organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-4-oxo-4H-chromene-3-carb­alde­hyde

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 9 April 2014; accepted 9 April 2014; online 16 April 2014)

In the title compound, C10H5BrO3, a brominated 3-formyl­chromone derivative, the non-H atoms are essentially coplanar (r.m.s. deviation = 0.0420 Å), with the largest deviation from its mean plane [0.109 (2) Å] being found for the ring-bound carbonyl O atom. In the crystal, mol­ecules are linked through halogen bonds [Br⋯O = 3.191 (2) Å, C—Br⋯O = 167.32 (10)° and C=O⋯Br = 168.4 (2)°] along [101]. Mol­ecules are assembled into layers parallel to (101) via ππ stacking inter­actions along the b axis [shortest centroid–centroid distance between the pyran and benzene rings = 3.495 (2) Å].

Related literature

For related structures, see: Ishikawa & Motohashi (2013[Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.]); Ishikawa (2014a[Ishikawa, Y. (2014a). Acta Cryst. E70, o439.],b[Ishikawa, Y. (2014b). Acta Cryst. E70, o514.]). For halogen bonding, see: Auffinger et al. (2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]); Wilcken et al. (2013[Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363-1388.]); Sirimulla et al. (2013[Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781-2791.]).

[Scheme 1]

Experimental

Crystal data
  • C10H5BrO3

  • Mr = 253.05

  • Triclinic, [P \overline 1]

  • a = 6.5743 (18) Å

  • b = 6.967 (3) Å

  • c = 10.350 (4) Å

  • α = 71.02 (3)°

  • β = 85.53 (3)°

  • γ = 70.67 (3)°

  • V = 422.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.85 mm−1

  • T = 100 K

  • 0.42 × 0.40 × 0.38 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.135, Tmax = 0.159

  • 2389 measured reflections

  • 1944 independent reflections

  • 1880 reflections with F2 > 2σ(F2)

  • Rint = 0.024

  • 3 standard reflections every 150 reflections intensity decay: 2.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.077

  • S = 1.16

  • 1944 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.74 e Å−3

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR92 (Altomare, et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Structural commentary top

Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supra­molecular chemistry (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013). We have recently reported the crystal structures of dihalogenated 3-formyl­chromone derivatives 6,8-di­chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa & Motohashi, 2013, Fig.3 (top left)) and 6,8-di­bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a, Fig.3 (top right)). It was found that halogen bonds between the formyl oxygen atom and the halogen atoms at 8-position are formed in those crystals in a similar fashion. On the other hand, halogen bond is not observed between any oxygen atom and the chlorine atom at 6-position in the crystal structure of 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b, Fig.3 (bottom left)). As part of our inter­est in this type of chemical bonding, we herein report the crystal structure of a monobrominated 3-formyl­chromone derivative 6-bromo-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(s) can be formed in the crystal structure of the title compound with the bromine atom at 6-position and without a halogen atom at 8-position.

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0420 Å, and the largest deviation is 0.109 (2) Å for O2. These mean that these atoms are essentially coplanar (Fig.1).

In the crystal, the molecules are stacked with the inversion-symmetry equivalenti along the b-axis direction [shortest centroid–centroid distance between the pyran and benzene rings of the 4H-chromene units = 3.495 (2) Å, i: -x + 1, -y + 1, -z + 1], as shown in Fig. 1. The CgCg distance of the title compound is almost equal to that of 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (3.4959 (15) Å, Ishikawa, 2014b).

Halogen bond was observed between the bromine atom at 6-position and the formyl oxygen atom of the translation-symmetry equivalentii [Br1···O3ii = 3.191 (2) Å, ii: x - 1, y, z + 1] along [101], as shown in Fig.2. The angles of C–Br···O and Br···O=C are 167.32 (10) and 168.4 (2)°, respectively. Thus, it is found that halogen bonds are formed for the bromine atoms not only at 8-position but also at 6-position, as shown in the top right and bottom right of Fig.3.

The space group and crystal packing mode of the title compound are the same with those of 6-chloro-4-oxo-4H-chromene-3-carbaldehyde. On the other hand, halogen bond is observed in the former and not in the latter, as shown in the bottom of Fig.3. These should be accounted for by the larger size of the σ hole of the bromine atom at 6-position (Wilcken et al., 2013). These results might be applicable for rational drug design.

Synthesis and crystallization top

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an N,N-di­methyl­formamide solution of the commercially available title compound at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.

Related literature top

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014a,b). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013).

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR92 (Altomare, et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. A packing view of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A packing view of the title compound. The intermolecular halogen bonds are represented as dashed lines for Br···O.
[Figure 3] Fig. 3. Sphere models of the crystal structures of 6,8-dichloro-4-oxo-4H-chromene-3-carbaldehyde (top left), 6,8-dibromo-4-oxo-4H-chromene-3-carbaldehyde (top right), 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (bottom left), and the title compound (bottom right).
6-Bromo-4-oxo-4H-chromene-3-carbaldehyde top
Crystal data top
C10H5BrO3Z = 2
Mr = 253.05F(000) = 248.00
Triclinic, P1Dx = 1.988 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 6.5743 (18) ÅCell parameters from 25 reflections
b = 6.967 (3) Åθ = 15.2–17.4°
c = 10.350 (4) ŵ = 4.85 mm1
α = 71.02 (3)°T = 100 K
β = 85.53 (3)°Block, colorless
γ = 70.67 (3)°0.42 × 0.40 × 0.38 mm
V = 422.8 (3) Å3
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.024
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 88
Tmin = 0.135, Tmax = 0.159k = 59
2389 measured reflectionsl = 1213
1944 independent reflections3 standard reflections every 150 reflections
1880 reflections with F2 > 2σ(F2) intensity decay: 2.0%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.1959P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
1944 reflectionsΔρmax = 1.05 e Å3
128 parametersΔρmin = 0.74 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.151 (9)
Secondary atom site location: difference Fourier map
Crystal data top
C10H5BrO3γ = 70.67 (3)°
Mr = 253.05V = 422.8 (3) Å3
Triclinic, P1Z = 2
a = 6.5743 (18) ÅMo Kα radiation
b = 6.967 (3) ŵ = 4.85 mm1
c = 10.350 (4) ÅT = 100 K
α = 71.02 (3)°0.42 × 0.40 × 0.38 mm
β = 85.53 (3)°
Data collection top
Rigaku AFC-7R
diffractometer
1880 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.135, Tmax = 0.1593 standard reflections every 150 reflections
2389 measured reflections intensity decay: 2.0%
1944 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.16Δρmax = 1.05 e Å3
1944 reflectionsΔρmin = 0.74 e Å3
128 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.09454 (3)0.28528 (3)0.922893 (19)0.01450 (13)
O10.8085 (3)0.1862 (3)0.52565 (16)0.0122 (3)
O20.1989 (3)0.3151 (3)0.38347 (17)0.0157 (4)
O30.6969 (3)0.2664 (3)0.11860 (18)0.0203 (4)
C10.7668 (4)0.2190 (4)0.3943 (3)0.0120 (4)
C20.5687 (4)0.2640 (3)0.3402 (2)0.0101 (4)
C30.3797 (4)0.2830 (3)0.4253 (2)0.0100 (4)
C40.2621 (4)0.2805 (3)0.6624 (2)0.0106 (4)
C50.3145 (4)0.2506 (4)0.7956 (3)0.0112 (4)
C60.5287 (4)0.1952 (4)0.8394 (3)0.0136 (4)
C70.6918 (4)0.1709 (4)0.7478 (3)0.0132 (4)
C80.4269 (3)0.2578 (4)0.5684 (2)0.0092 (4)
C90.6393 (4)0.2048 (3)0.6128 (3)0.0107 (4)
C100.5462 (4)0.2943 (4)0.1932 (3)0.0145 (4)
H10.88460.21000.33470.0143*
H20.11620.31590.63470.0127*
H30.56140.17440.93180.0163*
H40.83780.13150.77650.0158*
H50.40500.33820.15500.0174*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01323 (17)0.01865 (17)0.01105 (16)0.00255 (10)0.00148 (9)0.00690 (10)
O10.0070 (7)0.0168 (8)0.0124 (8)0.0032 (6)0.0008 (6)0.0044 (6)
O20.0099 (7)0.0254 (9)0.0140 (8)0.0066 (6)0.0013 (6)0.0079 (7)
O30.0184 (8)0.0302 (10)0.0172 (9)0.0093 (7)0.0048 (7)0.0133 (8)
C10.0107 (9)0.0122 (9)0.0133 (10)0.0034 (8)0.0011 (8)0.0050 (8)
C20.0104 (9)0.0089 (9)0.0120 (10)0.0032 (7)0.0000 (8)0.0045 (7)
C30.0103 (9)0.0085 (9)0.0118 (10)0.0032 (7)0.0012 (8)0.0037 (7)
C40.0095 (9)0.0104 (9)0.0126 (10)0.0032 (7)0.0001 (8)0.0047 (8)
C50.0122 (9)0.0110 (9)0.0116 (10)0.0040 (7)0.0019 (8)0.0055 (7)
C60.0154 (10)0.0122 (10)0.0139 (10)0.0045 (8)0.0037 (8)0.0043 (8)
C70.0107 (9)0.0144 (10)0.0143 (11)0.0041 (8)0.0038 (8)0.0035 (8)
C80.0087 (9)0.0085 (8)0.0117 (10)0.0035 (7)0.0001 (8)0.0043 (7)
C90.0095 (9)0.0088 (9)0.0135 (10)0.0032 (7)0.0004 (8)0.0032 (7)
C100.0153 (10)0.0174 (10)0.0139 (10)0.0069 (8)0.0005 (8)0.0075 (8)
Geometric parameters (Å, º) top
Br1—C51.888 (3)C4—C81.403 (3)
O1—C11.338 (3)C5—C61.401 (4)
O1—C91.375 (3)C6—C71.380 (4)
O2—C31.221 (3)C7—C91.391 (4)
O3—C101.211 (3)C8—C91.395 (3)
C1—C21.356 (4)C1—H10.950
C2—C31.461 (3)C4—H20.950
C2—C101.478 (4)C6—H30.950
C3—C81.480 (4)C7—H40.950
C4—C51.379 (4)C10—H50.950
O1···C32.868 (3)C9···H13.1828
O2···C13.572 (3)C9···H23.2719
O2···C42.869 (3)C9···H33.2502
O2···C102.894 (3)C10···H12.5537
O3···C12.820 (4)H1···H53.4881
C1···C73.574 (4)H3···H42.3392
C1···C82.757 (3)Br1···H3xi3.1998
C2···C92.768 (4)Br1···H4vi2.9904
C4···C72.805 (4)Br1···H4xi3.4343
C5···C92.748 (4)Br1···H5x3.4515
C6···C82.795 (4)Br1···H5vii3.4131
Br1···O3i3.191 (2)O1···H1ii2.8201
O1···O1ii3.117 (3)O1···H2iii2.9005
O1···O2iii3.104 (3)O1···H2v3.5064
O1···O2iv3.325 (3)O2···H1vi2.5430
O1···C1ii3.174 (3)O2···H2vii2.6756
O1···C4v3.479 (3)O3···H3ix2.5290
O1···C8v3.488 (3)O3···H3v3.5734
O2···O1vi3.104 (3)O3···H4ii3.3419
O2···O1iv3.325 (3)O3···H5xii3.1712
O2···C1vi3.113 (4)C1···H2v3.4876
O2···C4vii3.325 (3)C3···H2vii3.4612
O2···C9iv3.408 (4)C4···H1v3.3664
O3···Br1viii3.191 (2)C4···H4vi3.2949
O3···C5iv3.444 (4)C5···H1v3.3731
O3···C6ix3.408 (4)C5···H3xi3.2745
C1···O1ii3.174 (3)C5···H4vi3.5319
C1···O2iii3.113 (4)C6···H3xi3.0684
C1···C4v3.285 (4)C6···H5iv3.5775
C1···C5v3.455 (4)C6···H5v3.4388
C1···C8v3.581 (4)C7···H1ii3.4259
C2···C4iv3.591 (4)C7···H2iii3.2813
C2···C5v3.530 (4)C9···H1ii3.4206
C2···C6v3.478 (4)C9···H2iii3.5095
C2···C7v3.566 (4)C10···H3ix3.0662
C2···C8iv3.437 (4)C10···H3v3.3423
C3···C3iv3.568 (3)H1···O1ii2.8201
C3···C7v3.525 (4)H1···O2iii2.5430
C3···C8iv3.535 (4)H1···C4v3.3664
C3···C9iv3.588 (4)H1···C5v3.3731
C3···C9v3.422 (4)H1···C7ii3.4259
C4···O1v3.479 (3)H1···C9ii3.4206
C4···O2vii3.325 (3)H1···H2iv3.5756
C4···C1v3.285 (4)H1···H2v3.4176
C4···C2iv3.591 (4)H1···H4ii2.9827
C4···C10iv3.594 (4)H2···O1vi2.9005
C5···O3iv3.444 (4)H2···O1v3.5064
C5···C1v3.455 (4)H2···O2vii2.6756
C5···C2v3.530 (4)H2···C1v3.4876
C5···C10iv3.563 (4)H2···C3vii3.4612
C6···O3x3.408 (4)H2···C7vi3.2813
C6···C2v3.478 (4)H2···C9vi3.5095
C6···C10v3.331 (4)H2···H1iv3.5756
C7···C2v3.566 (4)H2···H1v3.4176
C7···C3v3.525 (4)H2···H2vii3.1789
C8···O1v3.488 (3)H2···H4vi2.6584
C8···C1v3.581 (4)H3···Br1xi3.1998
C8···C2iv3.437 (4)H3···O3x2.5290
C8···C3iv3.535 (4)H3···O3v3.5734
C8···C9v3.494 (4)H3···C5xi3.2745
C9···O2iv3.408 (4)H3···C6xi3.0684
C9···C3iv3.588 (4)H3···C10x3.0662
C9···C3v3.422 (4)H3···C10v3.3423
C9···C8v3.494 (4)H3···H3xi2.7283
C10···C4iv3.594 (4)H3···H5x2.8751
C10···C5iv3.563 (4)H3···H5v3.2964
C10···C6v3.331 (4)H4···Br1iii2.9904
Br1···H22.9161H4···Br1xi3.4343
Br1···H32.9076H4···O3ii3.3419
O1···H42.5120H4···C4iii3.2949
O2···H22.6160H4···C5iii3.5319
O2···H52.6169H4···H1ii2.9827
O3···H12.4933H4···H2iii2.6584
C1···H53.2796H5···Br1ix3.4515
C3···H13.2958H5···Br1vii3.4131
C3···H22.6880H5···O3xii3.1712
C3···H52.6959H5···C6iv3.5775
C4···H33.2780H5···C6v3.4388
C5···H43.2671H5···H3ix2.8751
C6···H23.2828H5···H3v3.2964
C8···H43.2883
C1—O1—C9118.51 (18)C4—C8—C9118.9 (2)
O1—C1—C2124.7 (2)O1—C9—C7116.04 (19)
C1—C2—C3120.7 (2)O1—C9—C8122.2 (2)
C1—C2—C10119.0 (2)C7—C9—C8121.7 (2)
C3—C2—C10120.3 (2)O3—C10—C2124.0 (3)
O2—C3—C2123.6 (3)O1—C1—H1117.637
O2—C3—C8122.6 (2)C2—C1—H1117.636
C2—C3—C8113.81 (19)C5—C4—H2120.442
C5—C4—C8119.1 (2)C8—C4—H2120.436
Br1—C5—C4119.78 (16)C5—C6—H3120.165
Br1—C5—C6118.71 (18)C7—C6—H3120.161
C4—C5—C6121.5 (2)C6—C7—H4120.488
C5—C6—C7119.7 (3)C9—C7—H4120.487
C6—C7—C9119.0 (2)O3—C10—H5118.015
C3—C8—C4121.2 (2)C2—C10—H5118.010
C3—C8—C9119.87 (19)
C1—O1—C9—C7179.47 (17)C8—C4—C5—Br1178.91 (17)
C1—O1—C9—C80.5 (3)C8—C4—C5—C61.0 (4)
C9—O1—C1—C21.9 (3)H2—C4—C5—Br11.1
C9—O1—C1—H1178.1H2—C4—C5—C6179.0
O1—C1—C2—C30.8 (4)H2—C4—C8—C31.5
O1—C1—C2—C10179.35 (18)H2—C4—C8—C9179.7
H1—C1—C2—C3179.2Br1—C5—C6—C7179.45 (14)
H1—C1—C2—C100.6Br1—C5—C6—H30.6
C1—C2—C3—O2177.1 (2)C4—C5—C6—C70.4 (4)
C1—C2—C3—C82.4 (3)C4—C5—C6—H3179.6
C1—C2—C10—O35.5 (4)C5—C6—C7—C90.8 (4)
C1—C2—C10—H5174.5C5—C6—C7—H4179.2
C3—C2—C10—O3174.6 (2)H3—C6—C7—C9179.2
C3—C2—C10—H55.4H3—C6—C7—H40.8
C10—C2—C3—O23.0 (4)C6—C7—C9—O1177.51 (19)
C10—C2—C3—C8177.47 (18)C6—C7—C9—C81.5 (4)
O2—C3—C8—C43.2 (4)H4—C7—C9—O12.5
O2—C3—C8—C9174.99 (19)H4—C7—C9—C8178.5
C2—C3—C8—C4177.26 (17)C3—C8—C9—O13.8 (4)
C2—C3—C8—C94.5 (3)C3—C8—C9—C7177.29 (18)
C5—C4—C8—C3178.50 (18)C4—C8—C9—O1177.99 (18)
C5—C4—C8—C90.3 (3)C4—C8—C9—C71.0 (4)
Symmetry codes: (i) x1, y, z+1; (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+1, y+1, z+1; (vi) x1, y, z; (vii) x, y+1, z+1; (viii) x+1, y, z1; (ix) x, y, z1; (x) x, y, z+1; (xi) x+1, y, z+2; (xii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H5BrO3
Mr253.05
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.5743 (18), 6.967 (3), 10.350 (4)
α, β, γ (°)71.02 (3), 85.53 (3), 70.67 (3)
V3)422.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.85
Crystal size (mm)0.42 × 0.40 × 0.38
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.135, 0.159
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
2389, 1944, 1880
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.16
No. of reflections1944
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.74

Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), SIR92 (Altomare, et al., 1994), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

The author acknowledges the University of Shizuoka for instrumental support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIshikawa, Y. (2014a). Acta Cryst. E70, o439.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. (2014b). Acta Cryst. E70, o514.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.  CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds