metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m160-m161

Bis[bis­­(2,2′-bi­pyridine-κ2N,N′)(carbon­ato-κ2O,O′)cobalt(III)] 2-{4-[(carboxyl­atometh­yl)carbamo­yl]benz­amido}­acetate hexa­hydrate

aInstitute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Paul-Ernst-Strasse 4, D-38678 Clausthal-Zellerfeld, Germany
*Correspondence e-mail: arnold.adam@tu-clausthal.de

(Received 7 March 2014; accepted 21 March 2014; online 2 April 2014)

The complex cation of the title compound, [Co(CO3)(C10H8N2)2]2(C12H10N2O6)·6H2O, contains a CoIII atom with a distorted octa­hedral coordination environment formed by four N atoms from two bidentate 2,2′-bi­pyridine ligands and one bidentate carbonate anion. The asymmetric unit is completed by one-half of the 2-({4-[(carboxyl­atometh­yl)carbamo­yl]phen­yl}formamido)­acetate dianion, which is located on a centre of inversion, and by three water mol­ecules. Two [Co(CO3)(C10H8N2)2]+ cations are connected through C—H⋯O contacts by the uncoordinating anions. The aromatic rings of the 2,2′-bi­pyridine ligands and di­acetate anions are involved in ππ stacking and C—H⋯π inter­actions. The centroid–centroid distances are in the range 3.4898 (4)–3.6384 (5) Å. The crystal structure is stabilized by further O—H⋯O and N—H⋯O hydrogen bonds, which give rise to a three-dimensional supra­molecular network.

Related literature

For related crystal structures of transition metals with 2,2′-(terephthaloylbis(aza­nedi­yl))di­acetate, see: Duan et al. (2010[Duan, J., Zheng, B., Bai, J., Zhang, Q. & Zuo, C. (2010). Inorg. Chim. Acta, 363, 3172-3177.]); Kostakis et al. (2005[Kostakis, G. E., Casella, L., Hadjiliadis, N., Monzani, E., Kourkoumelis, N. & Plakatouras, J. C. (2005). Chem. Commun. 30, 3859-3861.], 2011[Kostakis, G. E., Casella, L., Boudalis, A. K., Monzani, E. & Plakatouras, J. C. (2011). New J. Chem. 35, 1060-1071.]); Wisser et al. (2008[Wisser, B., Chamayou, A.-C., Miller, R., Scherer, W. & Janiak, C. (2008). CrystEngComm, 10, 461-464.]); Zhang & You (2005[Zhang, H.-T. & You, X.-Z. (2005). Acta Cryst. E61, m1163-m1165.]); Zhang et al. (2006[Zhang, H.-T., Li, Y.-Z., Wang, T.-W., Nfor, E. N., Wang, H.-Q. & You, X.-Z. (2006). Eur. J. Inorg. Chem. pp. 3532-3536.]). For structures containing the [Co(C10H8N2)2(CO3)] cation, see: Baca et al. (2005[Baca, S. G., Filippova, I. G., Ambrus, C., Gdaniec, M., Simonov, Y. A., Gerbeleu, N., Gherco, O. A. & Decurtins, S. (2005). Eur. J. Inorg. Chem. pp. 3118-3130.]); Lv et al. (2007[Lv, Y.-X., Ling, Y., Li, H. & Zhang, L. (2007). Acta Cryst. E63, m1906-m1907.]); Ma et al. (2008[Ma, P.-T., Wang, Y.-X., Zhang, G.-Q. & Li, M.-X. (2008). Acta Cryst. E64, m14.]); Wojciechowska & Daszkiewicz (2010[Wojciechowska, A. & Daszkiewicz, M. (2010). Acta Cryst. E66, e31.]). For cds networks, see: Delgado Friedrichs et al. (2003[Delgado Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2003). Solid State Sci. 5, 73-78.]). For ππ and C–H⋯π inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]); Meyer et al. (2003[Meyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210-1250.]); Salonen et al. (2011[Salonen, L. M., Ellermann, M. & Diederich, F. (2011). Angew. Chem. Int. Ed. 50, 4808-4842.]). For coordination polymers including metal-organic frameworks, see: Allendorf et al. (2009[Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330-1352.]); Cook et al. (2013[Cook, T. R., Zheng, Y.-R. & Stang, P. J. (2013). Chem. Rev. 113, 734-777.]); Schneider (2009[Schneider, H.-J. (2009). Angew. Chem. Int. Ed. 48, 3924-3977.]); Yamada et al. (2013[Yamada, T., Otsubo, K., Makiura, R. & Kitagawa, H. (2013). Chem. Soc. Rev. 42, 6655-6669.]). For C—H⋯O hydrogen bonds, see: Desiraju (1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.], 2005[Desiraju, G. R. (2005). Chem. Commun. pp. 2995-3001.]); Steiner (1996[Steiner, T. (1996). Crystallogr. Rev. 6, 1-51.], 1997[Steiner, T. (1997). Chem. Commun. pp. 727-734.]). For details of the preparation, see: Cleaver & Pratt (1955[Cleaver, C. S. & Pratt, B. C. (1955). J. Am. Chem. Soc. 77, 1544-1546.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(CO3)(C10H8N2)2]2(C12H10N2O6)·6H2O

  • Mr = 1248.94

  • Triclinic, [P \overline 1]

  • a = 10.2198 (13) Å

  • b = 12.1702 (15) Å

  • c = 12.4767 (15) Å

  • α = 118.119 (9)°

  • β = 93.936 (10)°

  • γ = 101.84 (1)°

  • V = 1314.7 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 223 K

  • 0.22 × 0.21 × 0.20 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: numerical (X-AREA; Stoe, 2008)[Stoe (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.] Tmin = 0.801, Tmax = 0.851

  • 14081 measured reflections

  • 5094 independent reflections

  • 4333 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.106

  • S = 1.05

  • 5094 reflections

  • 487 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N2/C7–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O6 0.85 (6) 2.11 (6) 2.944 (5) 168 (5)
O7—H7B⋯O9 0.79 (7) 2.02 (7) 2.805 (5) 170 (6)
O8—H8A⋯O5 0.79 (5) 1.94 (5) 2.722 (4) 170 (5)
O9—H9A⋯O4i 0.86 (5) 1.98 (6) 2.831 (4) 170 (4)
O9—H9B⋯O4 0.76 (5) 2.07 (5) 2.812 (4) 165 (5)
N5—H5A⋯O8ii 0.74 (4) 2.16 (4) 2.881 (4) 163 (3)
C3—H3⋯O4iii 0.94 (3) 2.64 (3) 3.203 (4) 119 (2)
C15—H15⋯O5 0.96 (4) 2.32 (4) 3.264 (4) 165 (3)
C20—H20⋯O6iv 0.90 (4) 2.46 (4) 3.162 (4) 135 (3)
C14—H14⋯Cg2v 0.86 (4) 2.59 (3) 3.419 (3) 160 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) x, y, z+1; (v) -x, -y, -z+1.

Data collection: X-AREA (Stoe, 2008[Stoe (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the past decades, the focus on metal-organic materials including coordination polymers such as metal-organic frameworks and supra­molecules has been expanded rapidly due to their fascinating architectures, their multiple properties as gas storage or luminescent materials as well as their applications in modern metal-organic science, see: Schneider (2009); Allendorf et al. (2009); Cook et al. (2013); Yamada et al. (2013). For the synthesis of such materials the use of different organic linkers with relatively rigid bodies, which contain simultaneously several coordination centers, are required to build up such systems. In the crystal structures of complexes with transition metals and terephthaloylbisglycinate as ligand, zigzag chains are formed, constructing a twofold inter­penetrating cds net (Wisser et al., 2008; Kostakis et al., 2005, 2011; Zhang & You, 2005; Zhang et al., 2006; Duan et al., 2010; Delgado Friedrichs et al., 2003). In our approach we try to substituate one or two of the terephthaloylbisglycinate anions as a bridging linker between two metal coordination centers in the mentioned zigzag chains with bidentate ligands in order to block the coordination on one or more sides of the metal coordination environment, resulting in novel 3D-networks. For this reason we have chosen 2,2'-bi­pyridines as bidentate ligands. As known from literature, nitro­gen-containing aromatic systems exhibit an electron deficity and thus are predestined for π···π-stacking inter­actions among one another and/or with other electron-deficient aromatic systems (Janiak, 2000). Furthermore, with this choice of ligands, the system is offered an alternative route for stabilising the crystal structure (Meyer et al. 2003; Salonen et al., 2011).

The asymmetric unit of the title compound, [Co(C10H8N2)2(CO3)]2·(C12H10O6)·6H2O, consists of one [Co(C10H8N2)2(CO3)] cation, half of the terephthaloylbisglycine as counteranion and three water molecules, hold together through a number of noncovalent inter­actions, thereunder hydrogen bonds, C—H···O contacts, π···π- and C—H···π inter­actions (Table 1; Fig. 1). The cation shows a distorted o­cta­hedral coordination sphere defined by two bidentate 2,2'-bi­pyridine ligands and one chelating carbonate anion (Fig. 1). Herein, Co—N and Co—O bond lengths are similar to those found in other bis­(2,2-bi­pyridine-κ2N,N)(carbonato-κ2O,O)cobalt(III) complexes (Baca et al., 2005; Lv et al., 2007; Ma et al., 2008; Wojciechowska & Daszkiewicz, 2010). The bi­pyridine ligands of two neighbouring complex cations are linked through C—H···π inter­actions. In addition to those inter­actions, the aromatic moities of bi­pyridines and non-coordinating terephthaloylbisglycine are involved in π···π-stacking inter­actions as well as C—H···O contacts (Fig. 2). Figure 3 shows a centered N,N'-(benzene-1,4-dicarboxamido)­diacetate which is embedded in the C—H···O hydrogen bonding network with an adjacent phenathroline ligand. All bond lengths and angles involved in hydrogen bonding are well within the expected ranges (Desiraju, 1991, 2005; Steiner, 1996, 1997). Besides the mentioned non-classical inter­actions, the crystal structure is essentiall stabilised by further hydrogen bonds of the type O—H···O and N—H···O (Tab. 1). A view of the partial unit-cell contents gives an impression of the extended 3-D hydrogen bonding network (Fig. 4).

Experimental top

The starting material, 2,2'-(benzene-1,4-dicarboxamido)­diacetatic acid, was prepared by the method of Cleaver et al. (1955). Cesium carbonate (2 mmol), 2,2'-bi­pyridine (1 mmol) and 2,2'-(benzene-1,4-dicarboxamido)­diacetatic acid (1 mmol) were dissolved in a 1:1 mixture of water and methanol (50 ml) and refluxed for 30 minutes. The mixture was allowed to cool to room temperature and an aqueous solution of cobalt nitrate (1 mmol) was slowly added under continuous stirring. The solution changed the color from orange to deep red within one day. Deep red block-shaped crystals of the title compound were obtained by slow evaporation at room temperature. Analysis calculated for C33H32CoN6O12: C 51.91, H 4.36, N 11.01%; found: C 51.50, H 4.72, N 11.17%.

Refinement top

All hydrogen atoms were located difference Fourier maps and were refined isotropically with no restraints.

Related literature top

For related crystal structures of transition metals with 2,2'-(terephthaloylbis(azanediyl))diacetate, see: Duan et al. (2010); Kostakis et al. (2005, 2011); Wisser et al. (2008); Zhang & You (2005); Zhang et al. (2006). For structures containing the [Co(C10H8N2)2(CO3)] cation, see: Baca et al. (2005); Lv et al. (2007); Ma et al. (2008); Wojciechowska & Daszkiewicz (2010). For cds networks, see: Delgado Friedrichs et al. (2003). For ππ and C–H···π interactions, see: Janiak (2000); Meyer et al. (2003); Salonen et al. (2011). For coordination polymers including metal-organic frameworks, see: Allendorf et al. (2009); Cook et al. (2013); Schneider (2009); Yamada et al. (2013). For C—H···O hydrogen bonds, see: Desiraju (1991, 2005); Steiner (1996, 1997). For details of the preparation, see: Cleaver & Pratt (1955).

Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular entities of the title structure with atom labels and displacement ellipsoids of non-H atoms at the 50% probability level. Dashed lines indicate N—H···O and O—H···O hydrogen bonds, as well as C—H···O contacts (see Table 1 for details). [Symmetry code: (i) -x + 1, -y + 2, -z + 1.]
[Figure 2] Fig. 2. π···π stacking and C–H···π interactions between the aromatic moieties indicated by dashed lines. The hydrogen atoms not involved in interactions have been omitted for clarity. [Symmetry codes: (iv) x, y - 1, z; (vii) -x, -y, -z + 2; (viii) -x, -y, -z + 1.]
[Figure 3] Fig. 3. View of the extended network of C—H···O hydrogen bonding with the embedded N,N'-(benzene-1,4-dicarboxamido)diacetate and adjacent phenathrolines. C—H···O contacts are indicated by dashed lines. [Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ix) x, y + 1, z; (x) -x + 1, -y + 2, -z + 2.]
[Figure 4] Fig. 4. View of the partial unit-cell contents in projection down the b axis with the tree-dimensional hydrogen bonding network. Dashed lines represent the N—H···O, O—H···O and C—H···O hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, z + 1; (vi) x, y, z - 1.]
Bis[bis(2,2'-bipyridine-κ2N,N')(carbonato-κ2O,O')cobalt(III)] 2-{4-[(carboxylatomethyl)carbamoyl]benzamido}acetate hexahydrate top
Crystal data top
[Co(CO3)(C10H8N2)2]2(C12H10N2O6)·6H2OZ = 1
Mr = 1248.94F(000) = 1292
Triclinic, P1Dx = 1.577 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2198 (13) ÅCell parameters from 5094 reflections
b = 12.1702 (15) Åθ = 1.0–26°
c = 12.4767 (15) ŵ = 0.72 mm1
α = 118.119 (9)°T = 223 K
β = 93.936 (10)°Block, dark red
γ = 101.84 (1)°0.22 × 0.21 × 0.20 mm
V = 1314.7 (3) Å3
Data collection top
Stoe IPDS 2
diffractometer
5094 independent reflections
Radiation source: fine-focus sealed tube4333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: numerical
(X-AREA; Stoe, 2008)
h = 1212
Tmin = 0.801, Tmax = 0.851k = 1515
14081 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.6944P]
where P = (Fo2 + 2Fc2)/3
5094 reflections(Δ/σ)max = 0.001
487 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Co(CO3)(C10H8N2)2]2(C12H10N2O6)·6H2Oγ = 101.84 (1)°
Mr = 1248.94V = 1314.7 (3) Å3
Triclinic, P1Z = 1
a = 10.2198 (13) ÅMo Kα radiation
b = 12.1702 (15) ŵ = 0.72 mm1
c = 12.4767 (15) ÅT = 223 K
α = 118.119 (9)°0.22 × 0.21 × 0.20 mm
β = 93.936 (10)°
Data collection top
Stoe IPDS 2
diffractometer
5094 independent reflections
Absorption correction: numerical
(X-AREA; Stoe, 2008)
4333 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.851Rint = 0.088
14081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.106All H-atom parameters refined
S = 1.05Δρmax = 0.37 e Å3
5094 reflectionsΔρmin = 0.71 e Å3
487 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.21576 (3)0.13013 (3)0.85140 (3)0.01767 (11)
O10.28625 (18)0.19311 (17)1.02079 (16)0.0237 (4)
O20.40218 (17)0.13060 (17)0.87431 (16)0.0247 (4)
O30.50087 (19)0.18433 (19)1.06633 (18)0.0319 (4)
O40.2036 (2)0.5200 (2)0.5181 (2)0.0471 (6)
O50.2900 (2)0.3522 (2)0.4300 (2)0.0463 (6)
O60.3510 (3)0.6605 (2)0.26307 (19)0.0431 (5)
O70.0512 (4)0.5777 (3)0.2127 (4)0.0641 (8)
H7A0.137 (6)0.590 (5)0.221 (5)0.078 (17)*
H7B0.041 (6)0.584 (6)0.277 (6)0.10 (2)*
O80.4733 (3)0.2331 (3)0.3056 (3)0.0498 (6)
H8A0.414 (5)0.263 (4)0.334 (4)0.060 (13)*
H8B0.475 (4)0.218 (4)0.237 (4)0.042 (10)*
O90.0237 (3)0.6356 (3)0.4544 (3)0.0517 (7)
H9A0.049 (5)0.597 (5)0.466 (5)0.075 (15)*
H9B0.082 (6)0.617 (5)0.478 (5)0.078 (17)*
N10.1557 (2)0.04188 (19)0.82682 (19)0.0211 (4)
N20.0283 (2)0.1307 (2)0.86728 (19)0.0212 (4)
N30.1847 (2)0.07228 (19)0.67539 (19)0.0198 (4)
N40.2688 (2)0.2999 (2)0.8673 (2)0.0214 (4)
N50.3909 (3)0.6596 (2)0.4424 (3)0.0326 (5)
H5A0.414 (3)0.695 (3)0.510 (3)0.031 (9)*
C10.4045 (2)0.1708 (2)0.9927 (2)0.0222 (5)
C20.2320 (3)0.1265 (3)0.8002 (3)0.0271 (5)
H20.320 (3)0.095 (3)0.794 (3)0.019 (7)*
C30.1780 (3)0.2506 (3)0.7780 (3)0.0338 (6)
H30.234 (3)0.308 (3)0.755 (3)0.033 (8)*
C40.0441 (3)0.2879 (3)0.7877 (3)0.0365 (7)
H40.010 (3)0.366 (3)0.780 (3)0.035 (8)*
C50.0343 (3)0.2007 (3)0.8171 (3)0.0309 (6)
H50.124 (4)0.225 (3)0.825 (3)0.036 (9)*
C60.0243 (2)0.0784 (2)0.8355 (2)0.0211 (5)
C70.0479 (2)0.0219 (2)0.8617 (2)0.0208 (5)
C80.1824 (3)0.0089 (3)0.8773 (2)0.0280 (5)
H80.229 (3)0.064 (3)0.875 (3)0.019 (7)*
C90.2409 (3)0.1084 (3)0.8980 (3)0.0356 (7)
H90.334 (3)0.099 (3)0.909 (3)0.036 (8)*
C100.1639 (3)0.2174 (3)0.9019 (3)0.0372 (7)
H100.200 (3)0.285 (3)0.908 (3)0.037 (9)*
C110.0297 (3)0.2267 (3)0.8866 (3)0.0283 (6)
H110.026 (3)0.304 (3)0.890 (3)0.030 (8)*
C120.1403 (3)0.0507 (2)0.5811 (2)0.0250 (5)
H120.115 (3)0.121 (3)0.602 (3)0.024 (7)*
C130.1368 (3)0.0807 (3)0.4597 (2)0.0289 (6)
H130.102 (3)0.177 (3)0.392 (3)0.035 (8)*
C140.1773 (3)0.0183 (3)0.4329 (3)0.0323 (6)
H140.177 (3)0.001 (3)0.357 (3)0.030 (8)*
C150.2186 (3)0.1458 (3)0.5287 (3)0.0289 (6)
H150.250 (3)0.217 (3)0.514 (3)0.038 (9)*
C160.2210 (2)0.1699 (2)0.6487 (2)0.0214 (5)
C170.2658 (2)0.2992 (2)0.7585 (2)0.0216 (5)
C180.3014 (3)0.4133 (3)0.7543 (3)0.0325 (6)
H180.295 (4)0.408 (4)0.675 (4)0.056 (11)*
C190.3429 (3)0.5296 (3)0.8646 (3)0.0375 (7)
H190.372 (3)0.613 (3)0.871 (3)0.038 (9)*
C200.3474 (3)0.5293 (3)0.9753 (3)0.0320 (6)
H200.372 (4)0.604 (4)1.049 (4)0.046 (10)*
C210.3088 (3)0.4127 (2)0.9739 (3)0.0262 (5)
H210.310 (3)0.410 (3)1.045 (3)0.024 (7)*
C220.2783 (3)0.4602 (3)0.4507 (3)0.0308 (6)
C230.3609 (4)0.5196 (3)0.3847 (3)0.0370 (7)
H23A0.445 (5)0.497 (4)0.378 (4)0.067 (13)*
H23B0.313 (4)0.484 (4)0.299 (4)0.046 (10)*
C240.3921 (3)0.7198 (3)0.3761 (3)0.0280 (6)
C250.4476 (2)0.8647 (3)0.4443 (2)0.0251 (5)
C260.4791 (3)0.9241 (3)0.3728 (3)0.0266 (5)
H260.471 (3)0.873 (3)0.288 (3)0.026 (7)*
C270.4691 (3)0.9436 (3)0.5722 (3)0.0270 (5)
H270.449 (3)0.902 (3)0.620 (3)0.032 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.01697 (17)0.01872 (17)0.01930 (18)0.00522 (12)0.00537 (12)0.01058 (13)
O10.0240 (9)0.0276 (9)0.0224 (9)0.0086 (7)0.0069 (7)0.0138 (7)
O20.0211 (8)0.0298 (9)0.0252 (9)0.0072 (7)0.0075 (7)0.0148 (8)
O30.0260 (9)0.0385 (11)0.0305 (10)0.0080 (8)0.0008 (8)0.0175 (9)
O40.0482 (13)0.0428 (12)0.0563 (15)0.0148 (10)0.0271 (11)0.0263 (12)
O50.0538 (14)0.0439 (13)0.0660 (16)0.0205 (11)0.0268 (12)0.0418 (12)
O60.0620 (15)0.0367 (11)0.0270 (11)0.0028 (10)0.0031 (10)0.0179 (9)
O70.064 (2)0.0615 (18)0.076 (2)0.0043 (15)0.0015 (16)0.0475 (17)
O80.0623 (17)0.0619 (16)0.0335 (13)0.0327 (14)0.0063 (12)0.0242 (12)
O90.0511 (15)0.0494 (15)0.0754 (19)0.0170 (13)0.0267 (14)0.0441 (15)
N10.0235 (10)0.0216 (10)0.0206 (10)0.0064 (8)0.0048 (8)0.0122 (8)
N20.0221 (10)0.0254 (10)0.0196 (10)0.0084 (8)0.0054 (8)0.0130 (9)
N30.0179 (9)0.0220 (10)0.0213 (10)0.0070 (8)0.0060 (8)0.0112 (8)
N40.0198 (10)0.0228 (10)0.0247 (11)0.0060 (8)0.0068 (8)0.0137 (9)
N50.0426 (14)0.0283 (12)0.0278 (14)0.0033 (10)0.0044 (11)0.0173 (11)
C10.0216 (11)0.0218 (11)0.0244 (12)0.0023 (9)0.0034 (9)0.0138 (10)
C20.0274 (13)0.0279 (13)0.0279 (13)0.0132 (11)0.0059 (10)0.0131 (11)
C30.0429 (16)0.0256 (13)0.0337 (15)0.0145 (12)0.0043 (12)0.0138 (12)
C40.0481 (18)0.0186 (13)0.0374 (16)0.0038 (12)0.0003 (13)0.0127 (12)
C50.0328 (15)0.0251 (13)0.0301 (14)0.0007 (11)0.0027 (11)0.0134 (11)
C60.0212 (11)0.0218 (11)0.0184 (11)0.0028 (9)0.0028 (9)0.0098 (10)
C70.0195 (11)0.0254 (12)0.0163 (11)0.0046 (9)0.0018 (9)0.0102 (10)
C80.0216 (12)0.0395 (15)0.0276 (13)0.0036 (11)0.0054 (10)0.0221 (12)
C90.0240 (13)0.0542 (18)0.0369 (16)0.0172 (13)0.0121 (11)0.0256 (14)
C100.0311 (15)0.0459 (17)0.0451 (17)0.0240 (13)0.0148 (13)0.0244 (15)
C110.0277 (13)0.0278 (13)0.0349 (15)0.0129 (11)0.0104 (11)0.0173 (12)
C120.0227 (12)0.0233 (12)0.0231 (13)0.0071 (10)0.0026 (10)0.0069 (10)
C130.0276 (13)0.0323 (14)0.0210 (12)0.0117 (11)0.0027 (10)0.0076 (11)
C140.0282 (14)0.0476 (17)0.0211 (13)0.0135 (12)0.0050 (10)0.0158 (13)
C150.0274 (13)0.0364 (15)0.0269 (13)0.0076 (11)0.0064 (10)0.0190 (12)
C160.0159 (10)0.0256 (12)0.0249 (12)0.0044 (9)0.0036 (9)0.0148 (10)
C170.0181 (11)0.0243 (12)0.0249 (12)0.0049 (9)0.0044 (9)0.0144 (11)
C180.0312 (14)0.0308 (14)0.0390 (16)0.0027 (11)0.0022 (12)0.0230 (13)
C190.0367 (15)0.0229 (14)0.0501 (19)0.0041 (12)0.0023 (13)0.0190 (13)
C200.0271 (13)0.0227 (13)0.0381 (16)0.0068 (11)0.0011 (11)0.0097 (12)
C210.0258 (13)0.0242 (12)0.0255 (13)0.0075 (10)0.0045 (10)0.0097 (11)
C220.0295 (13)0.0341 (14)0.0310 (14)0.0044 (11)0.0036 (11)0.0199 (12)
C230.0492 (18)0.0299 (15)0.0372 (17)0.0089 (13)0.0161 (14)0.0206 (13)
C240.0259 (13)0.0342 (14)0.0279 (14)0.0101 (11)0.0087 (10)0.0172 (12)
C250.0205 (11)0.0331 (13)0.0287 (13)0.0107 (10)0.0072 (10)0.0191 (11)
C260.0256 (13)0.0339 (14)0.0247 (13)0.0107 (11)0.0087 (10)0.0165 (11)
C270.0280 (13)0.0354 (14)0.0282 (13)0.0108 (11)0.0115 (10)0.0224 (12)
Geometric parameters (Å, º) top
Co—O11.9002 (18)C7—C81.389 (3)
Co—O21.9054 (17)C8—C91.384 (4)
Co—N11.922 (2)C8—H80.91 (3)
Co—N41.934 (2)C9—C101.373 (5)
Co—N21.940 (2)C9—H90.97 (3)
Co—N31.943 (2)C10—C111.387 (4)
Co—C12.322 (3)C10—H100.94 (3)
O1—C11.326 (3)C11—H110.97 (3)
O2—C11.316 (3)C12—C131.377 (4)
O3—C11.228 (3)C12—H120.99 (3)
O4—C221.248 (4)C13—C141.388 (4)
O5—C221.248 (4)C13—H131.04 (3)
O6—C241.234 (3)C14—C151.389 (4)
O7—H7A0.85 (6)C14—H140.87 (3)
O7—H7B0.79 (7)C15—C161.380 (4)
O8—H8A0.79 (5)C15—H150.96 (4)
O8—H8B0.79 (4)C16—C171.466 (3)
O9—H9A0.86 (5)C17—C181.388 (4)
O9—H9B0.76 (5)C18—C191.383 (4)
N1—C21.349 (3)C18—H180.95 (4)
N1—C61.354 (3)C19—C201.381 (5)
N2—C111.347 (3)C19—H190.95 (4)
N2—C71.359 (3)C20—C211.383 (4)
N3—C121.348 (3)C20—H200.90 (4)
N3—C161.368 (3)C21—H210.91 (3)
N4—C211.340 (3)C22—O51.248 (4)
N4—C171.352 (3)C22—O41.248 (4)
N5—C241.338 (4)C22—C231.523 (4)
N5—C231.454 (4)C23—H23A0.95 (4)
N5—H5A0.74 (4)C23—H23B0.98 (4)
C2—C31.380 (4)C24—O61.234 (3)
C2—H20.93 (3)C24—C251.505 (4)
C3—C41.384 (5)C25—C271.391 (4)
C3—H30.94 (3)C25—C261.405 (4)
C4—C51.388 (4)C26—C27i1.380 (4)
C4—H40.90 (4)C26—H260.92 (3)
C5—C61.385 (4)C27—C26i1.380 (4)
C5—H50.94 (4)C27—H270.95 (3)
C6—C71.473 (3)
O1—Co—O269.28 (8)C10—C9—C8118.7 (3)
O1—Co—N189.82 (8)C10—C9—H9122.4 (19)
O2—Co—N191.79 (8)C8—C9—H9119 (2)
O1—Co—N493.35 (8)C9—C10—C11120.0 (3)
O2—Co—N490.33 (8)C9—C10—H10123 (2)
N1—Co—N4176.66 (9)C11—C10—H10117 (2)
O1—Co—N297.26 (8)N2—C11—C10121.6 (3)
O2—Co—N2165.72 (8)N2—C11—H11118.0 (18)
N1—Co—N283.18 (9)C10—C11—H11120.4 (18)
N4—Co—N295.35 (9)N3—C12—C13121.8 (3)
O1—Co—N3167.67 (8)N3—C12—H12118.0 (17)
O2—Co—N398.81 (8)C13—C12—H12120.1 (17)
N1—Co—N393.85 (9)C12—C13—C14119.3 (3)
N4—Co—N383.28 (9)C12—C13—H13117.8 (19)
N2—Co—N394.86 (8)C14—C13—H13122.9 (19)
O1—Co—C134.83 (8)C13—C14—C15119.5 (3)
O2—Co—C134.52 (8)C13—C14—H14119 (2)
N1—Co—C189.28 (9)C15—C14—H14121 (2)
N4—Co—C193.93 (9)C16—C15—C14118.6 (3)
N2—Co—C1131.67 (9)C16—C15—H15119 (2)
N3—Co—C1133.34 (8)C14—C15—H15122 (2)
C1—O1—Co90.26 (14)N3—C16—C15122.0 (2)
C1—O2—Co90.34 (14)N3—C16—C17113.7 (2)
H7A—O7—H7B100 (5)C15—C16—C17124.3 (2)
H8A—O8—H8B115 (4)N4—C17—C18121.5 (2)
H9A—O9—H9B106 (5)N4—C17—C16114.4 (2)
C2—N1—C6119.2 (2)C18—C17—C16124.1 (2)
C2—N1—Co125.61 (19)C19—C18—C17118.7 (3)
C6—N1—Co115.20 (16)C19—C18—H18123 (2)
C11—N2—C7118.7 (2)C17—C18—H18118 (2)
C11—N2—Co127.23 (18)C20—C19—C18119.4 (3)
C7—N2—Co114.07 (16)C20—C19—H19116 (2)
C12—N3—C16118.7 (2)C18—C19—H19125 (2)
C12—N3—Co127.23 (18)C19—C20—C21119.4 (3)
C16—N3—Co113.90 (16)C19—C20—H20122 (2)
C21—N4—C17119.6 (2)C21—C20—H20119 (2)
C21—N4—Co125.91 (19)N4—C21—C20121.4 (3)
C17—N4—Co114.51 (16)N4—C21—H21117.4 (19)
C24—N5—C23122.3 (3)C20—C21—H21121.2 (19)
C24—N5—H5A123 (3)O5—C22—O4125.3 (3)
C23—N5—H5A114 (3)O5—C22—O4125.3 (3)
O3—C1—O2125.3 (2)O5—C22—O4125.3 (3)
O3—C1—O1124.8 (2)O5—C22—O4125.3 (3)
O2—C1—O1109.9 (2)O5—C22—C23115.8 (3)
O3—C1—Co175.78 (19)O5—C22—C23115.8 (3)
O2—C1—Co55.14 (11)O4—C22—C23119.0 (3)
O1—C1—Co54.91 (12)O4—C22—C23119.0 (3)
N1—C2—C3121.5 (3)N5—C23—C22115.3 (3)
N1—C2—H2114.3 (17)N5—C23—H23A108 (3)
C3—C2—H2124.1 (17)C22—C23—H23A110 (3)
C2—C3—C4119.4 (3)N5—C23—H23B107 (2)
C2—C3—H3118 (2)C22—C23—H23B111 (2)
C4—C3—H3122 (2)H23A—C23—H23B106 (3)
C3—C4—C5119.4 (3)O6—C24—N5122.2 (3)
C3—C4—H4120 (2)O6—C24—N5122.2 (3)
C5—C4—H4120 (2)O6—C24—C25120.2 (3)
C6—C5—C4118.7 (3)O6—C24—C25120.2 (3)
C6—C5—H5122 (2)N5—C24—C25117.5 (2)
C4—C5—H5120 (2)C27—C25—C26118.0 (3)
N1—C6—C5121.8 (2)C27—C25—C24124.9 (2)
N1—C6—C7113.5 (2)C26—C25—C24117.1 (2)
C5—C6—C7124.7 (2)C27i—C26—C25121.0 (3)
N2—C7—C8121.6 (2)C27i—C26—H26119 (2)
N2—C7—C6113.9 (2)C25—C26—H26119 (2)
C8—C7—C6124.5 (2)C26i—C27—C25121.1 (3)
C9—C8—C7119.4 (3)C26i—C27—H27121.7 (19)
C9—C8—H8121.6 (17)C25—C27—H27117.2 (19)
C7—C8—H8119.0 (17)
O2—Co—O1—C12.99 (13)C2—N1—C6—C50.4 (4)
N1—Co—O1—C189.00 (14)Co—N1—C6—C5178.4 (2)
N4—Co—O1—C192.08 (14)C2—N1—C6—C7178.5 (2)
N2—Co—O1—C1172.09 (14)Co—N1—C6—C70.3 (3)
N3—Co—O1—C118.4 (4)C4—C5—C6—N10.7 (4)
O1—Co—O2—C13.01 (13)C4—C5—C6—C7177.2 (3)
N1—Co—O2—C186.12 (14)C11—N2—C7—C81.0 (4)
N4—Co—O2—C196.46 (14)Co—N2—C7—C8176.95 (19)
N2—Co—O2—C117.2 (4)C11—N2—C7—C6177.8 (2)
N3—Co—O2—C1179.71 (14)Co—N2—C7—C64.3 (3)
O1—Co—N1—C286.1 (2)N1—C6—C7—N22.6 (3)
O2—Co—N1—C216.8 (2)C5—C6—C7—N2175.4 (2)
N2—Co—N1—C2176.6 (2)N1—C6—C7—C8178.7 (2)
N3—Co—N1—C282.2 (2)C5—C6—C7—C83.3 (4)
C1—Co—N1—C251.2 (2)N2—C7—C8—C90.5 (4)
O1—Co—N1—C695.23 (18)C6—C7—C8—C9178.1 (3)
O2—Co—N1—C6164.50 (18)C7—C8—C9—C100.3 (4)
N2—Co—N1—C62.10 (17)C8—C9—C10—C110.7 (5)
N3—Co—N1—C696.54 (18)C7—N2—C11—C100.6 (4)
C1—Co—N1—C6130.06 (18)Co—N2—C11—C10177.0 (2)
O1—Co—N2—C1192.3 (2)C9—C10—C11—N20.2 (5)
O2—Co—N2—C11111.3 (4)C16—N3—C12—C133.1 (3)
N1—Co—N2—C11178.7 (2)Co—N3—C12—C13172.50 (18)
N4—Co—N2—C111.7 (2)N3—C12—C13—C141.3 (4)
N3—Co—N2—C1185.4 (2)C12—C13—C14—C151.0 (4)
C1—Co—N2—C1198.4 (2)C13—C14—C15—C161.5 (4)
O1—Co—N2—C785.37 (17)C12—N3—C16—C152.6 (3)
O2—Co—N2—C766.4 (4)Co—N3—C16—C15173.61 (19)
N1—Co—N2—C73.57 (17)C12—N3—C16—C17179.2 (2)
N4—Co—N2—C7179.45 (17)Co—N3—C16—C174.6 (2)
N3—Co—N2—C796.87 (17)C14—C15—C16—N30.3 (4)
C1—Co—N2—C779.34 (19)C14—C15—C16—C17178.3 (2)
O1—Co—N3—C12105.1 (4)C21—N4—C17—C181.0 (4)
O2—Co—N3—C1290.5 (2)Co—N4—C17—C18179.89 (19)
N1—Co—N3—C121.9 (2)C21—N4—C17—C16179.7 (2)
N4—Co—N3—C12179.8 (2)Co—N4—C17—C160.8 (3)
N2—Co—N3—C1285.4 (2)N3—C16—C17—N42.5 (3)
C1—Co—N3—C1290.7 (2)C15—C16—C17—N4175.6 (2)
O1—Co—N3—C1670.7 (4)N3—C16—C17—C18176.8 (2)
O2—Co—N3—C1685.28 (16)C15—C16—C17—C185.1 (4)
N1—Co—N3—C16177.70 (16)N4—C17—C18—C191.2 (4)
N4—Co—N3—C164.01 (16)C16—C17—C18—C19179.6 (2)
N2—Co—N3—C1698.84 (16)C17—C18—C19—C200.3 (4)
C1—Co—N3—C1685.06 (18)C18—C19—C20—C210.7 (4)
O1—Co—N4—C2113.4 (2)C17—N4—C21—C200.1 (4)
O2—Co—N4—C2182.6 (2)Co—N4—C21—C20178.68 (19)
N2—Co—N4—C2184.3 (2)C19—C20—C21—N41.0 (4)
N3—Co—N4—C21178.5 (2)O5—O5—C22—O40.0 (8)
C1—Co—N4—C2148.2 (2)O5—O5—C22—O40.0 (8)
O1—Co—N4—C17165.49 (16)O5—O5—C22—C230.0 (8)
O2—Co—N4—C1796.23 (17)O4—O4—C22—O50.0 (3)
N2—Co—N4—C1796.89 (17)O4—O4—C22—O50.0 (3)
N3—Co—N4—C172.61 (16)O4—O4—C22—C230.0 (5)
C1—Co—N4—C17130.59 (17)C24—N5—C23—C22142.9 (3)
Co—O2—C1—O3174.9 (2)O5—C22—C23—N5156.8 (3)
Co—O2—C1—O14.29 (19)O5—C22—C23—N5156.8 (3)
Co—O1—C1—O3174.9 (2)O4—C22—C23—N524.5 (4)
Co—O1—C1—O24.30 (19)O4—C22—C23—N524.5 (4)
O1—Co—C1—O2175.1 (2)O6—O6—C24—N50.0 (2)
N1—Co—C1—O294.21 (14)O6—O6—C24—C250.0 (3)
N4—Co—C1—O284.86 (14)C23—N5—C24—O69.6 (4)
N2—Co—C1—O2174.41 (13)C23—N5—C24—O69.6 (4)
N3—Co—C1—O20.40 (19)C23—N5—C24—C25169.8 (3)
O2—Co—C1—O1175.1 (2)O6—C24—C25—C27165.5 (3)
N1—Co—C1—O190.72 (14)O6—C24—C25—C27165.5 (3)
N4—Co—C1—O190.21 (14)N5—C24—C25—C2715.1 (4)
N2—Co—C1—O110.53 (18)O6—C24—C25—C2614.2 (4)
N3—Co—C1—O1174.67 (13)O6—C24—C25—C2614.2 (4)
C6—N1—C2—C31.9 (4)N5—C24—C25—C26165.1 (2)
Co—N1—C2—C3176.7 (2)C27—C25—C26—C27i0.5 (4)
N1—C2—C3—C42.4 (4)C24—C25—C26—C27i179.8 (2)
C2—C3—C4—C51.3 (5)C26—C25—C27—C26i0.5 (4)
C3—C4—C5—C60.2 (4)C24—C25—C27—C26i179.8 (2)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N2/C7–C11 ring.
D—H···AD—HH···AD···AD—H···A
O7—H7A···O60.85 (6)2.11 (6)2.944 (5)168 (5)
O7—H7B···O90.79 (7)2.02 (7)2.805 (5)170 (6)
O8—H8A···O50.79 (5)1.94 (5)2.722 (4)170 (5)
O9—H9A···O4ii0.86 (5)1.98 (6)2.831 (4)170 (4)
O9—H9B···O40.76 (5)2.07 (5)2.812 (4)165 (5)
N5—H5A···O8iii0.74 (4)2.16 (4)2.881 (4)163 (3)
C3—H3···O4iv0.94 (3)2.64 (3)3.203 (4)119 (2)
C15—H15···O50.96 (4)2.32 (4)3.264 (4)165 (3)
C20—H20···O6v0.90 (4)2.46 (4)3.162 (4)135 (3)
C14—H14···Cg2vi0.86 (4)2.59 (3)3.419 (3)160 (3)
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y, z+1; (vi) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N2/C7–C11 ring.
D—H···AD—HH···AD···AD—H···A
O7—H7A···O60.85 (6)2.11 (6)2.944 (5)168 (5)
O7—H7B···O90.79 (7)2.02 (7)2.805 (5)170 (6)
O8—H8A···O50.79 (5)1.94 (5)2.722 (4)170 (5)
O9—H9A···O4i0.86 (5)1.98 (6)2.831 (4)170 (4)
O9—H9B···O40.76 (5)2.07 (5)2.812 (4)165 (5)
N5—H5A···O8ii0.74 (4)2.16 (4)2.881 (4)163 (3)
C3—H3···O4iii0.94 (3)2.64 (3)3.203 (4)119 (2)
C15—H15···O50.96 (4)2.32 (4)3.264 (4)165 (3)
C20—H20···O6iv0.90 (4)2.46 (4)3.162 (4)135 (3)
C14—H14···Cg2v0.86 (4)2.59 (3)3.4191 (34)160 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x, y, z+1; (v) x, y, z+1.
C—H···π interactions (Å, °) top
Cg2 is the centroid of the N2/C7–C11 ring.
D—H···CgD—HH···CgD—H···CgD—H···Cg
C14viii—H14viii···Cg20.86 (4)2.59 (3)3.4191 (34)160 (3)
Symmetry codes: (viii) -x, -y, -z + 1.

References

First citationAllendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330–1352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBaca, S. G., Filippova, I. G., Ambrus, C., Gdaniec, M., Simonov, Y. A., Gerbeleu, N., Gherco, O. A. & Decurtins, S. (2005). Eur. J. Inorg. Chem. pp. 3118–3130.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCleaver, C. S. & Pratt, B. C. (1955). J. Am. Chem. Soc. 77, 1544–1546.  CrossRef CAS Web of Science Google Scholar
First citationCook, T. R., Zheng, Y.-R. & Stang, P. J. (2013). Chem. Rev. 113, 734–777.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDelgado Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2003). Solid State Sci. 5, 73–78.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. (2005). Chem. Commun. pp. 2995–3001.  Web of Science CrossRef Google Scholar
First citationDuan, J., Zheng, B., Bai, J., Zhang, Q. & Zuo, C. (2010). Inorg. Chim. Acta, 363, 3172–3177.  Web of Science CSD CrossRef CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKostakis, G. E., Casella, L., Boudalis, A. K., Monzani, E. & Plakatouras, J. C. (2011). New J. Chem. 35, 1060–1071.  Web of Science CSD CrossRef CAS Google Scholar
First citationKostakis, G. E., Casella, L., Hadjiliadis, N., Monzani, E., Kourkoumelis, N. & Plakatouras, J. C. (2005). Chem. Commun. 30, 3859–3861.  Web of Science CSD CrossRef Google Scholar
First citationLv, Y.-X., Ling, Y., Li, H. & Zhang, L. (2007). Acta Cryst. E63, m1906–m1907.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMa, P.-T., Wang, Y.-X., Zhang, G.-Q. & Li, M.-X. (2008). Acta Cryst. E64, m14.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210–1250.  Web of Science CrossRef CAS Google Scholar
First citationSalonen, L. M., Ellermann, M. & Diederich, F. (2011). Angew. Chem. Int. Ed. 50, 4808–4842.  Web of Science CrossRef CAS Google Scholar
First citationSchneider, H.-J. (2009). Angew. Chem. Int. Ed. 48, 3924–3977.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (1996). Crystallogr. Rev. 6, 1–51.  CrossRef CAS Google Scholar
First citationSteiner, T. (1997). Chem. Commun. pp. 727–734.  CrossRef Web of Science Google Scholar
First citationStoe (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWisser, B., Chamayou, A.-C., Miller, R., Scherer, W. & Janiak, C. (2008). CrystEngComm, 10, 461–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationWojciechowska, A. & Daszkiewicz, M. (2010). Acta Cryst. E66, e31.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYamada, T., Otsubo, K., Makiura, R. & Kitagawa, H. (2013). Chem. Soc. Rev. 42, 6655–6669.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, H.-T., Li, Y.-Z., Wang, T.-W., Nfor, E. N., Wang, H.-Q. & You, X.-Z. (2006). Eur. J. Inorg. Chem. pp. 3532–3536.  Web of Science CSD CrossRef Google Scholar
First citationZhang, H.-T. & You, X.-Z. (2005). Acta Cryst. E61, m1163–m1165.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m160-m161
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds