organic compounds
6-Chloro-4-oxo-4H-chromene-3-carbaldehyde
aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp
In the title compound, C10H5ClO3, a chlorinated 3-formylchromone derivative, the non-H atoms are essentially coplanar (r.m.s. deviation = 0.0456 Å) with the largest deviation from the least-squares plane [0.1136 (16) Å] being found for the ring-bound carbonyl O atom. In the crystal, molecules are linked through stacking interactions along the b axis [shortest centroid–centroid distance between the pyran and benzene rings = 3.4959 (15) Å].
CCDC reference: 994454
Related literature
For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For van der Waals radii; see: Bondi (1964). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Sirimulla et al. (2013).
Experimental
Crystal data
|
Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR88 (Burla et al., 1989); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.
Supporting information
CCDC reference: 994454
10.1107/S1600536814007119/tk5303sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814007119/tk5303Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814007119/tk5303Isup3.cml
Halogen bonds have been found to occur in organic, inorganic and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supramolecular chemistry (Auffinger et al., 2004; Metrangolo et al., 2005; Sirimulla et al., 2013). We have recently reported the crystal structures of dihalogenated 3-formylchromone derivatives 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013; Fig. 2 (top)) and 6,8-dibromo-4-oxochromene-3-carbaldehyde (Ishikawa, 2014). It was found that similar halogen bonds between the formyl oxygen atom and the halogen atoms at the 8-position are formed in those crystal structures. As part of our interest in this type of chemical bonding, we herein report the
of a monochlorinated 3-formylchromone derivative, 6-chloro-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(s) can be formed in the of this compound without halogen atom at 8-position.The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0456 Å, and the largest deviations is 0.1136 (16) Å for O2. These mean that these atoms are essentially coplanar.
In the crystal, the molecules are stacked with the inversion-symmetry equivalents along the b-axis direction [centroid–centroid distance between the pyran rings of the 4H-chromene units = 3.926 (2) Å, i: -x + 2, -y + 1, -z + 1], as shown in Fig. 1. The distance between the chloride atom and the formyl oxygen atom of the translation-symmetry equivalent [Cl1···O3ii = 3.284 (2) Å, ii: x + 1, y, z - 1] is approximately equal to the sum of their van der Waals radii [3.27 Å] (Bondi, 1964), as shown in the middle of Fig. 2. Thus, it is concluded that there is no halogen bond in the title compound. The C–Cl···O and Cl···O=C angles are 166.30 (8) and 166.69 (14)°, respectively. The latter angle is greater than that of 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013). A structure with halogen bonds can be modeled for the title compound (Fig.2, bottom), but it is not observed in the crystal. These results might be invaluable for the development of state-of-the-art force fields.
Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of the commercially available title compound at room temperature.
Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell
WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR88 (Burla et al., 1989); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).C10H5ClO3 | Z = 2 |
Mr = 208.60 | F(000) = 212.00 |
Triclinic, P1 | Dx = 1.665 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 6.5838 (16) Å | Cell parameters from 25 reflections |
b = 6.9579 (17) Å | θ = 15.3–17.2° |
c = 10.265 (3) Å | µ = 0.43 mm−1 |
α = 71.22 (3)° | T = 100 K |
β = 85.64 (2)° | Plate, colourless |
γ = 69.29 (3)° | 0.36 × 0.25 × 0.12 mm |
V = 416.0 (2) Å3 |
Rigaku AFC-7R diffractometer | Rint = 0.058 |
ω–2θ scans | θmax = 27.5° |
Absorption correction: ψ scan (North et al., 1968) | h = −4→8 |
Tmin = 0.891, Tmax = 0.950 | k = −8→9 |
2356 measured reflections | l = −13→13 |
1906 independent reflections | 3 standard reflections every 150 reflections |
1741 reflections with F2 > 2σ(F2) | intensity decay: −0.9% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0651P)2 + 0.1805P] where P = (Fo2 + 2Fc2)/3 |
1906 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.64 e Å−3 |
Primary atom site location: structure-invariant direct methods |
C10H5ClO3 | γ = 69.29 (3)° |
Mr = 208.60 | V = 416.0 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.5838 (16) Å | Mo Kα radiation |
b = 6.9579 (17) Å | µ = 0.43 mm−1 |
c = 10.265 (3) Å | T = 100 K |
α = 71.22 (3)° | 0.36 × 0.25 × 0.12 mm |
β = 85.64 (2)° |
Rigaku AFC-7R diffractometer | 1741 reflections with F2 > 2σ(F2) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.058 |
Tmin = 0.891, Tmax = 0.950 | 3 standard reflections every 150 reflections |
2356 measured reflections | intensity decay: −0.9% |
1906 independent reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.29 e Å−3 |
1906 reflections | Δρmin = −0.64 e Å−3 |
127 parameters |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.39536 (6) | 0.20927 (6) | 0.08023 (4) | 0.01987 (16) | |
O1 | 0.69076 (17) | 0.31098 (18) | 0.46559 (11) | 0.0144 (3) | |
O2 | 1.29992 (18) | 0.1926 (2) | 0.61081 (12) | 0.0182 (3) | |
O3 | 0.7968 (2) | 0.2432 (3) | 0.87417 (12) | 0.0239 (3) | |
C1 | 0.7314 (3) | 0.2807 (3) | 0.59818 (15) | 0.0136 (3) | |
C2 | 0.9290 (3) | 0.2401 (3) | 0.65261 (15) | 0.0131 (3) | |
C3 | 1.1186 (3) | 0.2214 (3) | 0.56792 (15) | 0.0126 (3) | |
C4 | 1.2409 (3) | 0.2179 (3) | 0.33066 (15) | 0.0139 (3) | |
C5 | 1.1898 (3) | 0.2441 (3) | 0.19633 (15) | 0.0148 (3) | |
C6 | 0.9759 (3) | 0.2980 (3) | 0.15125 (16) | 0.0166 (4) | |
C7 | 0.8106 (3) | 0.3239 (3) | 0.24213 (16) | 0.0159 (4) | |
C8 | 1.0736 (3) | 0.2431 (3) | 0.42402 (15) | 0.0120 (3) | |
C9 | 0.8618 (3) | 0.2926 (3) | 0.37834 (15) | 0.0129 (3) | |
C10 | 0.9496 (3) | 0.2130 (3) | 0.80066 (16) | 0.0169 (4) | |
H1 | 0.6135 | 0.2881 | 0.6580 | 0.0163* | |
H2 | 1.3869 | 0.1834 | 0.3594 | 0.0167* | |
H3 | 0.9443 | 0.3168 | 0.0582 | 0.0200* | |
H4 | 0.6643 | 0.3625 | 0.2123 | 0.0191* | |
H5 | 1.0911 | 0.1694 | 0.8402 | 0.0202* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0190 (3) | 0.0257 (3) | 0.0136 (3) | −0.00517 (16) | 0.00438 (14) | −0.00820 (15) |
O1 | 0.0101 (5) | 0.0183 (6) | 0.0134 (5) | −0.0037 (4) | −0.0001 (4) | −0.0044 (4) |
O2 | 0.0125 (5) | 0.0268 (6) | 0.0158 (6) | −0.0066 (5) | −0.0007 (4) | −0.0074 (5) |
O3 | 0.0222 (6) | 0.0358 (8) | 0.0180 (6) | −0.0114 (6) | 0.0065 (5) | −0.0141 (6) |
C1 | 0.0137 (7) | 0.0133 (7) | 0.0130 (7) | −0.0036 (6) | 0.0010 (5) | −0.0043 (6) |
C2 | 0.0133 (7) | 0.0141 (7) | 0.0124 (7) | −0.0041 (6) | 0.0004 (6) | −0.0056 (6) |
C3 | 0.0127 (7) | 0.0115 (7) | 0.0136 (7) | −0.0034 (6) | −0.0002 (6) | −0.0047 (6) |
C4 | 0.0137 (7) | 0.0133 (7) | 0.0142 (7) | −0.0039 (6) | 0.0003 (6) | −0.0044 (6) |
C5 | 0.0176 (8) | 0.0133 (7) | 0.0132 (7) | −0.0047 (6) | 0.0022 (6) | −0.0049 (6) |
C6 | 0.0220 (8) | 0.0154 (7) | 0.0118 (7) | −0.0064 (6) | −0.0017 (6) | −0.0031 (6) |
C7 | 0.0160 (7) | 0.0164 (7) | 0.0142 (7) | −0.0050 (6) | −0.0042 (6) | −0.0029 (6) |
C8 | 0.0132 (7) | 0.0110 (7) | 0.0111 (7) | −0.0037 (6) | −0.0001 (6) | −0.0031 (5) |
C9 | 0.0136 (7) | 0.0119 (7) | 0.0124 (7) | −0.0038 (6) | 0.0005 (6) | −0.0033 (6) |
C10 | 0.0189 (8) | 0.0189 (8) | 0.0140 (7) | −0.0066 (6) | 0.0010 (6) | −0.0068 (6) |
Cl1—C5 | 1.7377 (17) | C4—C8 | 1.405 (3) |
O1—C1 | 1.341 (2) | C5—C6 | 1.397 (3) |
O1—C9 | 1.3802 (19) | C6—C7 | 1.379 (3) |
O2—C3 | 1.230 (3) | C7—C9 | 1.393 (3) |
O3—C10 | 1.210 (2) | C8—C9 | 1.392 (3) |
C1—C2 | 1.354 (3) | C1—H1 | 0.950 |
C2—C3 | 1.457 (3) | C4—H2 | 0.950 |
C2—C10 | 1.481 (3) | C6—H3 | 0.950 |
C3—C8 | 1.478 (3) | C7—H4 | 0.950 |
C4—C5 | 1.383 (3) | C10—H5 | 0.950 |
O1···C3 | 2.866 (3) | C4···H3 | 3.2782 |
O2···C1 | 3.578 (3) | C5···H4 | 3.2649 |
O2···C4 | 2.872 (3) | C6···H2 | 3.2829 |
O2···C10 | 2.898 (3) | C8···H4 | 3.2890 |
O3···C1 | 2.812 (3) | C9···H1 | 3.1907 |
C1···C7 | 3.582 (3) | C9···H2 | 3.2715 |
C1···C8 | 2.759 (3) | C9···H3 | 3.2493 |
C2···C9 | 2.769 (3) | C10···H1 | 2.5487 |
C4···C7 | 2.807 (3) | H1···H5 | 3.4825 |
C5···C9 | 2.747 (3) | H3···H4 | 2.3384 |
C6···C8 | 2.795 (3) | Cl1···H3xi | 3.1849 |
Cl1···O3i | 3.2840 (16) | Cl1···H4vi | 2.9565 |
O1···O1ii | 3.1591 (18) | Cl1···H4xi | 3.4118 |
O1···O2iii | 3.1063 (19) | Cl1···H5x | 3.4268 |
O1···O2iv | 3.309 (3) | Cl1···H5vii | 3.4313 |
O1···C1ii | 3.118 (2) | O1···H1ii | 2.7492 |
O1···C3v | 3.589 (3) | O1···H2iii | 2.8618 |
O1···C4v | 3.484 (3) | O1···H2v | 3.5281 |
O1···C8v | 3.432 (2) | O2···H1vi | 2.5039 |
O2···O1vi | 3.1063 (19) | O2···H2vii | 2.6366 |
O2···O1iv | 3.309 (3) | O3···H3ix | 2.4552 |
O2···C1vi | 3.096 (3) | O3···H3v | 3.5089 |
O2···C1iv | 3.543 (3) | O3···H4ii | 3.2371 |
O2···C4vii | 3.274 (2) | O3···H5xii | 3.2852 |
O2···C9iv | 3.394 (3) | C1···H1ii | 3.4760 |
O3···Cl1viii | 3.2840 (16) | C1···H2v | 3.4704 |
O3···C4iv | 3.590 (3) | C3···H2vii | 3.4084 |
O3···C5iv | 3.436 (3) | C4···H1v | 3.2703 |
O3···C6ix | 3.339 (3) | C4···H4vi | 3.3076 |
C1···O1ii | 3.118 (2) | C5···H1v | 3.3113 |
C1···O2iii | 3.096 (3) | C5···H3xi | 3.2003 |
C1···O2iv | 3.543 (3) | C5···H4vi | 3.5285 |
C1···C4v | 3.247 (3) | C6···H3xi | 3.0323 |
C1···C5v | 3.452 (3) | C6···H5x | 3.5441 |
C1···C8v | 3.487 (3) | C6···H5v | 3.4065 |
C2···C4iv | 3.592 (3) | C7···H1ii | 3.4852 |
C2···C5v | 3.562 (3) | C7···H2iii | 3.2936 |
C2···C6v | 3.485 (3) | C9···H1ii | 3.3852 |
C2···C7v | 3.507 (3) | C9···H2iii | 3.5013 |
C2···C8iv | 3.418 (3) | C10···H3ix | 2.9512 |
C2···C9v | 3.580 (3) | C10···H3v | 3.3274 |
C3···O1v | 3.589 (3) | H1···O1ii | 2.7492 |
C3···C3iv | 3.461 (3) | H1···O2iii | 2.5039 |
C3···C7v | 3.541 (3) | H1···C1ii | 3.4760 |
C3···C8iv | 3.512 (3) | H1···C4v | 3.2703 |
C3···C9v | 3.395 (3) | H1···C5v | 3.3113 |
C4···O1v | 3.484 (3) | H1···C7ii | 3.4852 |
C4···O2vii | 3.274 (2) | H1···C9ii | 3.3852 |
C4···O3iv | 3.590 (3) | H1···H1ii | 3.5933 |
C4···C1v | 3.247 (3) | H1···H2v | 3.3433 |
C4···C2iv | 3.592 (3) | H1···H4ii | 3.0973 |
C4···C10iv | 3.518 (3) | H2···O1vi | 2.8618 |
C5···O3iv | 3.436 (3) | H2···O1v | 3.5281 |
C5···C1v | 3.452 (3) | H2···O2vii | 2.6366 |
C5···C2v | 3.562 (3) | H2···C1v | 3.4704 |
C5···C10v | 3.600 (3) | H2···C3vii | 3.4084 |
C5···C10iv | 3.568 (3) | H2···C7vi | 3.2936 |
C6···O3x | 3.339 (3) | H2···C9vi | 3.5013 |
C6···C2v | 3.485 (3) | H2···H1v | 3.3433 |
C6···C6xi | 3.536 (3) | H2···H2vii | 3.2073 |
C6···C10v | 3.287 (3) | H2···H4vi | 2.6733 |
C7···C2v | 3.507 (3) | H3···Cl1xi | 3.1849 |
C7···C3v | 3.541 (3) | H3···O3x | 2.4552 |
C8···O1v | 3.432 (2) | H3···O3v | 3.5089 |
C8···C1v | 3.487 (3) | H3···C5xi | 3.2003 |
C8···C2iv | 3.418 (3) | H3···C6xi | 3.0323 |
C8···C3iv | 3.512 (3) | H3···C10x | 2.9512 |
C8···C9v | 3.512 (3) | H3···C10v | 3.3274 |
C9···O2iv | 3.394 (3) | H3···H3xi | 2.7733 |
C9···C2v | 3.580 (3) | H3···H5x | 2.7277 |
C9···C3v | 3.395 (3) | H3···H5v | 3.2917 |
C9···C8v | 3.512 (3) | H4···Cl1iii | 2.9565 |
C10···C4iv | 3.518 (3) | H4···Cl1xi | 3.4118 |
C10···C5v | 3.600 (3) | H4···O3ii | 3.2371 |
C10···C5iv | 3.568 (3) | H4···C4iii | 3.3076 |
C10···C6v | 3.287 (3) | H4···C5iii | 3.5285 |
Cl1···H2 | 2.8098 | H4···H1ii | 3.0973 |
Cl1···H3 | 2.8018 | H4···H2iii | 2.6733 |
O1···H4 | 2.5183 | H5···Cl1ix | 3.4268 |
O2···H2 | 2.6171 | H5···Cl1vii | 3.4313 |
O2···H5 | 2.6235 | H5···O3xii | 3.2852 |
O3···H1 | 2.4841 | H5···C6ix | 3.5441 |
C1···H5 | 3.2768 | H5···C6v | 3.4065 |
C3···H1 | 3.2936 | H5···H3ix | 2.7277 |
C3···H2 | 2.6894 | H5···H3v | 3.2917 |
C3···H5 | 2.7009 | ||
C1—O1—C9 | 118.51 (13) | C4—C8—C9 | 118.86 (15) |
O1—C1—C2 | 124.50 (14) | O1—C9—C7 | 116.07 (15) |
C1—C2—C3 | 120.89 (15) | O1—C9—C8 | 122.03 (15) |
C1—C2—C10 | 118.68 (14) | C7—C9—C8 | 121.89 (15) |
C3—C2—C10 | 120.43 (15) | O3—C10—C2 | 123.81 (16) |
O2—C3—C2 | 123.55 (15) | O1—C1—H1 | 117.750 |
O2—C3—C8 | 122.50 (14) | C2—C1—H1 | 117.752 |
C2—C3—C8 | 113.94 (14) | C5—C4—H2 | 120.520 |
C5—C4—C8 | 118.97 (15) | C8—C4—H2 | 120.513 |
Cl1—C5—C4 | 119.56 (13) | C5—C6—H3 | 120.086 |
Cl1—C5—C6 | 118.90 (13) | C7—C6—H3 | 120.081 |
C4—C5—C6 | 121.54 (15) | C6—C7—H4 | 120.563 |
C5—C6—C7 | 119.83 (16) | C9—C7—H4 | 120.557 |
C6—C7—C9 | 118.88 (16) | O3—C10—H5 | 118.090 |
C3—C8—C4 | 121.17 (15) | C2—C10—H5 | 118.097 |
C3—C8—C9 | 119.97 (14) | ||
C1—O1—C9—C7 | 179.49 (13) | C8—C4—C5—Cl1 | −178.97 (13) |
C1—O1—C9—C8 | 0.2 (2) | C8—C4—C5—C6 | 1.0 (3) |
C9—O1—C1—C2 | 2.4 (3) | H2—C4—C5—Cl1 | 1.0 |
C9—O1—C1—H1 | −177.6 | H2—C4—C5—C6 | −179.0 |
O1—C1—C2—C3 | −1.4 (3) | H2—C4—C8—C3 | 1.3 |
O1—C1—C2—C10 | 179.14 (13) | H2—C4—C8—C9 | −179.7 |
H1—C1—C2—C3 | 178.6 | Cl1—C5—C6—C7 | 179.23 (11) |
H1—C1—C2—C10 | −0.9 | Cl1—C5—C6—H3 | −0.8 |
C1—C2—C3—O2 | 177.29 (15) | C4—C5—C6—C7 | −0.7 (3) |
C1—C2—C3—C8 | −2.0 (2) | C4—C5—C6—H3 | 179.3 |
C1—C2—C10—O3 | −6.6 (3) | C5—C6—C7—C9 | −0.8 (3) |
C1—C2—C10—H5 | 173.4 | C5—C6—C7—H4 | 179.1 |
C3—C2—C10—O3 | 173.91 (15) | H3—C6—C7—C9 | 179.1 |
C3—C2—C10—H5 | −6.1 | H3—C6—C7—H4 | −0.9 |
C10—C2—C3—O2 | −3.3 (3) | C6—C7—C9—O1 | −177.08 (14) |
C10—C2—C3—C8 | 177.49 (13) | C6—C7—C9—C8 | 2.2 (3) |
O2—C3—C8—C4 | 4.1 (3) | H4—C7—C9—O1 | 2.9 |
O2—C3—C8—C9 | −174.93 (14) | H4—C7—C9—C8 | −177.8 |
C2—C3—C8—C4 | −176.66 (13) | C3—C8—C9—O1 | −3.7 (3) |
C2—C3—C8—C9 | 4.3 (2) | C3—C8—C9—C7 | 177.13 (13) |
C5—C4—C8—C3 | −178.70 (13) | C4—C8—C9—O1 | 177.30 (14) |
C5—C4—C8—C9 | 0.3 (3) | C4—C8—C9—C7 | −1.9 (3) |
Symmetry codes: (i) x+1, y, z−1; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z; (iv) −x+2, −y+1, −z+1; (v) −x+2, −y, −z+1; (vi) x+1, y, z; (vii) −x+3, −y, −z+1; (viii) x−1, y, z+1; (ix) x, y, z+1; (x) x, y, z−1; (xi) −x+2, −y+1, −z; (xii) −x+2, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C10H5ClO3 |
Mr | 208.60 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 6.5838 (16), 6.9579 (17), 10.265 (3) |
α, β, γ (°) | 71.22 (3), 85.64 (2), 69.29 (3) |
V (Å3) | 416.0 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.43 |
Crystal size (mm) | 0.36 × 0.25 × 0.12 |
Data collection | |
Diffractometer | Rigaku AFC-7R diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.891, 0.950 |
No. of measured, independent and observed [F2 > 2σ(F2)] reflections | 2356, 1906, 1741 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.109, 1.10 |
No. of reflections | 1906 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.64 |
Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), SIR88 (Burla et al., 1989), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).
Acknowledgements
The author acknowledges the University of Shizuoka for instrumental support.
References
Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794. Web of Science CrossRef PubMed CAS Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389–393. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ishikawa, Y. (2014). Acta Cryst. E70, o439. CSD CrossRef IUCr Journals Google Scholar
Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416. CSD CrossRef IUCr Journals Google Scholar
Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. Web of Science CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.