organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Nitro­phen­yl)thio­phene-2-carbox­amide

aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

(Received 22 April 2014; accepted 22 April 2014; online 26 April 2014)

The title compound, C11H8N2O3S, shows two mol­ecules per asymmetric unit, with the dihedral angles between the benzene and thio­phene rings of 13.53 (6) and 8.50 (5)° being a notable difference between them. An intra­molecular N—H⋯O hydrogen-bond in each mol­ecule generates an S(6) ring motif. The crystal packing shows no classical hydrogen bonds with the mol­ecules being packed to form weak C—H⋯O and C—H⋯S inter­actions leading to R22(9) and R44(25) rings which are edge-shared, giving layers parallel to (010).

Related literature

For the anti­bacterial and anti­fungal activity of amide compounds, see: Aytemir et al. (2003[Aytemir, M. D., Hider, R. C., Erol, D. D., Ozalp, M. & Ekizoglu, M. (2003). Turk. J. Chem. 27, 445-452.]); Hrelia et al. (1995[Hrelia, P., Vigagni, F., Maffei, F., Fimognari, C., Lamartina, L., Spinelli, D., Juric, P., Guerra, M. C. & Cantelli-Forti, G. (1995). Mutagenesis, 10, 171-177.]). For a similar compound, see: Moreno-Fuquen et al. (2013[Moreno-Fuquen, R., Azcárate, A., Kennedy, A. R., Gilmour, D. & De Almeida Santos, R. H. (2013). Acta Cryst. E69, o1592.]). For hydrogen-bonding information, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8N2O3S

  • Mr = 248.25

  • Monoclinic, P 21 /c

  • a = 11.6359 (3) Å

  • b = 13.2501 (3) Å

  • c = 17.7412 (4) Å

  • β = 129.898 (1)°

  • V = 2098.47 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 123 K

  • 0.28 × 0.15 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.953, Tmax = 1.000

  • 10418 measured reflections

  • 5093 independent reflections

  • 4012 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.116

  • S = 1.04

  • 5093 reflections

  • 315 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.81 (3) 1.96 (3) 2.634 (2) 140 (3)
N3—H3N⋯O5 0.84 (2) 1.93 (2) 2.616 (2) 138 (2)
C1—H1⋯O4i 0.95 2.50 3.209 (3) 131
C8—H8⋯O5ii 0.95 2.52 3.248 (3) 133
C19—H19⋯O2iii 0.95 2.63 3.377 (3) 136
C11—H11⋯S2iii 0.95 2.92 3.732 (2) 144
C22—H22⋯S1ii 0.95 2.84 3.689 (2) 149
C12—H12⋯O1iv 0.95 2.47 3.198 (3) 133
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Experimental top

Synthesis and crystallization top

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title molecule was synthesized using equimolar qu­anti­ties of 2-thio­phene­carbonyl chloride (0.376 g., 2.565 mmol) and 2-nitro­aniline (0.354 g). The reagents were dissolved in 10 mL of aceto­nitrile and the solution was taken to reflux in constant stirring for 1 hour. Yellow crystals of good quality were obtained after leaving the solvent to evaporate. M.pt: 397 (1) K.

Refinement top

All H-atoms were positioned at geometrically idealized positions with a C—H distance of 0.95 Å and Uiso(H) = 1.2Ueq of the atoms to which they were bonded. The H1N and H3N atoms were found from Fourier maps and were refined freely.

Results and discussion top

The present compound forms part of a systematic work on N-aromatic amides in our research group. Anti­bacterial and anti­fungal activities of different carb­oxy­amide derivatives have been reported (Aytemir et al., 2003). Derivatives of thio­phene carboxanilide compounds present genotoxicity in bacterial mammalian and human cells (Hrelia et al., 1995). In the synthesis of the amides, the 2-nitro­aniline is taken as a template, in order to study the structural changes and the supra­molecular behavior by the reaction of different ligands with this precursor (Moreno-Fuquen et al., 2013). With this aim, the synthesis of N-(2-nitro­phenyl)­thio­phene-2-carboxamide (I) was undertaken. The structure of N-(2-nitro­phenyl)­furan-2-carboxamide (2NPFC), (Moreno-Fuquen et al., 2013), a similar compound, was taken to compare with the structural parameters of (I).

The title compound shows two molecules (A and B) per asymmetric unit (see Fig. 1). Compound (I) exhibits dihedral angles between the benzene and thio­phene rings of 13.53 (6)° and 8.50 (5)° for A and B, respectively. These dihedral angles are very similar to the value presented in the (2NPFC) system [9.71 (5)°]. The other bond lengths and bond angles agree closely with those values presented in its homologous amide (2NPFC), except for the C—S distances, which for obvious reasons are different on the furan rings. The nitro groups form dihedral angles with the adjacent benzene ring of 15.44 (4) and 16.07 (6)° for O2—N2—O3 and O5—N4—O6, respectively.

The crystal packing shows no classical hydrogen bonds and the molecules are packed forming weak C—H···O and C—H···S inter­actions and they are propagated parallel to (010) (see Fig. 2). According to the graph-set assignment, the intra­molecular hydrogen-bond pattern generates a S(6) ring motif (Etter, 1990) (see Table 1). The C8 and C11 atoms of the phenyl ring and C1 atom of the thio­phene ring at (x, y, z), act as hydrogen-bond donors to the nitro O5 atom at (x, -y+3/2, +z+1/2), to the S2 atom at (x-1, -y+3/2, +z-1/2) and to the carbonyl atom O4 at (x, -y+3/2, +z-1/2), respectively. Additionally, the C19 and C22 atoms of the benzene ring and C12 atom of the thio­phene ring at (x, y, z) act as hydrogen-bond donors to the nitro O2 atom at (x-1, -y+3/2, +z-1/2), to the S1 atom at (x, -y+3/2, +z+1/2) and to the carbonyl O1 atom at (x+1, -y+3/2, +z+1/2), respectively, (see Table 1; Nardelli, 1995). All these inter­actions form an R22(9) and R44(25) edge-fused ring which are running parallel to (010) (see Fig. 2).

Related literature top

For the antibacterial and antifungal activity of amide compounds, see: Aytemir et al. (2003); Hrelia et al. (1995). For a similar compound, see: Moreno-Fuquen et al. (2013). For hydrogen-bonding information, see: Nardelli (1995). For hydrogen-bond motifs, see: Etter et al. (1990).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of edge-fused R22(9) and R44(25) rings running parallel to (010).
N-(2-Nitrophenyl)thiophene-2-carboxamide top
Crystal data top
C11H8N2O3SF(000) = 1024
Mr = 248.25Dx = 1.572 Mg m3
Monoclinic, P21/cMelting point: 397(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.6359 (3) ÅCell parameters from 4181 reflections
b = 13.2501 (3) Åθ = 3.4–29.4°
c = 17.7412 (4) ŵ = 0.31 mm1
β = 129.898 (1)°T = 123 K
V = 2098.47 (9) Å3Tablet, yellow
Z = 80.28 × 0.15 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
5093 independent reflections
Radiation source: fine-focus sealed tube4012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 29.4°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1514
Tmin = 0.953, Tmax = 1.000k = 1517
10418 measured reflectionsl = 2224
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.042P)2 + 1.7613P]
where P = (Fo2 + 2Fc2)/3
5093 reflections(Δ/σ)max < 0.001
315 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C11H8N2O3SV = 2098.47 (9) Å3
Mr = 248.25Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.6359 (3) ŵ = 0.31 mm1
b = 13.2501 (3) ÅT = 123 K
c = 17.7412 (4) Å0.28 × 0.15 × 0.05 mm
β = 129.898 (1)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
5093 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
4012 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 1.000Rint = 0.028
10418 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.49 e Å3
5093 reflectionsΔρmin = 0.43 e Å3
315 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.60696 (6)0.81889 (4)0.07981 (4)0.02441 (14)
S20.98321 (6)0.64159 (5)0.30229 (4)0.03015 (16)
O10.38729 (16)0.85064 (13)0.05031 (11)0.0255 (4)
O20.77371 (16)0.93931 (13)0.29784 (11)0.0262 (4)
O30.73314 (17)0.91094 (13)0.39862 (11)0.0274 (4)
O40.70355 (17)0.70186 (12)0.26329 (11)0.0269 (4)
O50.38579 (16)0.59679 (13)0.08094 (11)0.0268 (4)
O60.15254 (17)0.63885 (14)0.18258 (11)0.0303 (4)
N10.5542 (2)0.90436 (14)0.10981 (13)0.0184 (4)
N20.68724 (19)0.92377 (13)0.31503 (12)0.0193 (4)
N30.54164 (19)0.64179 (14)0.10488 (13)0.0189 (4)
N40.26905 (19)0.62585 (14)0.09860 (13)0.0217 (4)
C10.7915 (3)0.82021 (17)0.02508 (16)0.0247 (5)
H10.82880.80290.05780.030*
C20.8804 (2)0.84884 (17)0.07096 (16)0.0220 (4)
H20.98640.85330.11260.026*
C30.7965 (2)0.87137 (16)0.10222 (15)0.0182 (4)
H30.83950.89220.16670.022*
C40.6440 (2)0.85876 (15)0.02591 (14)0.0171 (4)
C50.5153 (2)0.87066 (16)0.02341 (14)0.0180 (4)
C60.4632 (2)0.91537 (15)0.13495 (14)0.0171 (4)
C70.5258 (2)0.92336 (15)0.23390 (15)0.0173 (4)
C80.4367 (2)0.93183 (16)0.26042 (16)0.0218 (4)
H80.48160.93550.32780.026*
C90.2828 (2)0.93496 (17)0.18862 (17)0.0240 (5)
H90.22110.94160.20600.029*
C100.2195 (2)0.92823 (17)0.09095 (16)0.0230 (5)
H100.11360.93070.04140.028*
C110.3066 (2)0.91801 (16)0.06396 (15)0.0200 (4)
H110.25990.91270.00360.024*
C121.0568 (2)0.60694 (18)0.24879 (17)0.0268 (5)
H121.16100.59880.28380.032*
C130.9500 (2)0.59212 (17)0.15022 (16)0.0230 (5)
H130.97200.57240.10920.028*
C140.8015 (2)0.60940 (16)0.11495 (15)0.0185 (4)
H140.71320.60300.04830.022*
C150.8039 (2)0.63702 (16)0.19220 (14)0.0188 (4)
C160.6807 (2)0.66372 (16)0.19215 (15)0.0194 (4)
C170.4018 (2)0.65097 (15)0.08063 (14)0.0172 (4)
C180.2688 (2)0.64194 (16)0.01743 (15)0.0182 (4)
C190.1290 (2)0.64708 (17)0.04208 (16)0.0232 (5)
H190.04080.64080.10880.028*
C200.1180 (3)0.66121 (17)0.03006 (18)0.0256 (5)
H200.02270.66360.01370.031*
C210.2479 (3)0.67189 (17)0.12687 (17)0.0240 (5)
H210.24090.68270.17670.029*
C220.3873 (2)0.66709 (16)0.15197 (16)0.0212 (4)
H220.47470.67490.21870.025*
H3N0.536 (3)0.6175 (18)0.0592 (18)0.020 (6)*
H1N0.642 (3)0.914 (2)0.156 (2)0.033 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0264 (3)0.0289 (3)0.0169 (2)0.0012 (2)0.0134 (2)0.0021 (2)
S20.0209 (3)0.0372 (4)0.0198 (3)0.0010 (2)0.0073 (2)0.0030 (2)
O10.0176 (7)0.0359 (9)0.0171 (7)0.0009 (7)0.0085 (6)0.0018 (6)
O20.0178 (7)0.0417 (10)0.0203 (7)0.0054 (7)0.0129 (6)0.0059 (7)
O30.0270 (8)0.0359 (9)0.0166 (7)0.0021 (7)0.0128 (7)0.0020 (7)
O40.0264 (8)0.0321 (9)0.0173 (7)0.0015 (7)0.0118 (6)0.0039 (7)
O50.0185 (7)0.0425 (10)0.0209 (7)0.0019 (7)0.0134 (6)0.0061 (7)
O60.0232 (8)0.0442 (10)0.0150 (7)0.0044 (7)0.0084 (6)0.0006 (7)
N10.0128 (8)0.0254 (10)0.0147 (8)0.0009 (7)0.0077 (7)0.0020 (7)
N20.0199 (8)0.0193 (9)0.0179 (8)0.0012 (7)0.0117 (7)0.0020 (7)
N30.0182 (8)0.0236 (9)0.0138 (8)0.0002 (7)0.0098 (7)0.0025 (7)
N40.0191 (9)0.0257 (10)0.0179 (8)0.0016 (8)0.0109 (7)0.0025 (7)
C10.0308 (12)0.0253 (11)0.0261 (11)0.0032 (10)0.0220 (10)0.0014 (9)
C20.0204 (10)0.0241 (11)0.0230 (10)0.0010 (9)0.0147 (9)0.0006 (9)
C30.0210 (10)0.0174 (10)0.0203 (10)0.0003 (8)0.0150 (9)0.0010 (8)
C40.0213 (10)0.0165 (10)0.0148 (9)0.0010 (8)0.0122 (8)0.0008 (7)
C50.0205 (10)0.0170 (10)0.0159 (9)0.0011 (8)0.0114 (8)0.0024 (8)
C60.0191 (10)0.0150 (10)0.0183 (9)0.0004 (8)0.0125 (8)0.0012 (8)
C70.0166 (9)0.0154 (10)0.0191 (9)0.0010 (8)0.0112 (8)0.0005 (8)
C80.0268 (11)0.0205 (11)0.0243 (10)0.0044 (9)0.0191 (9)0.0035 (8)
C90.0243 (11)0.0228 (11)0.0336 (12)0.0039 (9)0.0225 (10)0.0041 (9)
C100.0167 (10)0.0220 (11)0.0268 (11)0.0008 (9)0.0124 (9)0.0003 (9)
C110.0178 (10)0.0200 (10)0.0192 (10)0.0012 (8)0.0106 (8)0.0026 (8)
C120.0165 (10)0.0279 (12)0.0274 (11)0.0012 (9)0.0102 (9)0.0028 (9)
C130.0225 (10)0.0215 (11)0.0275 (11)0.0006 (9)0.0172 (9)0.0016 (9)
C140.0160 (9)0.0175 (10)0.0232 (10)0.0005 (8)0.0131 (8)0.0041 (8)
C150.0168 (9)0.0171 (10)0.0157 (9)0.0015 (8)0.0073 (8)0.0006 (8)
C160.0213 (10)0.0162 (10)0.0156 (9)0.0012 (8)0.0095 (8)0.0033 (8)
C170.0186 (10)0.0158 (10)0.0174 (9)0.0009 (8)0.0117 (8)0.0015 (8)
C180.0214 (10)0.0172 (10)0.0175 (9)0.0006 (8)0.0132 (8)0.0008 (8)
C190.0203 (10)0.0234 (11)0.0233 (10)0.0007 (9)0.0128 (9)0.0026 (9)
C200.0254 (11)0.0236 (11)0.0375 (13)0.0031 (9)0.0246 (10)0.0047 (10)
C210.0334 (12)0.0210 (11)0.0293 (11)0.0036 (9)0.0255 (10)0.0033 (9)
C220.0265 (11)0.0202 (11)0.0193 (10)0.0021 (9)0.0158 (9)0.0022 (8)
Geometric parameters (Å, º) top
S1—C11.697 (2)C6—C111.401 (3)
S1—C41.716 (2)C6—C71.408 (3)
S2—C121.699 (3)C7—C81.391 (3)
S2—C151.716 (2)C8—C91.380 (3)
O1—C51.225 (2)C8—H80.9500
O2—N21.242 (2)C9—C101.384 (3)
O3—N21.224 (2)C9—H90.9500
O4—C161.220 (3)C10—C111.376 (3)
O5—N41.243 (2)C10—H100.9500
O6—N41.223 (2)C11—H110.9500
N1—C51.366 (3)C12—C131.361 (3)
N1—C61.395 (3)C12—H120.9500
N1—H1N0.81 (3)C13—C141.430 (3)
N2—O21.242 (2)C13—H130.9500
N2—C71.460 (3)C14—C151.401 (3)
N3—C161.373 (3)C14—H140.9500
N3—C171.396 (3)C15—C161.476 (3)
N3—H3N0.84 (2)C17—C221.396 (3)
N4—O51.243 (2)C17—C181.408 (3)
N4—C181.457 (3)C18—C191.390 (3)
C1—C21.362 (3)C19—C201.378 (3)
C1—H10.9500C19—H190.9500
C2—C31.429 (3)C20—C211.387 (3)
C2—H20.9500C20—H200.9500
C3—C41.388 (3)C21—C221.381 (3)
C3—H30.9500C21—H210.9500
C4—C51.478 (3)C22—H220.9500
C1—S1—C491.88 (10)C8—C9—C10119.2 (2)
C12—S2—C1592.00 (11)C8—C9—H9120.4
C5—N1—C6128.35 (18)C10—C9—H9120.4
C5—N1—H1N118.8 (19)C11—C10—C9121.5 (2)
C6—N1—H1N112.4 (19)C11—C10—H10119.3
O3—N2—O2121.89 (17)C9—C10—H10119.3
O3—N2—O2121.89 (17)C10—C11—C6120.8 (2)
O3—N2—C7118.65 (17)C10—C11—H11119.6
O2—N2—C7119.44 (17)C6—C11—H11119.6
O2—N2—C7119.44 (17)C13—C12—S2112.66 (17)
C16—N3—C17128.81 (18)C13—C12—H12123.7
C16—N3—H3N118.3 (16)S2—C12—H12123.7
C17—N3—H3N112.9 (16)C12—C13—C14112.9 (2)
O6—N4—O5121.92 (18)C12—C13—H13123.5
O6—N4—O5121.92 (18)C14—C13—H13123.5
O6—N4—C18118.68 (18)C15—C14—C13110.71 (18)
O5—N4—C18119.36 (17)C15—C14—H14124.6
O5—N4—C18119.36 (17)C13—C14—H14124.6
C2—C1—S1112.67 (17)C14—C15—C16130.68 (18)
C2—C1—H1123.7C14—C15—S2111.69 (16)
S1—C1—H1123.7C16—C15—S2117.62 (15)
C1—C2—C3112.57 (19)O4—C16—N3124.8 (2)
C1—C2—H2123.7O4—C16—C15122.12 (19)
C3—C2—H2123.7N3—C16—C15113.07 (18)
C4—C3—C2111.11 (18)C22—C17—N3121.89 (18)
C4—C3—H3124.4C22—C17—C18117.21 (19)
C2—C3—H3124.4N3—C17—C18120.89 (18)
C3—C4—C5130.78 (18)C19—C18—C17121.45 (19)
C3—C4—S1111.76 (15)C19—C18—N4116.11 (18)
C5—C4—S1117.42 (15)C17—C18—N4122.44 (18)
O1—C5—N1124.7 (2)C20—C19—C18120.1 (2)
O1—C5—C4121.59 (19)C20—C19—H19119.9
N1—C5—C4113.69 (17)C18—C19—H19119.9
N1—C6—C11122.09 (18)C19—C20—C21119.1 (2)
N1—C6—C7120.96 (18)C19—C20—H20120.4
C11—C6—C7116.95 (18)C21—C20—H20120.4
C8—C7—C6121.73 (19)C22—C21—C20121.1 (2)
C8—C7—N2115.67 (18)C22—C21—H21119.4
C6—C7—N2122.60 (18)C20—C21—H21119.4
C9—C8—C7119.8 (2)C21—C22—C17121.0 (2)
C9—C8—H8120.1C21—C22—H22119.5
C7—C8—H8120.1C17—C22—H22119.5
O2—O2—N2—O30.0 (5)N1—C6—C11—C10179.5 (2)
O2—O2—N2—C70.0 (5)C7—C6—C11—C100.1 (3)
O5—O5—N4—O60.00 (11)C15—S2—C12—C130.07 (19)
O5—O5—N4—C180.00 (6)S2—C12—C13—C140.1 (3)
C4—S1—C1—C20.65 (18)C12—C13—C14—C150.4 (3)
S1—C1—C2—C30.3 (3)C13—C14—C15—C16178.9 (2)
C1—C2—C3—C40.3 (3)C13—C14—C15—S20.4 (2)
C2—C3—C4—C5178.5 (2)C12—S2—C15—C140.27 (17)
C2—C3—C4—S10.8 (2)C12—S2—C15—C16178.96 (17)
C1—S1—C4—C30.82 (17)C17—N3—C16—O44.7 (4)
C1—S1—C4—C5178.85 (17)C17—N3—C16—C15175.74 (19)
C6—N1—C5—O15.4 (4)C14—C15—C16—O4167.8 (2)
C6—N1—C5—C4174.01 (19)S2—C15—C16—O410.6 (3)
C3—C4—C5—O1175.9 (2)C14—C15—C16—N311.8 (3)
S1—C4—C5—O11.7 (3)S2—C15—C16—N3169.80 (15)
C3—C4—C5—N13.6 (3)C16—N3—C17—C2212.8 (3)
S1—C4—C5—N1178.86 (15)C16—N3—C17—C18168.7 (2)
C5—N1—C6—C1117.6 (3)C22—C17—C18—C191.1 (3)
C5—N1—C6—C7161.8 (2)N3—C17—C18—C19177.51 (19)
N1—C6—C7—C8178.37 (19)C22—C17—C18—N4179.48 (19)
C11—C6—C7—C81.0 (3)N3—C17—C18—N41.9 (3)
N1—C6—C7—N21.9 (3)O6—N4—C18—C1915.1 (3)
C11—C6—C7—N2178.70 (19)O5—N4—C18—C19162.99 (19)
O3—N2—C7—C814.5 (3)O5—N4—C18—C19162.99 (19)
O2—N2—C7—C8163.90 (19)O6—N4—C18—C17165.5 (2)
O2—N2—C7—C8163.90 (19)O5—N4—C18—C1716.5 (3)
O3—N2—C7—C6165.80 (19)O5—N4—C18—C1716.5 (3)
O2—N2—C7—C615.8 (3)C17—C18—C19—C200.1 (3)
O2—N2—C7—C615.8 (3)N4—C18—C19—C20179.4 (2)
C6—C7—C8—C91.5 (3)C18—C19—C20—C211.1 (3)
N2—C7—C8—C9178.20 (19)C19—C20—C21—C221.0 (3)
C7—C8—C9—C100.8 (3)C20—C21—C22—C170.2 (3)
C8—C9—C10—C110.3 (3)N3—C17—C22—C21177.4 (2)
C9—C10—C11—C60.8 (3)C18—C17—C22—C211.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.81 (3)1.96 (3)2.634 (2)140 (3)
N3—H3N···O50.84 (2)1.93 (2)2.616 (2)138 (2)
C1—H1···O4i0.952.503.209 (3)131
C8—H8···O5ii0.952.523.248 (3)133
C19—H19···O2iii0.952.633.377 (3)136
C11—H11···S2iii0.952.923.732 (2)144
C22—H22···S1ii0.952.843.689 (2)149
C12—H12···O1iv0.952.473.198 (3)133
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y+3/2, z1/2; (iv) x+1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.81 (3)1.96 (3)2.634 (2)140 (3)
N3—H3N···O50.84 (2)1.93 (2)2.616 (2)138 (2)
C1—H1···O4i0.952.503.209 (3)131
C8—H8···O5ii0.952.523.248 (3)133
C19—H19···O2iii0.952.633.377 (3)136
C11—H11···S2iii0.952.923.732 (2)144
C22—H22···S1ii0.952.843.689 (2)149
C12—H12···O1iv0.952.473.198 (3)133
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y+3/2, z1/2; (iv) x+1, y+3/2, z+1/2.
 

Acknowledgements

RMF thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationAytemir, M. D., Hider, R. C., Erol, D. D., Ozalp, M. & Ekizoglu, M. (2003). Turk. J. Chem. 27, 445–452.  CAS Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHrelia, P., Vigagni, F., Maffei, F., Fimognari, C., Lamartina, L., Spinelli, D., Juric, P., Guerra, M. C. & Cantelli-Forti, G. (1995). Mutagenesis, 10, 171–177.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Azcárate, A., Kennedy, A. R., Gilmour, D. & De Almeida Santos, R. H. (2013). Acta Cryst. E69, o1592.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds