metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Fluoro­phen­yl-κC)(N,N,N′,N′-tetra­methyl­ethylenedi­amine-κ2N,N′)(tri­fluoro­meth­yl-κC)palladium(II)

aSchool of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: cgzheng@jiangnan.edu.cn

(Received 27 March 2014; accepted 9 April 2014; online 16 April 2014)

In the title compound, [Pd(CF3)(C6H4F)(C6H16N2)], the PdII cation is four-coordinated by the two N atoms of the N,N,N′,N′-tetra­methyl­ethylenedi­amine ligand and by one C atom each from a 4-fluoro­phenyl and a tri­fluoro­methyl ligand, in a distorted rectangular-planar geometry, with an average deviation from the least-squares plane of 0.066 (2) Å. The central coordination angles with the PdII atom range from 83.14 (10) to 97.25 (12)°.

Related literature

For metal-mediated C—F bond-breaking and C—C bond-formation reactions in similar compounds, see: Maleckis & Sanford (2011[Maleckis, A. & Sanford, M. S. (2011). Organometallics, 30, 6617-6627.]); Ball et al. (2010[Ball, N. D., Kampf, J. W. & Sanford, M. S. (2010). J. Am. Chem. Soc. 132, 2878-2879.], 2011[Ball, N. D., Gary, J. B., Ye, Y. D. & Sanford, M. S. (2011). J. Am. Chem. Soc. 133, 7577-7584.]); Ye et al. (2010[Ye, Y. D., Ball, N. D., Kampf, J. W. & Sanford, M. S. (2010). J. Am. Chem. Soc. 132, 14682-14687.]); Racowski et al. (2011[Racowski, J. M., Ball, N. D. & Sanford, M. S. (2011). J. Am. Chem. Soc. 133, 18022-18025.]). For similar PdII—CF3 bonds, see: Grushin & Marshall (2006[Grushin, V. V. & Marshall, W. J. (2006). J. Am. Chem. Soc. 128, 12644-12645.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(CF3)(C6H4F)(C6H8N2)]

  • Mr = 386.71

  • Monoclinic, P 21 /c

  • a = 16.6651 (19) Å

  • b = 8.3464 (9) Å

  • c = 11.4710 (13) Å

  • β = 103.063 (2)°

  • V = 1554.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 296 K

  • 0.29 × 0.27 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.717, Tmax = 0.800

  • 8555 measured reflections

  • 2875 independent reflections

  • 2628 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.067

  • S = 1.04

  • 2875 reflections

  • 180 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—C12 2.004 (3)
Pd1—C13 2.017 (3)
Pd1—N1 2.172 (2)
Pd1—N2 2.206 (2)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Trifluoromethyl palladium aryl complexes have attracted much attention due to the demand for metal-mediated C—F bond breaking and C—C bond formation reactions involving highly fluorinated substrates (Maleckis & Sanford, 2011; Ball et al., 2010; Ye et al., 2010; Racowski et al., 2011; Ball et al.,2011).

Single-crystal X-ray diffraction of the title compound reveals that PdII [(tmeda)Pd(p-FPh)(CF3)] is four-coordinate. As shown in Fig. 1, the asymmetric unit comprises one PdII cation, a tmeda ligand (N1 and N2), a p-FPh group (C12) and a CF3 group (C13). For primary bond lengths, see Table 1. The PdII—CF3 bond length [2.015 (4) Å] (Table 1) is comparable with those in similar PdII complexes (Grushin & Marshall, 2006). The bidentate Xantphos ligand used in the latte study is s a larger spatial stucture ligand, and therefore [(Xantphos)Pd(Ph)(CF3)] has an obviously greater PdII—CF3 bond length with [2.069 (3) Å] (Grushin & Marshall, 2006). Fig. 2 gives the molecular packing of the title compound, viewed along the a axis.

Related literature top

For metal-mediated C—F bond-breaking and C—C bond-formation reactions in similar compounds, see: Maleckis & Sanford (2011); Ball et al. (2010, 2011); Ye et al. (2010); Racowski et al. (2011). For similar PdII—CF3 bonds, see: Grushin & Marshall (2006).

Experimental top

Under nitrogen, [(tmeda)Pd(p-FPh)(I)] (445 mg, 1 mmol, 1 equiv) and CsF (3 equiv) were suspended in THF (0.145 M) in a 25 ml Schlenk flask. This mixture was stirred strongly for 10 min and then TMSCF3 (2 equiv) was added. The reaction was stirred vigorously for 1.5 h at 30 °C. A colorless solid [(tmeda)Pd(p-FPh)(CF3)] was obtained. 50 mg of [(tmeda)Pd(p-FPh)(CF3)] was put into a 10 ml transparent bottle, and CH2Cl2 (2 ml) was added to dissolve it. The bottleneck was sealed by a plastic wrap, and lay aside the transparent bottle into a wide-mouth bottle containing diethyl ether (15 ml). Colorless block single crystals of [(tmeda)Pd(p-FPh)(CF3)] were obtained after 3 days.

Refinement top

The H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C), and C–H distances of 0.93–0.96 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of [(tmeda)Pd(p-FPh)(CF3)] with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of [(tmeda)Pd(p-FPh)(CF3)], viewed along the a axis. Atom codes: Pd checkered green spheres, F hatched green spheres, N blue dotted spheres, C black spheres, H green circled spheres.
(4-Fluorophenyl-κC)(N,N,N',N'-tetramethylethylenediamine-κ2N,N')(trifluoromethyl-κC)palladium(II) top
Crystal data top
[Pd(CF3)(C6H4F)(C6H16N2)]F(000) = 776
Mr = 386.71Dx = 1.653 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6327 reflections
a = 16.6651 (19) Åθ = 2.5–28.3°
b = 8.3464 (9) ŵ = 1.23 mm1
c = 11.4710 (13) ÅT = 296 K
β = 103.063 (2)°Block, colourless
V = 1554.3 (3) Å30.29 × 0.27 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2875 independent reflections
Radiation source: fine-focus sealed tube2628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2019
Tmin = 0.717, Tmax = 0.800k = 710
8555 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0257P)2 + 1.3072P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2875 reflectionsΔρmax = 0.56 e Å3
180 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0130 (7)
Crystal data top
[Pd(CF3)(C6H4F)(C6H16N2)]V = 1554.3 (3) Å3
Mr = 386.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.6651 (19) ŵ = 1.23 mm1
b = 8.3464 (9) ÅT = 296 K
c = 11.4710 (13) Å0.29 × 0.27 × 0.19 mm
β = 103.063 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2875 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2628 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.800Rint = 0.032
8555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.04Δρmax = 0.56 e Å3
2875 reflectionsΔρmin = 0.42 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1947 (3)0.3541 (4)0.1824 (3)0.0676 (10)
H1A0.16250.26140.21240.101*
H1B0.24580.35100.20770.101*
H1C0.16490.44920.21300.101*
C20.1308 (2)0.3660 (4)0.0178 (4)0.0697 (10)
H2A0.13890.36390.06770.104*
H2B0.09690.27700.05170.104*
H2C0.10410.46430.04820.104*
C30.2600 (3)0.4968 (4)0.0004 (4)0.0770 (12)
H3A0.24410.58700.05390.092*
H3B0.24720.52370.07570.092*
C40.3477 (2)0.4711 (5)0.0176 (5)0.0831 (13)
H4A0.37630.56570.05480.100*
H4B0.36110.45800.05990.100*
C50.3906 (3)0.3625 (5)0.2209 (4)0.0832 (14)
H5A0.41690.27260.26610.125*
H5B0.33820.38150.23990.125*
H5C0.42470.45580.24060.125*
C60.4590 (2)0.2862 (5)0.0683 (4)0.0691 (10)
H6A0.49480.37760.08250.104*
H6B0.45140.25330.01370.104*
H6C0.48310.20000.11990.104*
C70.12779 (18)0.0466 (4)0.0076 (3)0.0492 (7)
H70.12320.00430.06560.059*
C80.0662 (2)0.1472 (4)0.0689 (4)0.0658 (10)
H80.02080.17180.03780.079*
C90.0738 (2)0.2090 (4)0.1757 (4)0.0658 (10)
C100.1397 (3)0.1777 (4)0.2232 (3)0.0675 (11)
H100.14380.22160.29610.081*
C110.2004 (2)0.0786 (4)0.1598 (3)0.0557 (8)
H110.24650.05850.19040.067*
C120.19541 (17)0.0076 (3)0.0519 (2)0.0389 (6)
C130.34552 (19)0.0443 (4)0.1069 (3)0.056
F10.30400 (16)0.1597 (3)0.1466 (3)0.0905 (8)
F20.40331 (16)0.0049 (3)0.2069 (3)0.1081 (10)
F30.3877 (2)0.1208 (3)0.0386 (3)0.1207 (12)
F40.01374 (16)0.3096 (3)0.2362 (3)0.1088 (10)
N10.21161 (16)0.3549 (3)0.0509 (2)0.0455 (6)
N20.37856 (16)0.3287 (3)0.0931 (2)0.0483 (6)
Pd10.282550 (12)0.14760 (2)0.027333 (17)0.03517 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.092 (3)0.062 (2)0.0461 (18)0.0159 (19)0.0097 (18)0.0128 (15)
C20.070 (2)0.062 (2)0.082 (3)0.0226 (18)0.027 (2)0.0115 (19)
C30.080 (3)0.0372 (19)0.101 (3)0.0030 (18)0.006 (2)0.0041 (19)
C40.071 (3)0.045 (2)0.132 (4)0.0135 (18)0.019 (2)0.009 (2)
C50.076 (3)0.109 (4)0.067 (2)0.034 (2)0.022 (2)0.039 (2)
C60.0481 (19)0.087 (3)0.075 (2)0.0154 (19)0.0203 (17)0.011 (2)
C70.0449 (16)0.0494 (18)0.0536 (17)0.0037 (14)0.0119 (13)0.0032 (14)
C80.0386 (17)0.060 (2)0.097 (3)0.0064 (15)0.0099 (18)0.0007 (19)
C90.056 (2)0.0447 (19)0.079 (2)0.0073 (16)0.0217 (19)0.0024 (18)
C100.099 (3)0.0480 (19)0.0467 (18)0.0103 (19)0.0019 (19)0.0066 (15)
C110.074 (2)0.0457 (18)0.0504 (17)0.0156 (16)0.0212 (16)0.0048 (15)
C120.0413 (14)0.0342 (14)0.0388 (13)0.0015 (11)0.0038 (11)0.0021 (11)
C130.0440.0490.0720.0030.0080.006
F10.0801 (16)0.0650 (15)0.118 (2)0.0029 (11)0.0049 (14)0.0432 (13)
F20.0912 (18)0.0810 (17)0.119 (2)0.0006 (14)0.0460 (16)0.0218 (15)
F30.129 (2)0.098 (2)0.154 (3)0.0678 (19)0.071 (2)0.0274 (19)
F40.0831 (17)0.0773 (16)0.135 (2)0.0264 (14)0.0406 (16)0.0194 (16)
N10.0537 (15)0.0382 (14)0.0420 (13)0.0000 (10)0.0050 (11)0.0040 (10)
N20.0434 (13)0.0466 (14)0.0544 (15)0.0089 (11)0.0100 (11)0.0056 (12)
Pd10.03454 (14)0.03201 (14)0.03823 (14)0.00229 (8)0.00669 (9)0.00038 (8)
Geometric parameters (Å, º) top
C1—N11.471 (4)C6—H6B0.9600
C1—H1A0.9600C6—H6C0.9600
C1—H1B0.9600C7—C121.375 (4)
C1—H1C0.9600C7—C81.388 (5)
C2—N11.483 (5)C7—H70.9300
C2—H2A0.9600C8—C91.361 (6)
C2—H2B0.9600C8—H80.9300
C2—H2C0.9600C9—C101.357 (6)
C3—C41.446 (6)C9—F41.369 (4)
C3—N11.475 (4)C10—C111.379 (5)
C3—H3A0.9700C10—H100.9300
C3—H3B0.9700C11—C121.392 (4)
C4—N21.492 (5)C11—H110.9300
C4—H4A0.9700Pd1—C122.004 (3)
C4—H4B0.9700C13—F11.325 (4)
C5—N21.462 (5)C13—F31.329 (4)
C5—H5A0.9600C13—F21.361 (4)
C5—H5B0.9600Pd1—C132.017 (3)
C5—H5C0.9600Pd1—N12.172 (2)
C6—N21.475 (4)Pd1—N22.206 (2)
C6—H6A0.9600
N1—C1—H1A109.5C9—C8—C7118.5 (4)
N1—C1—H1B109.5C9—C8—H8120.8
H1A—C1—H1B109.5C7—C8—H8120.8
N1—C1—H1C109.5C10—C9—C8122.4 (3)
H1A—C1—H1C109.5C10—C9—F4118.7 (4)
H1B—C1—H1C109.5C8—C9—F4118.9 (4)
N1—C2—H2A109.5C9—C10—C11117.9 (3)
N1—C2—H2B109.5C9—C10—H10121.1
H2A—C2—H2B109.5C11—C10—H10121.1
N1—C2—H2C109.5C10—C11—C12122.7 (3)
H2A—C2—H2C109.5C10—C11—H11118.7
H2B—C2—H2C109.5C12—C11—H11118.7
C4—C3—N1112.4 (3)C7—C12—C11116.5 (3)
C4—C3—H3A109.1C7—C12—Pd1123.8 (2)
N1—C3—H3A109.1C11—C12—Pd1119.7 (2)
C4—C3—H3B109.1F1—C13—F3103.9 (3)
N1—C3—H3B109.1F1—C13—F2102.2 (3)
H3A—C3—H3B107.8F3—C13—F2104.2 (3)
C3—C4—N2113.9 (3)F1—C13—Pd1118.3 (2)
C3—C4—H4A108.8F3—C13—Pd1113.9 (3)
N2—C4—H4A108.8F2—C13—Pd1112.8 (2)
C3—C4—H4B108.8C1—N1—C3111.6 (3)
N2—C4—H4B108.8C1—N1—C2106.8 (3)
H4A—C4—H4B107.7C3—N1—C2107.2 (3)
N2—C5—H5A109.5C1—N1—Pd1112.3 (2)
N2—C5—H5B109.5C3—N1—Pd1106.2 (2)
H5A—C5—H5B109.5C2—N1—Pd1112.7 (2)
N2—C5—H5C109.5C5—N2—C6108.4 (3)
H5A—C5—H5C109.5C5—N2—C4112.3 (3)
H5B—C5—H5C109.5C6—N2—C4106.8 (3)
N2—C6—H6A109.5C5—N2—Pd1113.6 (2)
N2—C6—H6B109.5C6—N2—Pd1112.9 (2)
H6A—C6—H6B109.5C4—N2—Pd1102.7 (2)
N2—C6—H6C109.5C12—Pd1—C1386.65 (12)
H6A—C6—H6C109.5C12—Pd1—N193.25 (10)
H6B—C6—H6C109.5C13—Pd1—N1177.08 (12)
C12—C7—C8122.0 (3)C12—Pd1—N2173.23 (10)
C12—C7—H7119.0C13—Pd1—N297.25 (12)
C8—C7—H7119.0N1—Pd1—N283.14 (10)
N1—C3—C4—N255.4 (5)C11—C12—Pd1—N195.3 (2)
C12—C7—C8—C90.3 (5)F1—C13—Pd1—C1240.6 (3)
C7—C8—C9—C101.0 (6)F3—C13—Pd1—C1281.9 (3)
C7—C8—C9—F4179.4 (3)F2—C13—Pd1—C12159.6 (3)
C8—C9—C10—C110.3 (6)F1—C13—Pd1—N2145.0 (3)
F4—C9—C10—C11178.7 (3)F3—C13—Pd1—N292.6 (3)
C9—C10—C11—C121.6 (5)F2—C13—Pd1—N225.9 (3)
C8—C7—C12—C112.1 (5)C1—N1—Pd1—C1261.5 (2)
C8—C7—C12—Pd1176.0 (2)C3—N1—Pd1—C12176.3 (2)
C10—C11—C12—C72.8 (5)C2—N1—Pd1—C1259.1 (2)
C10—C11—C12—Pd1175.4 (3)C1—N1—Pd1—N2112.8 (2)
C4—C3—N1—C187.2 (4)C3—N1—Pd1—N29.5 (2)
C4—C3—N1—C2156.3 (4)C2—N1—Pd1—N2126.6 (2)
C4—C3—N1—Pd135.5 (4)C5—N2—Pd1—C1371.4 (3)
C3—C4—N2—C580.8 (4)C6—N2—Pd1—C1352.6 (3)
C3—C4—N2—C6160.5 (4)C4—N2—Pd1—C13167.1 (3)
C3—C4—N2—Pd141.5 (4)C5—N2—Pd1—N1105.7 (3)
C7—C12—Pd1—C1394.4 (3)C6—N2—Pd1—N1130.4 (2)
C11—C12—Pd1—C1387.6 (3)C4—N2—Pd1—N115.8 (2)
C7—C12—Pd1—N182.7 (3)
Selected bond lengths (Å) top
Pd1—C122.004 (3)Pd1—N12.172 (2)
Pd1—C132.017 (3)Pd1—N22.206 (2)
 

Acknowledgements

This work was supported by the Research Institute of Element-Organic Chemistry of East China Institute of Technology

References

First citationBall, N. D., Gary, J. B., Ye, Y. D. & Sanford, M. S. (2011). J. Am. Chem. Soc. 133, 7577–7584.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBall, N. D., Kampf, J. W. & Sanford, M. S. (2010). J. Am. Chem. Soc. 132, 2878–2879.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2007). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrushin, V. V. & Marshall, W. J. (2006). J. Am. Chem. Soc. 128, 12644–12645.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaleckis, A. & Sanford, M. S. (2011). Organometallics, 30, 6617–6627.  Web of Science CSD CrossRef CAS Google Scholar
First citationRacowski, J. M., Ball, N. D. & Sanford, M. S. (2011). J. Am. Chem. Soc. 133, 18022–18025.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Y. D., Ball, N. D., Kampf, J. W. & Sanford, M. S. (2010). J. Am. Chem. Soc. 132, 14682–14687.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds