organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Hy­dr­oxy-5,8-dimeth­­oxy-4-methyl-1,2,3,4-tetra­hydro-1,4-ep­­oxy­naphthalen-2-yl)ethan-1-one

aDepartment of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada, and bDepartment of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
*Correspondence e-mail: alough@chem.utoronto.ca

(Received 19 March 2014; accepted 7 April 2014; online 12 April 2014)

The stereochemistry and regioschemistry (exo) of the title compound, C15H18O5, were determined by the X-ray analysis. The meth­oxy groups essentially lie in the plane of the benzene ring to which they are attached, as described by the C—O—C C torsion angles of −176.80 (12) and 4.67 (19)°. In the crystal, O—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds link the mol­ecules, forming chains of R21(8) rings along [010].

Related literature

For the metal-mediated cleavage of 2-isoxazoline rings fused to bicyclic frameworks, see: Tranmer & Tam (2002[Tranmer, G. K. & Tam, W. (2002). Org. Lett. 4, 4101-4104.]). For hydrogen-bond graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18O5

  • Mr = 278.29

  • Orthorhombic, P b c a

  • a = 10.3091 (4) Å

  • b = 9.1309 (4) Å

  • c = 29.2552 (13) Å

  • V = 2753.8 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 147 K

  • 0.17 × 0.14 × 0.05 mm

Data collection
  • Bruker Kappa APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.686, Tmax = 0.753

  • 9265 measured reflections

  • 2368 independent reflections

  • 2195 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.04

  • 2368 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3i 0.97 (3) 1.89 (2) 2.8295 (15) 162 (2)
C7—H7C⋯O3i 0.98 2.42 3.3936 (19) 173
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Structural commentary top

We have previously investigated the metal-mediated cleavage of 2-isoxazoline rings fused to bicyclic frameworks that are prepared in our laboratory through nitrile oxide 1,3-dipolar cyclo­addition methodology (Tranmer & Tam, 2002). When expanding this study using Raney Ni, cleavage of 2-isoxazoline compound (I) (see Fig. 1) leads to the formation of β-hy­droxy ketone product (II) as a single stereoisomer. The stereochemistry of the product was determined by this single-crystal X-ray analysis. Although different stereoisomers (exo and endo) could be formed, only the exo regioisomer (II) was formed.

The molecular structure of the title compound is shown in Fig. 2. The meth­oxy groups essentially lie in the plane of the benzene ring to which they are attached as described by the C15—O5—C12—C11 and C14—O4—C9—C10 torsion angles of -176.80 (12) and 4.67 (19)°. In the crystal, O—H···O hydrogen bonds and weak C—H···O hydrogen bonds link molecules forming chains of R12(8) rings (Bernstein et al., 1995) along [010] (see Fig. 3).

Synthesis and crystallization top

To an oven dried flask containing the cyclo­adduct (I) (60 mg, 0.21 mmol) was added methanol (5 ml), THF (5 ml) and distilled water (2 ml) and the mixture was cooled to 273–278 K using an ice bath. AlCl3 (87 mg, 0.65 mmol) was added to the cold solution in one portion and was stirred at 273 K for 15 minutes. Raney-nickel (0.52 g) was added and was stirred for 4 h at 273 K. The reaction mixture was filtered through a pad of celite, while washing with di­chloro­methane (20 ml). The organic layer was separated and the aqueous layer was extracted again with di­chloro­methane (10 ml), and the combined organic layers were dried over sodium sulfate then evaporated using rotary evaporation. The crude product was washed by hexanes (3 ml) followed by recrystallizaion in EtOAc:hexanes = 1:5 to give product (II) in 86% yield. X-ray quality crystals were grown from a solution of the title compound in EtOAc:hexanes = 1:5.

Refinement top

Hydrogen atoms bonded to C atoms were placed in calculated positions with C—H distances ranging from 0.95–1.00 Å and included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The hydroxyl H atom was refined independently with an isotropic displacement parameter.

Related literature top

For the metal-mediated cleavage of 2-isoxazoline rings fused to bicyclic frameworks, see: Tranmer & Tam (2002). For hydrogen-bond graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The reaction scheme.
[Figure 2] Fig. 2. The molecular structure of the title compound showing 30% probability ellipsoids.
[Figure 3] Fig. 3. Part of the crystal structure with weak hydrogen bonds shown as dashed lines.
1-(3-Hydroxy-5,8-dimethoxy-4-methyl-1,2,3,4-tetrahydro-1,4-epoxynaphthalen-2-yl)ethan-1-one top
Crystal data top
C15H18O5Dx = 1.342 Mg m3
Mr = 278.29Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 6136 reflections
a = 10.3091 (4) Åθ = 5.3–66.6°
b = 9.1309 (4) ŵ = 0.84 mm1
c = 29.2552 (13) ÅT = 147 K
V = 2753.8 (2) Å3Plate, colourless
Z = 80.17 × 0.14 × 0.05 mm
F(000) = 1184
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
2195 reflections with I > 2σ(I)
Radiation source: Bruker ImuS with multi-layer opticsRint = 0.021
ϕ and ω scansθmax = 66.6°, θmin = 5.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1110
Tmin = 0.686, Tmax = 0.753k = 610
9265 measured reflectionsl = 3434
2368 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0532P)2 + 1.2534P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2368 reflectionsΔρmax = 0.42 e Å3
189 parametersΔρmin = 0.24 e Å3
Crystal data top
C15H18O5V = 2753.8 (2) Å3
Mr = 278.29Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 10.3091 (4) ŵ = 0.84 mm1
b = 9.1309 (4) ÅT = 147 K
c = 29.2552 (13) Å0.17 × 0.14 × 0.05 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
2368 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2195 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.753Rint = 0.021
9265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.42 e Å3
2368 reflectionsΔρmin = 0.24 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.88037 (9)0.52360 (10)0.62898 (3)0.0212 (2)
O20.70291 (9)0.72212 (11)0.58154 (3)0.0259 (2)
O30.85382 (10)0.46468 (11)0.52476 (3)0.0294 (3)
O40.93569 (9)0.88101 (11)0.72203 (3)0.0267 (2)
O51.28252 (9)0.59024 (12)0.60787 (3)0.0315 (3)
C10.99163 (13)0.55891 (15)0.60115 (4)0.0212 (3)
H1A1.03610.47270.58710.025*
C20.85197 (12)0.67220 (14)0.64418 (4)0.0192 (3)
C30.73874 (13)0.67520 (16)0.67653 (4)0.0250 (3)
H3A0.76450.63230.70590.038*
H3B0.66690.61850.66360.038*
H3C0.71090.77670.68130.038*
C40.83079 (12)0.74951 (14)0.59729 (4)0.0194 (3)
H4A0.84880.85690.59940.023*
C50.93447 (13)0.66931 (14)0.56674 (4)0.0204 (3)
H5A1.00270.73990.55660.025*
C60.87214 (13)0.59612 (15)0.52575 (4)0.0230 (3)
C70.84055 (16)0.69186 (18)0.48585 (5)0.0328 (4)
H7A0.78950.63620.46360.049*
H7B0.92110.72560.47150.049*
H7C0.79030.77660.49630.049*
C80.98548 (13)0.71876 (14)0.66166 (4)0.0192 (3)
C91.02832 (13)0.81205 (14)0.69594 (4)0.0212 (3)
C101.16170 (14)0.82634 (16)0.70211 (5)0.0259 (3)
H10A1.19350.88680.72610.031*
C111.24964 (14)0.75349 (16)0.67375 (5)0.0276 (3)
H11A1.34010.76560.67860.033*
C121.20648 (13)0.66370 (15)0.63864 (5)0.0242 (3)
C131.07345 (13)0.64562 (15)0.63424 (4)0.0213 (3)
C140.98079 (15)0.98213 (16)0.75556 (5)0.0299 (3)
H14A0.90641.02770.77080.045*
H14B1.03331.05800.74070.045*
H14C1.03370.93020.77820.045*
C151.41953 (14)0.60214 (19)0.61366 (6)0.0354 (4)
H15A1.46360.54880.58910.053*
H15B1.44430.56030.64330.053*
H15C1.44480.70550.61260.053*
H2O0.673 (2)0.813 (3)0.5676 (8)0.072 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0214 (5)0.0188 (5)0.0234 (5)0.0021 (4)0.0009 (4)0.0006 (4)
O20.0188 (5)0.0323 (6)0.0267 (5)0.0002 (4)0.0033 (4)0.0005 (4)
O30.0325 (6)0.0294 (6)0.0263 (5)0.0037 (4)0.0013 (4)0.0039 (4)
O40.0249 (5)0.0278 (5)0.0274 (5)0.0002 (4)0.0040 (4)0.0091 (4)
O50.0177 (5)0.0428 (6)0.0341 (6)0.0056 (4)0.0026 (4)0.0006 (5)
C10.0181 (7)0.0226 (7)0.0227 (7)0.0012 (5)0.0010 (5)0.0012 (5)
C20.0179 (7)0.0183 (7)0.0214 (6)0.0010 (5)0.0006 (5)0.0021 (5)
C30.0199 (7)0.0322 (8)0.0229 (7)0.0026 (6)0.0019 (5)0.0003 (6)
C40.0155 (6)0.0210 (7)0.0217 (7)0.0008 (5)0.0009 (5)0.0013 (5)
C50.0177 (7)0.0215 (7)0.0221 (7)0.0000 (5)0.0016 (5)0.0001 (5)
C60.0185 (7)0.0280 (8)0.0225 (7)0.0030 (5)0.0035 (5)0.0016 (6)
C70.0397 (9)0.0377 (9)0.0211 (7)0.0107 (7)0.0001 (6)0.0010 (6)
C80.0183 (7)0.0187 (6)0.0208 (6)0.0008 (5)0.0017 (5)0.0034 (5)
C90.0224 (7)0.0198 (6)0.0214 (6)0.0005 (5)0.0027 (5)0.0021 (5)
C100.0250 (8)0.0255 (7)0.0271 (7)0.0057 (6)0.0075 (6)0.0017 (6)
C110.0185 (7)0.0324 (8)0.0319 (7)0.0034 (6)0.0059 (6)0.0063 (6)
C120.0184 (7)0.0270 (7)0.0273 (7)0.0020 (6)0.0004 (5)0.0062 (6)
C130.0199 (7)0.0215 (7)0.0223 (7)0.0008 (5)0.0013 (5)0.0033 (5)
C140.0334 (8)0.0292 (7)0.0270 (7)0.0034 (6)0.0042 (6)0.0093 (6)
C150.0171 (8)0.0468 (10)0.0422 (9)0.0059 (7)0.0030 (6)0.0146 (7)
Geometric parameters (Å, º) top
O1—C11.4431 (16)C5—C61.5157 (18)
O1—C21.4576 (16)C5—H5A1.0000
O2—C41.4187 (16)C6—C71.494 (2)
O2—H2O0.97 (3)C7—H7A0.9800
O3—C61.2153 (18)C7—H7B0.9800
O4—C91.3750 (17)C7—H7C0.9800
O4—C141.4252 (16)C8—C131.3827 (19)
O5—C121.3692 (17)C8—C91.3880 (19)
O5—C151.4268 (18)C9—C101.393 (2)
C1—C131.5086 (19)C10—C111.397 (2)
C1—C51.5417 (18)C10—H10A0.9500
C1—H1A1.0000C11—C121.387 (2)
C2—C31.5030 (18)C11—H11A0.9500
C2—C81.5286 (18)C12—C131.387 (2)
C2—C41.5581 (18)C14—H14A0.9800
C3—H3A0.9800C14—H14B0.9800
C3—H3B0.9800C14—H14C0.9800
C3—H3C0.9800C15—H15A0.9800
C4—C51.5740 (18)C15—H15B0.9800
C4—H4A1.0000C15—H15C0.9800
C1—O1—C297.11 (9)C6—C7—H7A109.5
C4—O2—H2O106.0 (14)C6—C7—H7B109.5
C9—O4—C14116.88 (11)H7A—C7—H7B109.5
C12—O5—C15116.83 (12)C6—C7—H7C109.5
O1—C1—C13101.51 (10)H7A—C7—H7C109.5
O1—C1—C5102.17 (10)H7B—C7—H7C109.5
C13—C1—C5106.84 (11)C13—C8—C9120.45 (12)
O1—C1—H1A114.9C13—C8—C2105.20 (11)
C13—C1—H1A114.9C9—C8—C2134.34 (12)
C5—C1—H1A114.9O4—C9—C8117.45 (12)
O1—C2—C3111.41 (11)O4—C9—C10124.81 (12)
O1—C2—C8100.38 (10)C8—C9—C10117.72 (13)
C3—C2—C8118.92 (11)C9—C10—C11121.26 (13)
O1—C2—C4100.44 (10)C9—C10—H10A119.4
C3—C2—C4115.93 (11)C11—C10—H10A119.4
C8—C2—C4107.14 (10)C12—C11—C10120.85 (13)
C2—C3—H3A109.5C12—C11—H11A119.6
C2—C3—H3B109.5C10—C11—H11A119.6
H3A—C3—H3B109.5O5—C12—C13116.53 (12)
C2—C3—H3C109.5O5—C12—C11126.35 (13)
H3A—C3—H3C109.5C13—C12—C11117.12 (13)
H3B—C3—H3C109.5C8—C13—C12122.49 (13)
O2—C4—C2109.65 (10)C8—C13—C1105.01 (11)
O2—C4—C5111.38 (10)C12—C13—C1132.43 (13)
C2—C4—C5101.19 (10)O4—C14—H14A109.5
O2—C4—H4A111.4O4—C14—H14B109.5
C2—C4—H4A111.4H14A—C14—H14B109.5
C5—C4—H4A111.4O4—C14—H14C109.5
C6—C5—C1112.97 (11)H14A—C14—H14C109.5
C6—C5—C4111.50 (11)H14B—C14—H14C109.5
C1—C5—C4101.12 (10)O5—C15—H15A109.5
C6—C5—H5A110.3O5—C15—H15B109.5
C1—C5—H5A110.3H15A—C15—H15B109.5
C4—C5—H5A110.3O5—C15—H15C109.5
O3—C6—C7121.69 (13)H15A—C15—H15C109.5
O3—C6—C5121.34 (12)H15B—C15—H15C109.5
C7—C6—C5116.90 (12)
C2—O1—C1—C1352.14 (11)C3—C2—C8—C927.1 (2)
C2—O1—C1—C558.12 (11)C4—C2—C8—C9106.73 (16)
C1—O1—C2—C3178.08 (10)C14—O4—C9—C8176.91 (12)
C1—O1—C2—C851.22 (11)C14—O4—C9—C104.67 (19)
C1—O1—C2—C458.56 (10)C13—C8—C9—O4179.83 (11)
O1—C2—C4—O281.46 (11)C2—C8—C9—O41.0 (2)
C3—C2—C4—O238.70 (15)C13—C8—C9—C101.29 (19)
C8—C2—C4—O2174.15 (10)C2—C8—C9—C10179.56 (13)
O1—C2—C4—C536.26 (11)O4—C9—C10—C11179.33 (12)
C3—C2—C4—C5156.42 (11)C8—C9—C10—C112.2 (2)
C8—C2—C4—C568.13 (12)C9—C10—C11—C120.4 (2)
O1—C1—C5—C685.45 (12)C15—O5—C12—C13176.80 (12)
C13—C1—C5—C6168.38 (11)C15—O5—C12—C112.9 (2)
O1—C1—C5—C433.82 (12)C10—C11—C12—O5177.95 (13)
C13—C1—C5—C472.35 (12)C10—C11—C12—C132.4 (2)
O2—C4—C5—C65.64 (15)C9—C8—C13—C121.6 (2)
C2—C4—C5—C6122.10 (11)C2—C8—C13—C12177.80 (12)
O2—C4—C5—C1114.69 (11)C9—C8—C13—C1178.95 (11)
C2—C4—C5—C11.77 (12)C2—C8—C13—C10.42 (13)
C1—C5—C6—O310.24 (18)O5—C12—C13—C8176.91 (12)
C4—C5—C6—O3102.85 (14)C11—C12—C13—C83.4 (2)
C1—C5—C6—C7166.79 (12)O5—C12—C13—C10.3 (2)
C4—C5—C6—C780.12 (15)C11—C12—C13—C1179.95 (13)
O1—C2—C8—C1331.93 (12)O1—C1—C13—C833.15 (13)
C3—C2—C8—C13153.61 (12)C5—C1—C13—C873.48 (13)
C4—C2—C8—C1372.51 (12)O1—C1—C13—C12149.85 (14)
O1—C2—C8—C9148.83 (14)C5—C1—C13—C12103.52 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O3i0.97 (3)1.89 (2)2.8295 (15)162 (2)
C7—H7C···O3i0.982.423.3936 (19)173
Symmetry code: (i) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O3i0.97 (3)1.89 (2)2.8295 (15)162 (2)
C7—H7C···O3i0.982.423.3936 (19)173
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTranmer, G. K. & Tam, W. (2002). Org. Lett. 4, 4101–4104.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds