metal-organic compounds
Poly[diaquatris(μ6-4,6-dioxo-1,4,5,6-tetrahydro-1,3,5-triazine-2-carboxylato)tripotassium]
aLaboratoire de Chimie des Matériaux, Faculté des sciences de Bizerte, 7021 Zarzouna, Tunisie, bCristallographie, Résonance Magnétique et Modélisations (CRM2), UMR CNRS 7036, Institut Jean Barriol, Université de Lorraine, BP 70239, Bd des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France, and cUniversité Joseph Fourier, Institut Néel, CNRS, Département MCMF, 25 rue des Martyrs, 39042 Grenoble cedex 9, France
*Correspondence e-mail: cherif_bennasr@yahoo.fr
The 3(C4H2N3O4)3(H2O)2]n, contains two potassium cations (one in general position, one located on a twofold rotation axis), one and a half oxonate anions (the other half generated by twofold symmetry) and one water molecule. As a result of the twofold symmetry, one H atom of the symmetric anion is statistically occupied. Both potassium cations are surrounded by eight oxygen atoms in the form of distorted polyhedra. Adjacent cations are interconnected by oxygen bridges, generating layers parallel to (100). The aromatic ring system of the oxonate anions link these layers into a network structure. The crystal packing is stabilized by N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds, three of which are bifurcated. In addition, intermolecular π–π stacking interactions exist between neighboring aromatic rings with a centroid–centroid distance of 3.241 (2) Å.
of the title compound, [KCCDC reference: 995461
Related literature
For applications of metal-organic coordination materials, see: Yaghi et al. (2003); Janiak (2003); Lalart et al. (1981); Mori et al. (2005, 2006); Dybtsev et al. (2004). For studies and properties of oxonic acid, see: Lalart et al. (1981); Pancheva (1977); Cihak et al. (1968). For comparable interatomic distances in related structures, see: Sheldrick & Poonia (1986); Cuesta et al. (2003); Pike (1976). For π–π stacking interactions, see: Janiak (2000). For a multipolar atom model transfered from the ELMAM2 electron density database, see: Domagała et al. (2012). For fractal analysis of the residual electron density, see: Meindl & Henn (2008).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2012); cell SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: MoPro (Jelsch et al., 2005); program(s) used to refine structure: MoPro; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: MoPro.
Supporting information
CCDC reference: 995461
10.1107/S1600536814007569/wm5013sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814007569/wm5013Isup2.hkl
Potassium oxonate (4,6-dihydroxy-1,3,5-triazine-2-carboxylic acid potassium salt) was obtained as a commercially available salt (Aldrich, 97%) and was dissolved in a minimum amount of water at 323 K. The solution was slowly cooled in two days in an incubator from 323 K to 277 K. Crystals of the title compound could then be isolated after two days and were subjected to X-ray diffraction analysis.
After initial σ = 0.2°) were also applied to the C—N—H triplets. The H atoms were restrained to remain close to the planes of the oxonate moieties (σ = 0.03). The H atoms of the water molecule were refined using two O—H distance and one distance similarity restraints, and the target of the H—O—H angle was set to 105.0 (2)°. The fractal analysis of the residual electron density (Meindl & Henn, 2008) in Fig. 4 shows a more symmetric curve for the multipolar model, with notably a reduced shoulder on the positive side.
with SHELXL97, the structure was further refined with the program MoPro (Jelsch et al., 2005) using a multipolar atom model transfered from the ELMAM2 electron density database (Domagała et al., 2012). The R(F) factor improved from 4.3 to 3.4%. The residual difference electron density showed a positive/negative peak when the nitrogen atom N12_4 was modeled as deprotonated or fully protonated, respectively. Due to the twofold symmetry of this anion the hydrogen atom H12_4 was modelled with half-occupancy on the two crystallographically equivalent sites. The other H atom positions were refined using distance restraints; the target values were 1.01 (2) and 0.97 (2) Å for N—H and O—H bond lengths, respectively. In the oxonate moieties, angle similarity restraints (Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: MoPro (Jelsch et al., 2005); program(s) used to refine structure: MoPro (Jelsch et al., 2005); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: MoPro (Jelsch et al., 2005).Fig. 1. The basic structure units in the structure of (I), showing 50% probability displacement ellipsoids and spheres of arbitrary radius for the H atoms. [Symmetry code: (xii) -x + 1, y, -z + 1/2.] | |
Fig. 2. Projection of a layer in the crystal structure of (I) along the a-axis. Hydrogen bonds are shown as broken lines. | |
Fig. 3. Projection of the crystal structure of (I) along the b-axis. Hydrogen bonds are shown as broken lines. | |
Fig. 4. Fractal analysis of the Fourier residual electron density. Blue: spherical atom model; orange: transferred multipolar atom model. |
[K3(C4H2N3O4)3(H2O)2] | Z = 4 |
Mr = 310.77 | F(000) = 628 |
Monoclinic, P2/c | Dx = 2.013 Mg m−3 |
Hall symbol: -P 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0284 (2) Å | θ = 2.7–31.0° |
b = 7.6736 (2) Å | µ = 0.77 mm−1 |
c = 19.2668 (4) Å | T = 110 K |
β = 99.355 (2)° | Prism, colourless |
V = 1025.30 (5) Å3 | 0.16 × 0.13 × 0.07 mm |
Bruker APEXII CCD diffractometer | 2953 independent reflections |
Radiation source: fine-focus sealed tube | 2637 reflections with > 2.0σ(I) |
Mirror monochromator | Rint = 0.038 |
ω scans | θmax = 30.4°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −9→9 |
Tmin = 0.887, Tmax = 0.948 | k = 0→10 |
34196 measured reflections | l = 0→27 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.067 | Only H-atom coordinates refined |
S = 0.93 | w = 1/[σ2(Fo2) + (0.04P)2 + 0.5P] where P = (Fo2 + 2Fc2)/3 |
2953 reflections | (Δ/σ)max = 0.005 |
190 parameters | Δρmax = 0.50 e Å−3 |
14 restraints | Δρmin = −0.36 e Å−3 |
[K3(C4H2N3O4)3(H2O)2] | V = 1025.30 (5) Å3 |
Mr = 310.77 | Z = 4 |
Monoclinic, P2/c | Mo Kα radiation |
a = 7.0284 (2) Å | µ = 0.77 mm−1 |
b = 7.6736 (2) Å | T = 110 K |
c = 19.2668 (4) Å | 0.16 × 0.13 × 0.07 mm |
β = 99.355 (2)° |
Bruker APEXII CCD diffractometer | 2953 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | 2637 reflections with > 2.0σ(I) |
Tmin = 0.887, Tmax = 0.948 | Rint = 0.038 |
34196 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 14 restraints |
wR(F2) = 0.067 | Only H-atom coordinates refined |
S = 0.93 | Δρmax = 0.50 e Å−3 |
2953 reflections | Δρmin = −0.36 e Å−3 |
190 parameters |
Refinement. Refinement of F2 against reflections. The threshold expression of F2 > σ(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
K1_1 | 1.08353 (4) | 0.48766 (4) | 0.412084 (14) | 0.01245 (4) | |
K2_2 | 1 | 0.11136 (5) | 0.25000 | 0.01989 (6) | |
O8_3 | 1.45467 (13) | −0.43420 (12) | 0.40758 (5) | 0.01477 (13) | |
O9_3 | 1.76362 (13) | −0.39318 (12) | 0.45621 (5) | 0.01479 (13) | |
O10_3 | 1.88936 (13) | 0.20722 (12) | 0.47622 (5) | 0.01638 (13) | |
O11_3 | 1.25768 (13) | 0.18741 (12) | 0.37279 (5) | 0.01419 (13) | |
N1_3 | 1.41234 (15) | −0.07072 (14) | 0.40074 (5) | 0.00943 (13) | |
N3_3 | 1.73874 (15) | −0.05408 (13) | 0.45147 (5) | 0.00987 (14) | |
N5_3 | 1.57096 (15) | 0.20278 (14) | 0.42495 (5) | 0.00984 (14) | |
C2_3 | 1.57561 (17) | −0.14319 (16) | 0.42608 (6) | 0.00913 (16) | |
C4_3 | 1.74401 (17) | 0.12642 (15) | 0.45228 (6) | 0.01027 (16) | |
C6_3 | 1.40543 (17) | 0.11050 (16) | 0.39764 (6) | 0.00935 (15) | |
C7_3 | 1.59851 (17) | −0.34380 (16) | 0.43032 (6) | 0.00942 (16) | |
H3_3 | 1.8583 (19) | −0.121 (2) | 0.4729 (8) | 0.01180* | |
H5_3 | 1.559 (3) | 0.3346 (13) | 0.4231 (9) | 0.01177* | |
N12_4 | 0.66429 (16) | 0.65016 (15) | 0.27330 (6) | 0.01528 (15) | |
N14_4 | 0.50000 | 0.3866 (2) | 0.25000 | 0.0163 (2) | |
C13_4 | 0.50000 | 0.7302 (2) | 0.25000 | 0.0151 (3) | |
C15_4 | 0.6706 (2) | 0.46992 (18) | 0.27535 (7) | 0.01688 (19) | |
C5_4 | 0.50000 | 0.9310 (3) | 0.25000 | 0.0207 (3) | |
O16_4 | 0.34766 (19) | 1.00230 (15) | 0.22125 (6) | 0.0303 (2) | |
O17_4 | 0.81757 (16) | 0.38998 (15) | 0.29846 (6) | 0.03083 (18) | |
H14_4 | 0.50000 | 0.253 (2) | 0.25000 | 0.01920* | |
H12_4 | 0.7874 (15) | 0.7204 (7) | 0.287 (2) | 0.01819* | 0.50 |
O18_5 | 1.05599 (15) | 0.78304 (15) | 0.32766 (6) | 0.02606 (16) | |
H18A_5 | 1.173 (2) | 0.828 (3) | 0.3556 (10) | 0.03898* | |
H18B_5 | 0.953 (2) | 0.845 (3) | 0.3439 (10) | 0.03898* |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1_1 | 0.00912 (12) | 0.01238 (13) | 0.01537 (13) | 0.00076 (9) | 0.00058 (9) | 0.00085 (9) |
K2_2 | 0.0193 (2) | 0.01123 (18) | 0.0248 (2) | 0 | −0.00922 (16) | 0 |
O8_3 | 0.0112 (4) | 0.0094 (4) | 0.0229 (5) | −0.0023 (3) | 0.0001 (3) | −0.0009 (4) |
O9_3 | 0.0117 (4) | 0.0102 (4) | 0.0209 (4) | 0.0021 (3) | −0.0020 (3) | 0.0011 (3) |
O10_3 | 0.0091 (4) | 0.0102 (4) | 0.0273 (5) | −0.0019 (3) | −0.0046 (3) | 0.0019 (4) |
O11_3 | 0.0112 (4) | 0.0110 (4) | 0.0184 (4) | 0.0029 (3) | −0.0034 (3) | −0.0010 (3) |
N1_3 | 0.0074 (4) | 0.0077 (4) | 0.0124 (4) | 0.0005 (4) | −0.0009 (3) | 0.0000 (4) |
N3_3 | 0.0073 (4) | 0.0069 (4) | 0.0145 (5) | −0.0002 (3) | −0.0012 (4) | 0.0007 (4) |
N5_3 | 0.0078 (4) | 0.0076 (5) | 0.0131 (4) | 0.0005 (4) | −0.0014 (4) | 0.0007 (4) |
C2_3 | 0.0076 (5) | 0.0069 (5) | 0.0122 (5) | −0.0010 (4) | −0.0004 (4) | −0.0007 (4) |
C4_3 | 0.0079 (5) | 0.0065 (5) | 0.0155 (5) | 0.0002 (4) | −0.0008 (4) | 0.0008 (4) |
C6_3 | 0.0078 (5) | 0.0087 (5) | 0.0109 (5) | −0.0001 (4) | −0.0005 (4) | −0.0006 (4) |
C7_3 | 0.0086 (5) | 0.0062 (5) | 0.0132 (5) | −0.0002 (4) | 0.0013 (4) | −0.0002 (4) |
N12_4 | 0.0117 (5) | 0.0110 (5) | 0.0231 (5) | −0.0020 (4) | 0.0024 (4) | −0.0021 (4) |
N14_4 | 0.0195 (8) | 0.0079 (7) | 0.0186 (7) | 0 | −0.0051 (6) | 0 |
C13_4 | 0.0180 (9) | 0.0093 (8) | 0.0198 (8) | 0 | 0.0090 (7) | 0 |
C15_4 | 0.0156 (6) | 0.0120 (6) | 0.0200 (6) | 0.0032 (5) | −0.0062 (5) | −0.0028 (5) |
C5_4 | 0.0336 (11) | 0.0083 (8) | 0.0244 (9) | 0 | 0.0178 (8) | 0 |
O16_4 | 0.0455 (7) | 0.0169 (5) | 0.0337 (6) | 0.0130 (5) | 0.0218 (5) | 0.0081 (4) |
O17_4 | 0.0267 (6) | 0.0269 (6) | 0.0325 (6) | 0.0161 (5) | −0.0144 (5) | −0.0108 (5) |
O18_5 | 0.0161 (5) | 0.0236 (5) | 0.0345 (6) | −0.0058 (4) | −0.0076 (4) | 0.0098 (4) |
K1_1—K1_1i | 3.7662 (3) | N1_3—C2_3 | 1.297 (2) |
K1_1—K2_2ii | 4.2236 (3) | N3_3—C4_3 | 1.386 (2) |
K1_1—O17_4 | 2.7419 (9) | N3_3—C2_3 | 1.356 (2) |
K1_1—O11_3 | 2.7714 (7) | N3_3—H3_3 | 1.015 (19) |
K1_1—O18_5 | 2.7782 (9) | N5_3—C4_3 | 1.375 (2) |
K1_1—O10_3iii | 2.9272 (7) | N5_3—C6_3 | 1.390 (2) |
K1_1—O10_3iv | 3.1649 (6) | N5_3—H5_3 | 1.015 (19) |
K1_1—O9_3v | 2.6893 (6) | C2_3—C7_3 | 1.549 (2) |
K1_1—O9_3vi | 2.6893 (6) | N12_4—C15_4 | 1.384 (2) |
K2_2—O17_4 | 2.7342 (9) | N12_4—C13_4 | 1.320 (2) |
K2_2—O11_3 | 2.7972 (7) | N12_4—H12_4 | 1.016 (18) |
K2_2—O16_4vii | 2.7236 (9) | N14_4—C15_4 | 1.376 (2) |
K1_1—O8_3viii | 2.6916 (6) | N14_4—C15_4xii | 1.376 (2) |
K2_2—O18_5ix | 2.9240 (6) | N14_4—H14_4 | 1.03 (3) |
K2_2—O18_5x | 2.9240 (6) | C13_4—N12_4xii | 1.320 (2) |
K2_2—O17_4ii | 2.7342 (9) | C13_4—C5_4 | 1.541 (3) |
K2_2—O11_3ii | 2.7972 (6) | C15_4—O17_4 | 1.222 (3) |
O8_3—C7_3 | 1.246 (2) | C5_4—O16_4 | 1.249 (2) |
O9_3—C7_3 | 1.245 (2) | C5_4—O16_4xii | 1.249 (2) |
O10_3—K1_1xi | 2.9272 (7) | O16_4—K2_2xiii | 2.7236 (9) |
O10_3—C4_3 | 1.220 (2) | O17_4—K1_1 | 2.7419 (9) |
O11_3—K1_1 | 2.7714 (7) | O17_4—K2_2 | 2.7342 (9) |
O11_3—K2_2 | 2.7972 (7) | O18_5—K1_1 | 2.7782 (9) |
O11_3—C6_3 | 1.222 (2) | O18_5—H18B_5 | 0.96 (3) |
N1_3—C6_3 | 1.392 (2) | O18_5—H18A_5 | 0.97 (3) |
O17_4—K1_1—O11_3 | 80.13 (3) | C6_3—N5_3—H5_3 | 116 (4) |
O17_4—K1_1—O18_5 | 77.41 (3) | C15_4—N12_4—C13_4 | 119.8 (2) |
O17_4—K1_1—O10_3iii | 80.33 (3) | C15_4—N12_4—H12_4 | 120 (1) |
O11_3—K1_1—O18_5 | 120.67 (3) | C13_4—N12_4—H12_4 | 120 (1) |
O11_3—K1_1—O10_3iii | 76.18 (4) | C15_4—N14_4—C15_4xii | 124.6 (5) |
O18_5—K1_1—O10_3iii | 148.7 (2) | C15_4—N14_4—H14_4 | 117.7 (2) |
O17_4—K2_2—O11_3 | 79.81 (4) | C15_4xii—N14_4—H14_4 | 117.7 (2) |
O17_4—K2_2—O16_4vii | 71.63 (4) | N12_4xii—C13_4—C5_4 | 117.7 (4) |
O11_3—K2_2—O16_4vii | 111.78 (4) | O17_4—C15_4—N14_4 | 122.2 (5) |
K1_1xi—O10_3—C4_3 | 129.30 (5) | O17_4—C15_4—N12_4 | 122.2 (5) |
C6_3—N1_3—C2_3 | 117.8 (4) | O16_4—C5_4—O16_4xii | 128.0 (6) |
C4_3—N3_3—C2_3 | 121.8 (4) | O16_4—C5_4—C13_4 | 115.98 (11) |
C4_3—N3_3—H3_3 | 118.9 (9) | O16_4xii—C5_4—C13_4 | 116.0 (5) |
C2_3—N3_3—H3_3 | 119.2 (9) | K2_2xiii—O16_4—C5_4 | 141.0 (2) |
C4_3—N5_3—C6_3 | 124.2 (4) | H18B_5—O18_5—H18A_5 | 105 (5) |
C4_3—N5_3—H5_3 | 120 (4) | ||
K1_1—O17_4—K2_2—O11_3 | 5.20 (14) | N1_3—C6_3—N5_3—C4_3 | 2.8 (3) |
K1_1—O17_4—C15_4—N14_4 | −141.9 (5) | N1_3—C6_3—N5_3—H5_3 | −178.2 (7) |
K1_1—O17_4—C15_4—N12_4 | 37.7 (3) | N1_3—C2_3—N3_3—C4_3 | −0.1 (3) |
K1_1—O11_3—K2_2—O17_4 | −5.11 (14) | N1_3—C2_3—N3_3—H3_3 | 177 (2) |
K1_1—O11_3—C6_3—N5_3 | −38.9 (3) | N3_3—C4_3—N5_3—C6_3 | −1.1 (3) |
K1_1—O11_3—C6_3—N1_3 | 139.8 (5) | N3_3—C4_3—N5_3—H5_3 | 180 (2) |
K2_2—O17_4—K1_1—O11_3 | −5.25 (14) | N3_3—C2_3—N1_3—C6_3 | 1.8 (3) |
K2_2—O17_4—K1_1—O18_5 | 119.46 (17) | N5_3—C4_3—N3_3—C2_3 | −0.3 (3) |
K2_2—O17_4—C15_4—N14_4 | 47.3 (3) | N5_3—C4_3—N3_3—H3_3 | −177 (2) |
K2_2—O17_4—C15_4—N12_4 | −133.1 (5) | N5_3—C6_3—N1_3—C2_3 | −3.1 (3) |
K2_2—O11_3—K1_1—O17_4 | 5.09 (14) | C4_3—N3_3—C2_3—C7_3 | −179.5 (3) |
K2_2—O11_3—K1_1—O18_5 | −63.78 (12) | C6_3—O11_3—K1_1—O17_4 | −177.7 (3) |
K2_2—O11_3—C6_3—N5_3 | 137.5 (4) | C6_3—O11_3—K1_1—O18_5 | 113.4 (4) |
K2_2—O11_3—C6_3—N1_3 | −43.7 (3) | C6_3—O11_3—K2_2—O17_4 | 177.5 (3) |
O8_3—C7_3—C2_3—N3_3 | −179.6 (2) | C6_3—N1_3—C2_3—C7_3 | −178.8 (2) |
O8_3—C7_3—C2_3—N1_3 | 0.9 (3) | C7_3—C2_3—N3_3—H3_3 | −3 (4) |
O9_3—C7_3—C2_3—N3_3 | −0.2 (4) | N12_4—C15_4—N14_4—H14_4 | 179.05 (3) |
O9_3—C7_3—C2_3—N1_3 | −179.7 (4) | N12_4—C13_4—C5_4—O16_4 | 173.1 (3) |
O10_3—C4_3—N5_3—C6_3 | 179.966 (4) | N14_4—C15_4—N12_4—C13_4 | 1.9 (4) |
O10_3—C4_3—N5_3—H5_3 | 1 (4) | N14_4—C15_4—N12_4—H12_4 | −174 (3) |
O10_3—C4_3—N3_3—C2_3 | 178.64 (8) | C13_4—N12_4—C15_4—O17_4 | −177.7 (3) |
O10_3—C4_3—N3_3—H3_3 | 2 (4) | C15_4—O17_4—K1_1—O18_5 | −53.7 (5) |
O11_3—K1_1—O17_4—C15_4 | −178.4 (3) | C15_4—N12_4—C13_4—C5_4 | 178.97 (10) |
O11_3—K1_1—O18_5—H18B_5 | 159.5 (3) | C5_4—C13_4—N12_4—H12_4 | −5.2 (7) |
O11_3—K1_1—O18_5—H18A_5 | −95 (4) | O17_4—K1_1—O18_5—H18B_5 | 89 (3) |
O11_3—K2_2—O17_4—C15_4 | 177.5 (3) | O17_4—K1_1—O18_5—H18A_5 | −166 (2) |
O11_3—C6_3—N5_3—C4_3 | −178.4 (2) | O17_4—C15_4—N14_4—H14_4 | −1.3 (3) |
O11_3—C6_3—N5_3—H5_3 | 1 (4) | O17_4—C15_4—N12_4—H12_4 | 6.4 (8) |
O11_3—C6_3—N1_3—C2_3 | 178.2 (3) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, y, −z+1/2; (iii) x−1, y, z; (iv) −x+3, −y+1, −z+1; (v) −x+3, −y, −z+1; (vi) x−1, y+1, z; (vii) −x+1, y−1, −z+1/2; (viii) x, y+1, z; (ix) x, y−1, z; (x) −x+2, y−1, −z+1/2; (xi) x+1, y, z; (xii) −x+1, y, −z+1/2; (xiii) −x+1, y+1, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3_3—H3_3···O9_3 | 1.02 (1) | 2.20 (1) | 2.6086 (7) | 102 (1) |
N5_3—H5_3···O8_3viii | 1.02 (1) | 1.93 (1) | 2.9070 (7) | 162 (1) |
N5_3—H5_3···O9_3viii | 1.02 (1) | 2.56 (1) | 3.3977 (6) | 140 (1) |
N12_4—H12_4···O18_5 | 1.016 (5) | 1.984 (8) | 2.9628 (7) | 160.9 (4) |
N12_4—H12_4···O18_5ii | 1.016 (5) | 2.659 (9) | 3.1515 (8) | 110 (2) |
N14_4—H14_4···O16_4ix | 1.03 (1) | 2.23 (1) | 3.1553 (6) | 150 (2) |
N14_4—H14_4···O16_4vii | 1.03 (1) | 2.23 (1) | 3.1553 (7) | 150 (2) |
O18_5—H18B_5···O16_4xii | 0.96 (1) | 2.58 (1) | 3.3013 (8) | 133 (2) |
O18_5—H18A_5···N1_3viii | 0.97 (1) | 1.93 (1) | 2.8927 (9) | 173 (1) |
Symmetry codes: (ii) −x+2, y, −z+1/2; (vii) −x+1, y−1, −z+1/2; (viii) x, y+1, z; (ix) x, y−1, z; (xii) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3_3—H3_3···O9_3 | 1.015 (5) | 2.198 (8) | 2.6086 (7) | 102.(1) |
N5_3—H5_3···O8_3i | 1.015 (5) | 1.926 (9) | 2.9070 (7) | 161.8 (6) |
N5_3—H5_3···O9_3i | 1.015 (5) | 2.556 (8) | 3.3977 (6) | 140.(1) |
N12_4—H12_4···O18_5 | 1.016 (5) | 1.984 (8) | 2.9628 (7) | 160.9 (4) |
N12_4—H12_4···O18_5ii | 1.016 (5) | 2.659 (9) | 3.1515 (8) | 110.(2) |
N14_4—H14_4···O16_4iii | 1.026 (9) | 2.227 (8) | 3.1553 (6) | 150.(2) |
N14_4—H14_4···O16_4iv | 1.026 (9) | 2.227 (9) | 3.1553 (7) | 150.(2) |
O18_5—H18B_5···O16_4v | 0.956 (9) | 2.579 (9) | 3.3013 (8) | 133.(2) |
O18_5—H18A_5···N1_3i | 0.971 (8) | 1.926 (8) | 2.8927 (9) | 173.3 (3) |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, y, −z+1/2; (iii) x, y−1, z; (iv) −x+1, y−1, −z+1/2; (v) −x+1, y, −z+1/2. |
Acknowledgements
We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.
References
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cihak, A., Vesely, J. & Sorm, F. (1968). Collect. Czech. Chem. Commun. 33, 1778–1781. CAS Google Scholar
Cuesta, R., Glidewell, C., López, R. & Low, J. N. (2003). Acta Cryst. C59, m315–m318. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Domagała, S., Fournier, B., Liebschner, D., Guillot, B. & Jelsch, C. (2012). Acta Cryst. A68, 337–351. Web of Science CrossRef IUCr Journals Google Scholar
Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc. 126, 32–33. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Janiak, C. (2003). Dalton Trans. pp. 2781–2804. Web of Science CrossRef Google Scholar
Jelsch, C., Guillot, B., Lagoutte, A. & Lecomte, C. (2005). J. Appl. Cryst. 38, 38–54. Web of Science CrossRef IUCr Journals Google Scholar
Lalart, D., Dodin, G. & Dubois, J.-E. (1981). J. Inorg. Nucl. Chem. 43, 2429–2432. CrossRef CAS Web of Science Google Scholar
Meindl, K. & Henn, J. (2008). Acta Cryst. A64, 404–418. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mori, F., Nyui, T., Ishida, T., Nogami, T., Choi, K.-Y. & Nojiri, H. (2006). J. Am. Chem. Soc. 128, 1440–1441. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mori, W., Sato, T., Ohmura, T., Kato, C. N. & Takei, T. (2005). J. Solid State Chem. 178, 2555–2573. Web of Science CrossRef CAS Google Scholar
Pancheva, S. (1977). Acta Microbiol. Virol. Immunol. (Sofiia), 6, 55–62. CAS PubMed Google Scholar
Pike, R. K. (1976). Magn. Reson. Chem. 6, 224–225. Google Scholar
Sheldrick, W. S. & Poonia, N. S. (1986). J. Incl. Phenom. Macrocyclic Chem. 4, 93–98. CSD CrossRef CAS Web of Science Google Scholar
Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705–714. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Oxonic acid has antibacterial and antiviral properties (Pancheva, 1977); it is a competitive inhibitor of pyrimidine biosynthesis (Cihak et al., 1968) and occupies an unique biologic position by being the only effective precursor in the biosynthesis. Besides being biologically important, oxonic acid has also been of interest in coordination and supramolecular chemistry. Despite its importance in biochemistry, physical chemistry studies of oxonic acid are rare, probably due to its low solubility and, particularly, to the instability of oxonic acid solutions which easily decarboxylate into 5-azauracil. The study of the kinetics of metal-oxonic acid decarboxylation has been conducted some time ago (Lalart et al., 1981).
In recent years, much attention has been paid for crystal engineering of metal-organic coordination compounds (Yaghi et al., 2003). This arises not only from fundamental properties of these materials, such as their intriguing topological frameworks, but also from their unexpected potential applications in various fields such as engineering, device manufacturing or materials science (Janiak, 2003; Mori et al., 2005, 2006; Dybtsev et al., 2004).
As a contribution to the investigation of the above materials, we report here the crystal structure of the hydrated potassium salt of oxonic acid, K3(C4H2N3O4)3.2H2O, (I).
The asymmetric unit of the structure of (I) contains two potassium cations (one in general position, one located on a twofold rotation axis), one water molecule and one and a half molecules of the oxonic acid anion (1,4,5,6-tetrahydro-4,6-dioxo-1,3,5-triazine-2-carboxylate), the second half completed by a twofold rotation axis (Fig. 1). Due to symmetry, one hydrogen atom (H12_4) of this anion is equally disordered between two equivalent sites. The two potassium cations are octa-coordinated to oxygen atoms in the form of distorted cubic antiprisms. The coordination environment of K1_1 is defined by three oxygen atoms of carboxylate groups, four oxygen atoms of carbonyl groups and one oxygen atom of the water molecule. K2_2 is surrounded by four oxygen atoms of carbonyl groups, two oxygen atoms of carboxyl groups and two oxygen atoms of water molecules. Each K1_1 potassium atom shares four bridging oxygen atoms (O9_3v, O9_3vi, O10_3iii and O10_3iv) with a symmetry-related cation K1_1i, and two bridging oxygen atoms (O11_3 and O17_4) with the potassium cation K2_2 (for symmetry codes, see Table). The K—O distances, ranging from 2.6893 (6) to 3.1649 (6) Å are similar than in related potassium complexes (Sheldrick & Poonia, 1986).
The K1_1—K1_1i and K1_1—K2_2 distances are 3.7662 (3) and 4.2236 (3) Å respectively, also in good agreement with related structures (Cuesta et al., 2003). The potassium cations are connected by oxygen bridges to form layers parallel to (100) (Fig. 2). Between two adjacent layers, located at x ≈ 0, are inserted the aromatic rings and are linked through N—H···O and O—H···N hydrogen bonds into a three-dimensional network (Fig. 3). Among these hydrogen bonds, three are bifurcated: N14_4—H14_4···(O16_4i, O16_4iii), N12_4—H12_4···(O18_5, O18_5v) and N5_3—H5_3···(O8_3ii, O9_3ii) (details and symmetry codes in Table 1).
In the organic anion the N—C distances spread between 1.297 (2) and 1.392 (2) Å, clearly indicating π-electron delocalization over the C3N3 ring. The shortest N1_3-C2_3 distance, involving the deprotonated nitrogen atom, has the strongest double bond character. The N12_4—C13_4 bond involving the half-protonated nitrogen atom has an intermediary length of 1.320 (2) Å compared to N1—C2 (1.297 (2) Å) and N3—C2 (1.356 (2) Å). All in all, the interatomic distances and the bond angles have their usual values (Pike, 1976).
In addition, intermolecular π···π stacking interactions exist between neighboring aromatic rings with a centroid-to-centroid distance of 3.241 (2) Å, which is less than 3.8 Å, the maximum value regarded as relevant for such stacking interactions (Janiak, 2000).