1360.31 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.920, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
32534, 6237, 4709
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.06
No. of reflections6237
No. of parameters372
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.37

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.900 (9)1.880 (10)2.772 (2)171 (2)
N2—H2A···O3i0.873 (10)2.011 (10)2.880 (2)174 (2)
N2—H2B···O10.877 (10)2.074 (12)2.919 (2)162 (2)
N3—H3A···O50.894 (9)1.899 (10)2.789 (2)174 (2)
N4—H4A···O4ii0.876 (10)2.022 (11)2.882 (2)167 (2)
N4—H4B···O60.876 (9)2.036 (12)2.883 (2)162 (2)
C22—H22···O5ii0.932.583.455 (2)156.9
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBabu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391–o392.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBaskar Raj, S., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuq, C. A. M. A., Fouzia, S. & NizamMohideen, M. (2013). Acta Cryst. E69, o1766–o1767.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationIshikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305–2312.  Web of Science CrossRef CAS Google Scholar
First citationJin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOnoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516–521.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRajkumar, M. A., Xavier, S. S. J., Anbarasu, S., Devarajan, P. A. & NizamMohideen, M. (2014). Acta Cryst. E70, o473–o474.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSethuram, M., Bhargavi, G., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013a). Acta Cryst. E69, o1301–o1302.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSethuram, M., Rajasekharan, M. V., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013b). Acta Cryst. E69, o957–o958.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShihabuddeen Syed, A., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, i33.  CrossRef IUCr Journals Google Scholar
First citationShowrilu, K., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, m469–m470.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, o1448–o1449.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o600-o601
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds