metal-organic compounds
Bis{μ-cis-1,3-bis[(di-tert-butylphosphanyl)oxy]cyclohexane-κ2P:P′}bis[carbonylnickel(0)] including an unknown solvent molecule
aCentre for Analysis and Synthesis, Department of Chemistry, Lund University, PO Box 124, S-221 00 Lund, Sweden
*Correspondence e-mail: ola.wendt@chem.lu.se
The title compound, [Ni2(C22H46P2O2)2(CO)2], is located about a centre of inversion with the Ni0 atom within a distorted trigonal–planar geometry. The cyclohexyl rings are in the usual chair conformation with the 1,3-cis substituents equatorially oriented. No specific intermolecular interactions are noted in the crystal packing. A region of disordered electron density, most probably a disordered deuterobenzene solvent molecule, was treated using the SQUEEZE routine in PLATON [Spek (2009). Acta Cryst. D65, 148–155]. Its formula mass and unit-cell characteristics were not taken into account during refinement.
CCDC reference: 996025
Related literature
For similar 16-atom macrocyclic dimers with NiII, see: Johnson & Wendt (2011); Castonguay et al. (2008); Pandarus et al. (2008). For 16-atom macrocyclic dimers of PdII and PtII with cis-1,3-bis-(di-alkylphosphinito)cyclohexane ligands, see: Sjövall et al. (2001) and Olsson et al. (2007), respectively. For other examples of Ni0 atoms adopting a close to trigonal–planar geometry, see: Rosenthal et al. (1990); Maciejewski et al. (2004); Brun et al. (2013). For an example of a carbon monoxide-induced from a PNP pincer-supported NiII hydride complex to form a tetrahedral Ni0 dicarbonyl species (PNP = [N(2-PR2-C6H3)2]−), see: Liang et al. (2012).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2001); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 996025
10.1107/S1600536814007818/tk5304sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814007818/tk5304Isup2.hkl
The title compound is formed through a carbon monoxide induced dimerization of a previously synthesized POCOP pincer NiII hydride complex. The course of the reaction is likely to proceed via a
of a C—H bond between the metallated carbon and the hydride ligand. In the absence of carbon monoxide the POCOP pincer NiII hydride complex is stable towards in solution, even at 80 °C and upon addition of 1 eq. diphenylacetylene. Tricoordinate nickel(0) species are coordinately unsaturated, and the steric bulk of the tert-butyl substituents on the phosphorus atoms is likely to have a crucial stabilizing impact on the title compound. It decomposes over a period of hours upon exposure to air.The title compound has a low solubility in C6D6 and attempts to obtain 1H– and 13C-NMR spectra has been unsatisfactory. Dissolving the red crystals of the title compound in CDCl3 results in a yellow/green solution and decomposition to several compounds, as indicated by 31P-NMR spectroscopy; none was successfully isolated or characterized.
A C6D6 solution of the compound trans-[NiH{cis-1,3-Bis-(di-tert-butylphosphinito) cyclohexane}] (10.0 mg, 0.021 mmol) was degassed with repeated freeze-pump-thaw cycles, before addition of CO (3 atm, 0.2 mmol, 10 eq.). Upon standing at room temperature the solution turned gradually darker, and within 48 h deep-red crystals of bis[µ-[cis-1,3-bis[(di-tert-butyl)phosphinito]cyclohexane]-κ2-P,P']- bis[carbonylnickel(0)] were formed. These were used directly in the X-ray diffraction experiment, but were dried in high-vacuum prior to the elemental analysis. Yield: 8.7 mg (82%). 31P{1H} NMR: (202.3 MHz, C6D6) δ: 177.8 (s). Anal. Calcd for C46H92Ni2O6P4 (982.52): C 56.23, H 9.44. Found: C 56.02, H 9.47.
The H atoms were positioned geometrically and treated as riding on their parent atoms with C—H distances of 0.96–0.98 Å, and with Uiso(H) = 1.2–1.5 Ueq. The
contains half a molecule of the title complex and half a molecule of benzene but this could not be modelled successfully. Solvent contributions were therefore removed from the diffraction data with PLATON using the SQUEEZE procedure (Spek, 2009). SQUEEZE estimated the electron count in the void volume of 680 Å3 to be 140 which is in reasonable agreement with a total number of four benzene molecules in the unit cell.Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni2(C22H46O2P2)2(CO)2] | F(000) = 2128 |
Mr = 982.50 | Dx = 1.127 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6436 reflections |
a = 31.7851 (9) Å | θ = 2.5–29.1° |
b = 8.5449 (2) Å | µ = 0.80 mm−1 |
c = 21.3311 (5) Å | T = 120 K |
β = 90.995 (2)° | Plates, red |
V = 5792.7 (3) Å3 | 0.2 × 0.15 × 0.05 mm |
Z = 4 |
Agilent Xcalibur Sapphire3 diffractometer | 6958 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4948 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.073 |
Detector resolution: 16.1829 pixels mm-1 | θmax = 29.1°, θmin = 2.5° |
ω scans | h = −42→35 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −11→11 |
Tmin = 0.883, Tmax = 1.000 | l = −26→26 |
27324 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.050P)2] where P = (Fo2 + 2Fc2)/3 |
6958 reflections | (Δ/σ)max = 0.001 |
263 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
[Ni2(C22H46O2P2)2(CO)2] | V = 5792.7 (3) Å3 |
Mr = 982.50 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 31.7851 (9) Å | µ = 0.80 mm−1 |
b = 8.5449 (2) Å | T = 120 K |
c = 21.3311 (5) Å | 0.2 × 0.15 × 0.05 mm |
β = 90.995 (2)° |
Agilent Xcalibur Sapphire3 diffractometer | 6958 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 4948 reflections with I > 2σ(I) |
Tmin = 0.883, Tmax = 1.000 | Rint = 0.073 |
27324 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.61 e Å−3 |
6958 reflections | Δρmin = −0.46 e Å−3 |
263 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.882994 (11) | 0.29002 (4) | 0.082823 (15) | 0.01812 (11) | |
P1 | 0.83832 (2) | 0.33932 (7) | 0.15811 (3) | 0.01714 (16) | |
O1 | 0.78777 (6) | 0.29472 (19) | 0.16116 (8) | 0.0207 (4) | |
C1 | 0.78065 (8) | 0.2143 (3) | −0.11259 (12) | 0.0203 (6) | |
H1A | 0.7814 | 0.1012 | −0.1089 | 0.024* | |
H1B | 0.7917 | 0.2423 | −0.1532 | 0.024* | |
P2 | 0.88701 (2) | 0.22270 (7) | −0.01654 (3) | 0.01594 (15) | |
O2 | 0.85052 (6) | 0.2342 (2) | −0.07197 (8) | 0.0218 (4) | |
C2 | 0.73525 (8) | 0.2701 (3) | −0.10868 (12) | 0.0196 (6) | |
H2 | 0.7231 | 0.2309 | −0.0698 | 0.023* | |
O3 | 0.96746 (7) | 0.3500 (3) | 0.13009 (11) | 0.0510 (6) | |
C3 | 0.73284 (9) | 0.4468 (3) | −0.10912 (13) | 0.0264 (6) | |
H3A | 0.7038 | 0.4791 | −0.1042 | 0.032* | |
H3B | 0.7423 | 0.4857 | −0.1492 | 0.032* | |
C4 | 0.75974 (9) | 0.5172 (3) | −0.05680 (14) | 0.0280 (7) | |
H4A | 0.7487 | 0.4860 | −0.0166 | 0.034* | |
H4B | 0.7587 | 0.6304 | −0.0594 | 0.034* | |
C5 | 0.80545 (9) | 0.4621 (3) | −0.06177 (13) | 0.0249 (6) | |
H5A | 0.8172 | 0.5017 | −0.1003 | 0.030* | |
H5B | 0.8219 | 0.5041 | −0.0269 | 0.030* | |
C6 | 0.80822 (8) | 0.2861 (3) | −0.06116 (12) | 0.0194 (6) | |
H6 | 0.7991 | 0.2472 | −0.0204 | 0.023* | |
C7 | 0.93363 (11) | 0.3218 (3) | 0.11184 (14) | 0.0321 (7) | |
C11 | 0.83370 (9) | 0.5570 (3) | 0.16926 (12) | 0.0226 (6) | |
C12 | 0.80724 (11) | 0.6148 (3) | 0.11321 (14) | 0.0341 (7) | |
H12A | 0.7798 | 0.5681 | 0.1144 | 0.051* | |
H12B | 0.8207 | 0.5858 | 0.0750 | 0.051* | |
H12C | 0.8046 | 0.7266 | 0.1152 | 0.051* | |
C13 | 0.81175 (10) | 0.6059 (3) | 0.22944 (13) | 0.0326 (7) | |
H13A | 0.7845 | 0.5579 | 0.2308 | 0.049* | |
H13B | 0.8087 | 0.7177 | 0.2302 | 0.049* | |
H13C | 0.8283 | 0.5729 | 0.2651 | 0.049* | |
C14 | 0.87701 (10) | 0.6353 (3) | 0.16623 (15) | 0.0342 (7) | |
H14A | 0.8942 | 0.6012 | 0.2011 | 0.051* | |
H14B | 0.8737 | 0.7469 | 0.1679 | 0.051* | |
H14C | 0.8903 | 0.6069 | 0.1278 | 0.051* | |
C15 | 0.85457 (9) | 0.2395 (3) | 0.23398 (12) | 0.0226 (6) | |
C16 | 0.86514 (10) | 0.0712 (3) | 0.21485 (13) | 0.0303 (7) | |
H16A | 0.8870 | 0.0725 | 0.1844 | 0.045* | |
H16B | 0.8405 | 0.0221 | 0.1971 | 0.045* | |
H16C | 0.8745 | 0.0135 | 0.2511 | 0.045* | |
C17 | 0.89435 (10) | 0.3151 (3) | 0.26297 (13) | 0.0287 (7) | |
H17A | 0.8883 | 0.4209 | 0.2748 | 0.043* | |
H17B | 0.9164 | 0.3146 | 0.2328 | 0.043* | |
H17C | 0.9032 | 0.2567 | 0.2994 | 0.043* | |
C18 | 0.81986 (10) | 0.2332 (3) | 0.28269 (13) | 0.0317 (7) | |
H18A | 0.8128 | 0.3376 | 0.2954 | 0.048* | |
H18B | 0.8296 | 0.1747 | 0.3185 | 0.048* | |
H18C | 0.7954 | 0.1833 | 0.2648 | 0.048* | |
C21 | 0.92859 (9) | 0.3402 (3) | −0.05827 (13) | 0.0227 (6) | |
C22 | 0.92236 (10) | 0.5106 (3) | −0.03761 (16) | 0.0352 (8) | |
H22A | 0.9251 | 0.5175 | 0.0072 | 0.053* | |
H22B | 0.8948 | 0.5455 | −0.0505 | 0.053* | |
H22C | 0.9433 | 0.5755 | −0.0566 | 0.053* | |
C23 | 0.92422 (10) | 0.3335 (3) | −0.12995 (14) | 0.0329 (7) | |
H23A | 0.8962 | 0.3636 | −0.1424 | 0.049* | |
H23B | 0.9296 | 0.2288 | −0.1440 | 0.049* | |
H23C | 0.9441 | 0.4039 | −0.1483 | 0.049* | |
C24 | 0.97330 (9) | 0.2906 (3) | −0.03876 (14) | 0.0277 (6) | |
H24A | 0.9762 | 0.2945 | 0.0061 | 0.042* | |
H24B | 0.9933 | 0.3604 | −0.0572 | 0.042* | |
H24C | 0.9784 | 0.1858 | −0.0530 | 0.042* | |
C25 | 0.89841 (9) | 0.0076 (3) | −0.02237 (12) | 0.0212 (6) | |
C26 | 0.93066 (10) | −0.0421 (3) | 0.02756 (13) | 0.0306 (7) | |
H26A | 0.9572 | 0.0072 | 0.0195 | 0.046* | |
H26B | 0.9340 | −0.1537 | 0.0265 | 0.046* | |
H26C | 0.9211 | −0.0110 | 0.0682 | 0.046* | |
C27 | 0.85646 (10) | −0.0734 (3) | −0.00816 (14) | 0.0317 (7) | |
H27A | 0.8357 | −0.0441 | −0.0393 | 0.047* | |
H27B | 0.8472 | −0.0418 | 0.0325 | 0.047* | |
H27C | 0.8603 | −0.1848 | −0.0088 | 0.047* | |
C28 | 0.91206 (10) | −0.0450 (3) | −0.08764 (13) | 0.0287 (7) | |
H28A | 0.8912 | −0.0139 | −0.1182 | 0.043* | |
H28B | 0.9150 | −0.1568 | −0.0882 | 0.043* | |
H28C | 0.9385 | 0.0028 | −0.0973 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0181 (2) | 0.01832 (18) | 0.01790 (19) | 0.00151 (13) | −0.00099 (14) | −0.00328 (12) |
P1 | 0.0194 (4) | 0.0159 (3) | 0.0160 (3) | 0.0014 (3) | −0.0019 (3) | −0.0026 (2) |
O1 | 0.0177 (10) | 0.0275 (10) | 0.0168 (9) | −0.0013 (8) | −0.0016 (8) | −0.0021 (7) |
C1 | 0.0189 (15) | 0.0226 (13) | 0.0195 (13) | 0.0009 (11) | 0.0016 (11) | 0.0035 (10) |
P2 | 0.0155 (4) | 0.0157 (3) | 0.0166 (3) | 0.0024 (3) | −0.0002 (3) | 0.0007 (2) |
O2 | 0.0164 (10) | 0.0310 (10) | 0.0179 (9) | 0.0043 (8) | −0.0004 (8) | 0.0011 (7) |
C2 | 0.0185 (15) | 0.0272 (14) | 0.0130 (12) | −0.0007 (11) | −0.0015 (11) | 0.0003 (10) |
O3 | 0.0249 (14) | 0.0843 (18) | 0.0434 (15) | −0.0081 (13) | −0.0078 (11) | −0.0117 (12) |
C3 | 0.0228 (16) | 0.0263 (14) | 0.0299 (16) | 0.0042 (12) | −0.0022 (13) | −0.0033 (11) |
C4 | 0.0252 (17) | 0.0259 (14) | 0.0328 (16) | 0.0066 (12) | −0.0059 (13) | −0.0069 (11) |
C5 | 0.0227 (16) | 0.0273 (14) | 0.0246 (14) | 0.0012 (12) | −0.0034 (12) | −0.0039 (11) |
C6 | 0.0168 (15) | 0.0271 (14) | 0.0141 (12) | 0.0027 (11) | −0.0002 (11) | 0.0019 (10) |
C7 | 0.0313 (19) | 0.0401 (17) | 0.0249 (16) | −0.0002 (14) | −0.0007 (14) | −0.0080 (12) |
C11 | 0.0256 (16) | 0.0165 (12) | 0.0257 (14) | 0.0024 (11) | 0.0002 (12) | −0.0032 (10) |
C12 | 0.047 (2) | 0.0236 (15) | 0.0315 (17) | 0.0094 (14) | −0.0019 (15) | 0.0035 (12) |
C13 | 0.042 (2) | 0.0256 (15) | 0.0302 (16) | 0.0111 (14) | 0.0045 (14) | −0.0059 (12) |
C14 | 0.0341 (19) | 0.0184 (13) | 0.050 (2) | −0.0020 (13) | 0.0053 (15) | −0.0072 (12) |
C15 | 0.0227 (16) | 0.0261 (14) | 0.0188 (13) | 0.0022 (12) | −0.0047 (11) | 0.0017 (10) |
C16 | 0.0355 (19) | 0.0226 (14) | 0.0325 (16) | 0.0049 (13) | −0.0088 (14) | 0.0020 (11) |
C17 | 0.0278 (18) | 0.0333 (16) | 0.0247 (15) | 0.0007 (13) | −0.0099 (13) | −0.0024 (11) |
C18 | 0.0328 (19) | 0.0401 (17) | 0.0221 (15) | 0.0033 (14) | −0.0012 (13) | 0.0046 (12) |
C21 | 0.0180 (15) | 0.0223 (13) | 0.0278 (15) | 0.0008 (11) | 0.0010 (12) | 0.0032 (11) |
C22 | 0.0286 (18) | 0.0213 (14) | 0.056 (2) | −0.0025 (13) | 0.0063 (15) | 0.0081 (13) |
C23 | 0.0265 (18) | 0.0400 (17) | 0.0326 (17) | 0.0019 (14) | 0.0078 (14) | 0.0152 (13) |
C24 | 0.0205 (16) | 0.0283 (15) | 0.0343 (16) | 0.0002 (12) | 0.0023 (13) | 0.0002 (11) |
C25 | 0.0267 (16) | 0.0163 (12) | 0.0204 (13) | 0.0015 (11) | −0.0003 (12) | −0.0013 (10) |
C26 | 0.042 (2) | 0.0225 (14) | 0.0273 (15) | 0.0094 (13) | −0.0057 (14) | 0.0014 (11) |
C27 | 0.039 (2) | 0.0168 (13) | 0.0390 (18) | −0.0041 (13) | 0.0057 (15) | −0.0002 (12) |
C28 | 0.042 (2) | 0.0203 (13) | 0.0242 (15) | 0.0059 (13) | −0.0012 (13) | −0.0048 (11) |
Ni1—C7 | 1.736 (3) | C14—H14B | 0.9600 |
Ni1—P2 | 2.2021 (7) | C14—H14C | 0.9600 |
Ni1—P1 | 2.2028 (7) | C15—C18 | 1.530 (4) |
P1—O1 | 1.654 (2) | C15—C16 | 1.534 (4) |
P1—C11 | 1.882 (2) | C15—C17 | 1.540 (4) |
P1—C15 | 1.893 (3) | C16—H16A | 0.9600 |
O1—C2i | 1.438 (3) | C16—H16B | 0.9600 |
C1—C6 | 1.521 (4) | C16—H16C | 0.9600 |
C1—C2 | 1.523 (4) | C17—H17A | 0.9600 |
C1—H1A | 0.9700 | C17—H17B | 0.9600 |
C1—H1B | 0.9700 | C17—H17C | 0.9600 |
P2—O2 | 1.6448 (19) | C18—H18A | 0.9600 |
P2—C25 | 1.878 (2) | C18—H18B | 0.9600 |
P2—C21 | 1.894 (3) | C18—H18C | 0.9600 |
O2—C6 | 1.438 (3) | C21—C24 | 1.534 (4) |
C2—O1i | 1.438 (3) | C21—C23 | 1.534 (4) |
C2—C3 | 1.512 (3) | C21—C22 | 1.536 (4) |
C2—H2 | 0.9800 | C22—H22A | 0.9600 |
O3—C7 | 1.162 (4) | C22—H22B | 0.9600 |
C3—C4 | 1.518 (4) | C22—H22C | 0.9600 |
C3—H3A | 0.9700 | C23—H23A | 0.9600 |
C3—H3B | 0.9700 | C23—H23B | 0.9600 |
C4—C5 | 1.533 (4) | C23—H23C | 0.9600 |
C4—H4A | 0.9700 | C24—H24A | 0.9600 |
C4—H4B | 0.9700 | C24—H24B | 0.9600 |
C5—C6 | 1.507 (3) | C24—H24C | 0.9600 |
C5—H5A | 0.9700 | C25—C26 | 1.526 (4) |
C5—H5B | 0.9700 | C25—C28 | 1.533 (4) |
C6—H6 | 0.9800 | C25—C27 | 1.537 (4) |
C11—C13 | 1.530 (4) | C26—H26A | 0.9600 |
C11—C12 | 1.532 (4) | C26—H26B | 0.9600 |
C11—C14 | 1.533 (4) | C26—H26C | 0.9600 |
C12—H12A | 0.9600 | C27—H27A | 0.9600 |
C12—H12B | 0.9600 | C27—H27B | 0.9600 |
C12—H12C | 0.9600 | C27—H27C | 0.9600 |
C13—H13A | 0.9600 | C28—H28A | 0.9600 |
C13—H13B | 0.9600 | C28—H28B | 0.9600 |
C13—H13C | 0.9600 | C28—H28C | 0.9600 |
C14—H14A | 0.9600 | ||
C7—Ni1—P2 | 108.38 (10) | C11—C14—H14C | 109.5 |
C7—Ni1—P1 | 108.39 (10) | H14A—C14—H14C | 109.5 |
P2—Ni1—P1 | 143.19 (3) | H14B—C14—H14C | 109.5 |
O1—P1—C11 | 98.33 (11) | C18—C15—C16 | 108.2 (2) |
O1—P1—C15 | 96.52 (11) | C18—C15—C17 | 109.8 (2) |
C11—P1—C15 | 110.98 (12) | C16—C15—C17 | 108.5 (2) |
O1—P1—Ni1 | 128.58 (7) | C18—C15—P1 | 114.0 (2) |
C11—P1—Ni1 | 109.51 (9) | C16—C15—P1 | 104.64 (18) |
C15—P1—Ni1 | 111.55 (9) | C17—C15—P1 | 111.38 (18) |
C2i—O1—P1 | 122.67 (16) | C15—C16—H16A | 109.5 |
C6—C1—C2 | 111.6 (2) | C15—C16—H16B | 109.5 |
C6—C1—H1A | 109.3 | H16A—C16—H16B | 109.5 |
C2—C1—H1A | 109.3 | C15—C16—H16C | 109.5 |
C6—C1—H1B | 109.3 | H16A—C16—H16C | 109.5 |
C2—C1—H1B | 109.3 | H16B—C16—H16C | 109.5 |
H1A—C1—H1B | 108.0 | C15—C17—H17A | 109.5 |
O2—P2—C25 | 98.35 (11) | C15—C17—H17B | 109.5 |
O2—P2—C21 | 96.88 (11) | H17A—C17—H17B | 109.5 |
C25—P2—C21 | 110.52 (12) | C15—C17—H17C | 109.5 |
O2—P2—Ni1 | 128.64 (7) | H17A—C17—H17C | 109.5 |
C25—P2—Ni1 | 109.50 (8) | H17B—C17—H17C | 109.5 |
C21—P2—Ni1 | 111.50 (9) | C15—C18—H18A | 109.5 |
C6—O2—P2 | 123.55 (15) | C15—C18—H18B | 109.5 |
O1i—C2—C3 | 110.8 (2) | H18A—C18—H18B | 109.5 |
O1i—C2—C1 | 107.85 (19) | C15—C18—H18C | 109.5 |
C3—C2—C1 | 111.1 (2) | H18A—C18—H18C | 109.5 |
O1i—C2—H2 | 109.0 | H18B—C18—H18C | 109.5 |
C3—C2—H2 | 109.0 | C24—C21—C23 | 109.1 (2) |
C1—C2—H2 | 109.0 | C24—C21—C22 | 107.9 (2) |
C2—C3—C4 | 111.3 (2) | C23—C21—C22 | 108.1 (2) |
C2—C3—H3A | 109.4 | C24—C21—P2 | 112.14 (18) |
C4—C3—H3A | 109.4 | C23—C21—P2 | 113.38 (19) |
C2—C3—H3B | 109.4 | C22—C21—P2 | 105.86 (19) |
C4—C3—H3B | 109.4 | C21—C22—H22A | 109.5 |
H3A—C3—H3B | 108.0 | C21—C22—H22B | 109.5 |
C3—C4—C5 | 110.5 (2) | H22A—C22—H22B | 109.5 |
C3—C4—H4A | 109.6 | C21—C22—H22C | 109.5 |
C5—C4—H4A | 109.6 | H22A—C22—H22C | 109.5 |
C3—C4—H4B | 109.6 | H22B—C22—H22C | 109.5 |
C5—C4—H4B | 109.6 | C21—C23—H23A | 109.5 |
H4A—C4—H4B | 108.1 | C21—C23—H23B | 109.5 |
C6—C5—C4 | 111.2 (2) | H23A—C23—H23B | 109.5 |
C6—C5—H5A | 109.4 | C21—C23—H23C | 109.5 |
C4—C5—H5A | 109.4 | H23A—C23—H23C | 109.5 |
C6—C5—H5B | 109.4 | H23B—C23—H23C | 109.5 |
C4—C5—H5B | 109.4 | C21—C24—H24A | 109.5 |
H5A—C5—H5B | 108.0 | C21—C24—H24B | 109.5 |
O2—C6—C5 | 111.2 (2) | H24A—C24—H24B | 109.5 |
O2—C6—C1 | 106.77 (19) | C21—C24—H24C | 109.5 |
C5—C6—C1 | 111.3 (2) | H24A—C24—H24C | 109.5 |
O2—C6—H6 | 109.2 | H24B—C24—H24C | 109.5 |
C5—C6—H6 | 109.2 | C26—C25—C28 | 110.8 (2) |
C1—C6—H6 | 109.2 | C26—C25—C27 | 108.1 (2) |
O3—C7—Ni1 | 176.8 (3) | C28—C25—C27 | 107.9 (2) |
C13—C11—C12 | 108.3 (2) | C26—C25—P2 | 110.76 (18) |
C13—C11—C14 | 109.8 (2) | C28—C25—P2 | 113.90 (17) |
C12—C11—C14 | 107.9 (2) | C27—C25—P2 | 104.98 (18) |
C13—C11—P1 | 114.45 (18) | C25—C26—H26A | 109.5 |
C12—C11—P1 | 105.24 (18) | C25—C26—H26B | 109.5 |
C14—C11—P1 | 110.74 (18) | H26A—C26—H26B | 109.5 |
C11—C12—H12A | 109.5 | C25—C26—H26C | 109.5 |
C11—C12—H12B | 109.5 | H26A—C26—H26C | 109.5 |
H12A—C12—H12B | 109.5 | H26B—C26—H26C | 109.5 |
C11—C12—H12C | 109.5 | C25—C27—H27A | 109.5 |
H12A—C12—H12C | 109.5 | C25—C27—H27B | 109.5 |
H12B—C12—H12C | 109.5 | H27A—C27—H27B | 109.5 |
C11—C13—H13A | 109.5 | C25—C27—H27C | 109.5 |
C11—C13—H13B | 109.5 | H27A—C27—H27C | 109.5 |
H13A—C13—H13B | 109.5 | H27B—C27—H27C | 109.5 |
C11—C13—H13C | 109.5 | C25—C28—H28A | 109.5 |
H13A—C13—H13C | 109.5 | C25—C28—H28B | 109.5 |
H13B—C13—H13C | 109.5 | H28A—C28—H28B | 109.5 |
C11—C14—H14A | 109.5 | C25—C28—H28C | 109.5 |
C11—C14—H14B | 109.5 | H28A—C28—H28C | 109.5 |
H14A—C14—H14B | 109.5 | H28B—C28—H28C | 109.5 |
Symmetry code: (i) −x+3/2, −y+1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni2(C22H46O2P2)2(CO)2] |
Mr | 982.50 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 120 |
a, b, c (Å) | 31.7851 (9), 8.5449 (2), 21.3311 (5) |
β (°) | 90.995 (2) |
V (Å3) | 5792.7 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.80 |
Crystal size (mm) | 0.2 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Agilent Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.883, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27324, 6958, 4948 |
Rint | 0.073 |
(sin θ/λ)max (Å−1) | 0.685 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.125, 1.09 |
No. of reflections | 6958 |
No. of parameters | 263 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.61, −0.46 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (CrystalMaker, 2001).
Acknowledgements
Financial support from the Swedish Research Council and the Knut and Alice Wallenberg Foundation is gratefully acknowledged.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Brun, S., Torres, O., Pla-Quintana, A., Roglans, A., Goddard, R. & Porschke, K. R. (2013). Organometallics, 32, 1710–1720. Web of Science CSD CrossRef CAS Google Scholar
Castonguay, A., Beauchamp, A. L. & Zargarian, D. (2008). Organometallics, 27, 5723–5731. Web of Science CSD CrossRef CAS Google Scholar
CrystalMaker (2001). CrystalMaker. CrystalMaker Software Ltd, Biscester, England. Google Scholar
Johnson, M. T. & Wendt, O. F. (2011). Inorg. Chim. Acta, 367, 222–224. Web of Science CSD CrossRef CAS Google Scholar
Liang, L. C., Hung, Y. T., Huang, Y. L., Chien, P. S., Lee, P. Y. & Chen, W. C. (2012). Organometallics, 31, 700–708. Web of Science CSD CrossRef CAS Google Scholar
Maciejewski, H., Sydor, A. & Kubicki, M. (2004). J. Organomet. Chem. 689, 3075–3081. Web of Science CSD CrossRef CAS Google Scholar
Olsson, D., Arunachalampillai, A. & Wendt, O. F. (2007). Dalton Trans. pp. 5427–5433. Web of Science CSD CrossRef Google Scholar
Pandarus, V., Castonguay, A. & Zargarian, D. (2008). Dalton Trans. pp. 4756–4761. Web of Science CSD CrossRef Google Scholar
Rosenthal, U., Oehme, G., Gorls, H., Burlakov, V. V., Polyakov, A. V., Yanovsky, A. I. & Struchkov, Y. T. (1990). J. Organomet. Chem. 389, 409–416. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sjövall, S., Andersson, C. & Wendt, O. F. (2001). Inorg. Chim. Acta, 325, 182–186. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.