organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-4-oxo-4H-chromene-3-carb­aldehyde

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 28 March 2014; accepted 30 March 2014; online 5 April 2014)

In the title compound, C10H5ClO3, a chlorinated 3-formyl­chromone derivative, the non-H atoms are essentially coplanar (r.m.s. deviation = 0.0456 Å) with the largest deviation from the least-squares plane [0.1136 (16) Å] being found for the ring-bound carbonyl O atom. In the crystal, mol­ecules are linked through stacking inter­actions along the b axis [shortest centroid–centroid distance between the pyran and benzene rings = 3.4959 (15) Å].

Related literature

For related structures, see: Ishikawa & Motohashi (2013[Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.]); Ishikawa (2014[Ishikawa, Y. (2014). Acta Cryst. E70, o439.]). For van der Waals radii; see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). For halogen bonding, see: Auffinger et al. (2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]); Sirimulla et al. (2013[Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781-2791.]).

[Scheme 1]

Experimental

Crystal data
  • C10H5ClO3

  • Mr = 208.60

  • Triclinic, [P \overline 1]

  • a = 6.5838 (16) Å

  • b = 6.9579 (17) Å

  • c = 10.265 (3) Å

  • α = 71.22 (3)°

  • β = 85.64 (2)°

  • γ = 69.29 (3)°

  • V = 416.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 100 K

  • 0.36 × 0.25 × 0.12 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.891, Tmax = 0.950

  • 2356 measured reflections

  • 1906 independent reflections

  • 1741 reflections with F2 > 2σ(F2)

  • Rint = 0.058

  • 3 standard reflections every 150 reflections intensity decay: −0.9%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.10

  • 1906 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR88 (Burla et al., 1989[Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Structural commentary top

Halogen bonds have been found to occur in organic, inorganic and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supra­molecular chemistry (Auffinger et al., 2004; Metrangolo et al., 2005; Sirimulla et al., 2013). We have recently reported the crystal structures of dihalogenated 3-formyl­chromone derivatives 6,8-di­chloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013; Fig. 2 (top)) and 6,8-di­bromo-4-oxochromene-3-carbaldehyde (Ishikawa, 2014). It was found that similar halogen bonds between the formyl oxygen atom and the halogen atoms at the 8-position are formed in those crystal structures. As part of our inter­est in this type of chemical bonding, we herein report the crystal structure of a monochlorinated 3-formyl­chromone derivative, 6-chloro-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(s) can be formed in the crystal structure of this compound without halogen atom at 8-position.

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0456 Å, and the largest deviations is 0.1136 (16) Å for O2. These mean that these atoms are essentially coplanar.

In the crystal, the molecules are stacked with the inversion-symmetry equivalents along the b-axis direction [centroid–centroid distance between the pyran rings of the 4H-chromene units = 3.926 (2) Å, i: -x + 2, -y + 1, -z + 1], as shown in Fig. 1. The distance between the chloride atom and the formyl oxygen atom of the translation-symmetry equivalent [Cl1···O3ii = 3.284 (2) Å, ii: x + 1, y, z - 1] is approximately equal to the sum of their van der Waals radii [3.27 Å] (Bondi, 1964), as shown in the middle of Fig. 2. Thus, it is concluded that there is no halogen bond in the title compound. The C–Cl···O and Cl···O=C angles are 166.30 (8) and 166.69 (14)°, respectively. The latter angle is greater than that of 6,8-di­chloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013). A structure with halogen bonds can be modeled for the title compound (Fig.2, bottom), but it is not observed in the crystal. These results might be invaluable for the development of state-of-the-art force fields.

Synthesis and crystallization top

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of the commercially available title compound at room temperature.

Refinement top

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model. One reflection (1 8 2) was omitted because of systematic error.

Related literature top

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For van der Waals radii; see: Bondi (1964). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Sirimulla et al. (2013).

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR88 (Burla et al., 1989); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. A packing view of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Sphere models of the crystal structures of 6,8-dichloro-4-oxochromene-3-carbaldehyde (top) and the title compound (middle), and an illustration of a hypothetical model of the title compound with halogen bonds (bottom).
6-Chloro-4-oxo-4H-chromene-3-carbaldehyde top
Crystal data top
C10H5ClO3Z = 2
Mr = 208.60F(000) = 212.00
Triclinic, P1Dx = 1.665 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 6.5838 (16) ÅCell parameters from 25 reflections
b = 6.9579 (17) Åθ = 15.3–17.2°
c = 10.265 (3) ŵ = 0.43 mm1
α = 71.22 (3)°T = 100 K
β = 85.64 (2)°Plate, colourless
γ = 69.29 (3)°0.36 × 0.25 × 0.12 mm
V = 416.0 (2) Å3
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.058
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 48
Tmin = 0.891, Tmax = 0.950k = 89
2356 measured reflectionsl = 1313
1906 independent reflections3 standard reflections every 150 reflections
1741 reflections with F2 > 2σ(F2) intensity decay: 0.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.1805P]
where P = (Fo2 + 2Fc2)/3
1906 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.64 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H5ClO3γ = 69.29 (3)°
Mr = 208.60V = 416.0 (2) Å3
Triclinic, P1Z = 2
a = 6.5838 (16) ÅMo Kα radiation
b = 6.9579 (17) ŵ = 0.43 mm1
c = 10.265 (3) ÅT = 100 K
α = 71.22 (3)°0.36 × 0.25 × 0.12 mm
β = 85.64 (2)°
Data collection top
Rigaku AFC-7R
diffractometer
1741 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.058
Tmin = 0.891, Tmax = 0.9503 standard reflections every 150 reflections
2356 measured reflections intensity decay: 0.9%
1906 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.10Δρmax = 0.29 e Å3
1906 reflectionsΔρmin = 0.64 e Å3
127 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.39536 (6)0.20927 (6)0.08023 (4)0.01987 (16)
O10.69076 (17)0.31098 (18)0.46559 (11)0.0144 (3)
O21.29992 (18)0.1926 (2)0.61081 (12)0.0182 (3)
O30.7968 (2)0.2432 (3)0.87417 (12)0.0239 (3)
C10.7314 (3)0.2807 (3)0.59818 (15)0.0136 (3)
C20.9290 (3)0.2401 (3)0.65261 (15)0.0131 (3)
C31.1186 (3)0.2214 (3)0.56792 (15)0.0126 (3)
C41.2409 (3)0.2179 (3)0.33066 (15)0.0139 (3)
C51.1898 (3)0.2441 (3)0.19633 (15)0.0148 (3)
C60.9759 (3)0.2980 (3)0.15125 (16)0.0166 (4)
C70.8106 (3)0.3239 (3)0.24213 (16)0.0159 (4)
C81.0736 (3)0.2431 (3)0.42402 (15)0.0120 (3)
C90.8618 (3)0.2926 (3)0.37834 (15)0.0129 (3)
C100.9496 (3)0.2130 (3)0.80066 (16)0.0169 (4)
H10.61350.28810.65800.0163*
H21.38690.18340.35940.0167*
H30.94430.31680.05820.0200*
H40.66430.36250.21230.0191*
H51.09110.16940.84020.0202*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0190 (3)0.0257 (3)0.0136 (3)0.00517 (16)0.00438 (14)0.00820 (15)
O10.0101 (5)0.0183 (6)0.0134 (5)0.0037 (4)0.0001 (4)0.0044 (4)
O20.0125 (5)0.0268 (6)0.0158 (6)0.0066 (5)0.0007 (4)0.0074 (5)
O30.0222 (6)0.0358 (8)0.0180 (6)0.0114 (6)0.0065 (5)0.0141 (6)
C10.0137 (7)0.0133 (7)0.0130 (7)0.0036 (6)0.0010 (5)0.0043 (6)
C20.0133 (7)0.0141 (7)0.0124 (7)0.0041 (6)0.0004 (6)0.0056 (6)
C30.0127 (7)0.0115 (7)0.0136 (7)0.0034 (6)0.0002 (6)0.0047 (6)
C40.0137 (7)0.0133 (7)0.0142 (7)0.0039 (6)0.0003 (6)0.0044 (6)
C50.0176 (8)0.0133 (7)0.0132 (7)0.0047 (6)0.0022 (6)0.0049 (6)
C60.0220 (8)0.0154 (7)0.0118 (7)0.0064 (6)0.0017 (6)0.0031 (6)
C70.0160 (7)0.0164 (7)0.0142 (7)0.0050 (6)0.0042 (6)0.0029 (6)
C80.0132 (7)0.0110 (7)0.0111 (7)0.0037 (6)0.0001 (6)0.0031 (5)
C90.0136 (7)0.0119 (7)0.0124 (7)0.0038 (6)0.0005 (6)0.0033 (6)
C100.0189 (8)0.0189 (8)0.0140 (7)0.0066 (6)0.0010 (6)0.0068 (6)
Geometric parameters (Å, º) top
Cl1—C51.7377 (17)C4—C81.405 (3)
O1—C11.341 (2)C5—C61.397 (3)
O1—C91.3802 (19)C6—C71.379 (3)
O2—C31.230 (3)C7—C91.393 (3)
O3—C101.210 (2)C8—C91.392 (3)
C1—C21.354 (3)C1—H10.950
C2—C31.457 (3)C4—H20.950
C2—C101.481 (3)C6—H30.950
C3—C81.478 (3)C7—H40.950
C4—C51.383 (3)C10—H50.950
O1···C32.866 (3)C4···H33.2782
O2···C13.578 (3)C5···H43.2649
O2···C42.872 (3)C6···H23.2829
O2···C102.898 (3)C8···H43.2890
O3···C12.812 (3)C9···H13.1907
C1···C73.582 (3)C9···H23.2715
C1···C82.759 (3)C9···H33.2493
C2···C92.769 (3)C10···H12.5487
C4···C72.807 (3)H1···H53.4825
C5···C92.747 (3)H3···H42.3384
C6···C82.795 (3)Cl1···H3xi3.1849
Cl1···O3i3.2840 (16)Cl1···H4vi2.9565
O1···O1ii3.1591 (18)Cl1···H4xi3.4118
O1···O2iii3.1063 (19)Cl1···H5x3.4268
O1···O2iv3.309 (3)Cl1···H5vii3.4313
O1···C1ii3.118 (2)O1···H1ii2.7492
O1···C3v3.589 (3)O1···H2iii2.8618
O1···C4v3.484 (3)O1···H2v3.5281
O1···C8v3.432 (2)O2···H1vi2.5039
O2···O1vi3.1063 (19)O2···H2vii2.6366
O2···O1iv3.309 (3)O3···H3ix2.4552
O2···C1vi3.096 (3)O3···H3v3.5089
O2···C1iv3.543 (3)O3···H4ii3.2371
O2···C4vii3.274 (2)O3···H5xii3.2852
O2···C9iv3.394 (3)C1···H1ii3.4760
O3···Cl1viii3.2840 (16)C1···H2v3.4704
O3···C4iv3.590 (3)C3···H2vii3.4084
O3···C5iv3.436 (3)C4···H1v3.2703
O3···C6ix3.339 (3)C4···H4vi3.3076
C1···O1ii3.118 (2)C5···H1v3.3113
C1···O2iii3.096 (3)C5···H3xi3.2003
C1···O2iv3.543 (3)C5···H4vi3.5285
C1···C4v3.247 (3)C6···H3xi3.0323
C1···C5v3.452 (3)C6···H5x3.5441
C1···C8v3.487 (3)C6···H5v3.4065
C2···C4iv3.592 (3)C7···H1ii3.4852
C2···C5v3.562 (3)C7···H2iii3.2936
C2···C6v3.485 (3)C9···H1ii3.3852
C2···C7v3.507 (3)C9···H2iii3.5013
C2···C8iv3.418 (3)C10···H3ix2.9512
C2···C9v3.580 (3)C10···H3v3.3274
C3···O1v3.589 (3)H1···O1ii2.7492
C3···C3iv3.461 (3)H1···O2iii2.5039
C3···C7v3.541 (3)H1···C1ii3.4760
C3···C8iv3.512 (3)H1···C4v3.2703
C3···C9v3.395 (3)H1···C5v3.3113
C4···O1v3.484 (3)H1···C7ii3.4852
C4···O2vii3.274 (2)H1···C9ii3.3852
C4···O3iv3.590 (3)H1···H1ii3.5933
C4···C1v3.247 (3)H1···H2v3.3433
C4···C2iv3.592 (3)H1···H4ii3.0973
C4···C10iv3.518 (3)H2···O1vi2.8618
C5···O3iv3.436 (3)H2···O1v3.5281
C5···C1v3.452 (3)H2···O2vii2.6366
C5···C2v3.562 (3)H2···C1v3.4704
C5···C10v3.600 (3)H2···C3vii3.4084
C5···C10iv3.568 (3)H2···C7vi3.2936
C6···O3x3.339 (3)H2···C9vi3.5013
C6···C2v3.485 (3)H2···H1v3.3433
C6···C6xi3.536 (3)H2···H2vii3.2073
C6···C10v3.287 (3)H2···H4vi2.6733
C7···C2v3.507 (3)H3···Cl1xi3.1849
C7···C3v3.541 (3)H3···O3x2.4552
C8···O1v3.432 (2)H3···O3v3.5089
C8···C1v3.487 (3)H3···C5xi3.2003
C8···C2iv3.418 (3)H3···C6xi3.0323
C8···C3iv3.512 (3)H3···C10x2.9512
C8···C9v3.512 (3)H3···C10v3.3274
C9···O2iv3.394 (3)H3···H3xi2.7733
C9···C2v3.580 (3)H3···H5x2.7277
C9···C3v3.395 (3)H3···H5v3.2917
C9···C8v3.512 (3)H4···Cl1iii2.9565
C10···C4iv3.518 (3)H4···Cl1xi3.4118
C10···C5v3.600 (3)H4···O3ii3.2371
C10···C5iv3.568 (3)H4···C4iii3.3076
C10···C6v3.287 (3)H4···C5iii3.5285
Cl1···H22.8098H4···H1ii3.0973
Cl1···H32.8018H4···H2iii2.6733
O1···H42.5183H5···Cl1ix3.4268
O2···H22.6171H5···Cl1vii3.4313
O2···H52.6235H5···O3xii3.2852
O3···H12.4841H5···C6ix3.5441
C1···H53.2768H5···C6v3.4065
C3···H13.2936H5···H3ix2.7277
C3···H22.6894H5···H3v3.2917
C3···H52.7009
C1—O1—C9118.51 (13)C4—C8—C9118.86 (15)
O1—C1—C2124.50 (14)O1—C9—C7116.07 (15)
C1—C2—C3120.89 (15)O1—C9—C8122.03 (15)
C1—C2—C10118.68 (14)C7—C9—C8121.89 (15)
C3—C2—C10120.43 (15)O3—C10—C2123.81 (16)
O2—C3—C2123.55 (15)O1—C1—H1117.750
O2—C3—C8122.50 (14)C2—C1—H1117.752
C2—C3—C8113.94 (14)C5—C4—H2120.520
C5—C4—C8118.97 (15)C8—C4—H2120.513
Cl1—C5—C4119.56 (13)C5—C6—H3120.086
Cl1—C5—C6118.90 (13)C7—C6—H3120.081
C4—C5—C6121.54 (15)C6—C7—H4120.563
C5—C6—C7119.83 (16)C9—C7—H4120.557
C6—C7—C9118.88 (16)O3—C10—H5118.090
C3—C8—C4121.17 (15)C2—C10—H5118.097
C3—C8—C9119.97 (14)
C1—O1—C9—C7179.49 (13)C8—C4—C5—Cl1178.97 (13)
C1—O1—C9—C80.2 (2)C8—C4—C5—C61.0 (3)
C9—O1—C1—C22.4 (3)H2—C4—C5—Cl11.0
C9—O1—C1—H1177.6H2—C4—C5—C6179.0
O1—C1—C2—C31.4 (3)H2—C4—C8—C31.3
O1—C1—C2—C10179.14 (13)H2—C4—C8—C9179.7
H1—C1—C2—C3178.6Cl1—C5—C6—C7179.23 (11)
H1—C1—C2—C100.9Cl1—C5—C6—H30.8
C1—C2—C3—O2177.29 (15)C4—C5—C6—C70.7 (3)
C1—C2—C3—C82.0 (2)C4—C5—C6—H3179.3
C1—C2—C10—O36.6 (3)C5—C6—C7—C90.8 (3)
C1—C2—C10—H5173.4C5—C6—C7—H4179.1
C3—C2—C10—O3173.91 (15)H3—C6—C7—C9179.1
C3—C2—C10—H56.1H3—C6—C7—H40.9
C10—C2—C3—O23.3 (3)C6—C7—C9—O1177.08 (14)
C10—C2—C3—C8177.49 (13)C6—C7—C9—C82.2 (3)
O2—C3—C8—C44.1 (3)H4—C7—C9—O12.9
O2—C3—C8—C9174.93 (14)H4—C7—C9—C8177.8
C2—C3—C8—C4176.66 (13)C3—C8—C9—O13.7 (3)
C2—C3—C8—C94.3 (2)C3—C8—C9—C7177.13 (13)
C5—C4—C8—C3178.70 (13)C4—C8—C9—O1177.30 (14)
C5—C4—C8—C90.3 (3)C4—C8—C9—C71.9 (3)
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+2, y+1, z+1; (v) x+2, y, z+1; (vi) x+1, y, z; (vii) x+3, y, z+1; (viii) x1, y, z+1; (ix) x, y, z+1; (x) x, y, z1; (xi) x+2, y+1, z; (xii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC10H5ClO3
Mr208.60
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.5838 (16), 6.9579 (17), 10.265 (3)
α, β, γ (°)71.22 (3), 85.64 (2), 69.29 (3)
V3)416.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.36 × 0.25 × 0.12
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.891, 0.950
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
2356, 1906, 1741
Rint0.058
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.10
No. of reflections1906
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.64

Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), SIR88 (Burla et al., 1989), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

The author acknowledges the University of Shizuoka for instrumental support.

References

First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389–393.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIshikawa, Y. (2014). Acta Cryst. E70, o439.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.  CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds