metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m174-m175

Poly[di­aquatris(μ6-4,6-dioxo-1,4,5,6-tetra­hydro-1,3,5-triazine-2-carboxylato)tripotassium]

aLaboratoire de Chimie des Matériaux, Faculté des sciences de Bizerte, 7021 Zarzouna, Tunisie, bCristallographie, Résonance Magnétique et Modélisations (CRM2), UMR CNRS 7036, Institut Jean Barriol, Université de Lorraine, BP 70239, Bd des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France, and cUniversité Joseph Fourier, Institut Néel, CNRS, Département MCMF, 25 rue des Martyrs, 39042 Grenoble cedex 9, France
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 13 March 2014; accepted 4 April 2014; online 9 April 2014)

The asymmetric unit of the title compound, [K3(C4H2N3O4)3(H2O)2]n, contains two potassium cations (one in general position, one located on a twofold rotation axis), one and a half oxonate anions (the other half generated by twofold symmetry) and one water mol­ecule. As a result of the twofold symmetry, one H atom of the symmetric anion is statistically occupied. Both potassium cations are surrounded by eight oxygen atoms in the form of distorted polyhedra. Adjacent cations are inter­connected by oxygen bridges, generating layers parallel to (100). The aromatic ring system of the oxonate anions link these layers into a network structure. The crystal packing is stabilized by N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds, three of which are bifurcated. In addition, inter­molecular ππ stacking inter­actions exist between neighboring aromatic rings with a centroid–centroid distance of 3.241 (2) Å.

Related literature

For applications of metal-organic coordination materials, see: Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705-714.]); Janiak (2003[Janiak, C. (2003). Dalton Trans. pp. 2781-2804.]); Lalart et al. (1981[Lalart, D., Dodin, G. & Dubois, J.-E. (1981). J. Inorg. Nucl. Chem. 43, 2429-2432.]); Mori et al. (2005[Mori, W., Sato, T., Ohmura, T., Kato, C. N. & Takei, T. (2005). J. Solid State Chem. 178, 2555-2573.], 2006[Mori, F., Nyui, T., Ishida, T., Nogami, T., Choi, K.-Y. & Nojiri, H. (2006). J. Am. Chem. Soc. 128, 1440-1441.]); Dybtsev et al. (2004[Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc. 126, 32-33.]). For studies and properties of oxonic acid, see: Lalart et al. (1981[Lalart, D., Dodin, G. & Dubois, J.-E. (1981). J. Inorg. Nucl. Chem. 43, 2429-2432.]); Pancheva (1977[Pancheva, S. (1977). Acta Microbiol. Virol. Immunol. (Sofiia), 6, 55-62.]); Cihak et al. (1968[Cihak, A., Vesely, J. & Sorm, F. (1968). Collect. Czech. Chem. Commun. 33, 1778-1781.]). For comparable inter­atomic distances in related structures, see: Sheldrick & Poonia (1986[Sheldrick, W. S. & Poonia, N. S. (1986). J. Incl. Phenom. Macrocyclic Chem. 4, 93-98.]); Cuesta et al. (2003[Cuesta, R., Glidewell, C., López, R. & Low, J. N. (2003). Acta Cryst. C59, m315-m318.]); Pike (1976[Pike, R. K. (1976). Magn. Reson. Chem. 6, 224-225.]). For ππ stacking inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For a multipolar atom model transfered from the ELMAM2 electron density database, see: Domagała et al. (2012[Domagała, S., Fournier, B., Liebschner, D., Guillot, B. & Jelsch, C. (2012). Acta Cryst. A68, 337-351.]). For fractal analysis of the residual electron density, see: Meindl & Henn (2008[Meindl, K. & Henn, J. (2008). Acta Cryst. A64, 404-418.]).

[Scheme 1]

Experimental

Crystal data
  • [K3(C4H2N3O4)3(H2O)2]

  • Mr = 621.55

  • Monoclinic, P 2/c

  • a = 7.0284 (2) Å

  • b = 7.6736 (2) Å

  • c = 19.2668 (4) Å

  • β = 99.355 (2)°

  • V = 1025.30 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 110 K

  • 0.16 × 0.13 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.887, Tmax = 0.948

  • 34196 measured reflections

  • 2953 independent reflections

  • 2637 reflections with > 2.0σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.067

  • S = 0.93

  • 2953 reflections

  • 190 parameters

  • 14 restraints

  • Only H-atom coordinates refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3_3—H3_3⋯O9_3 1.02 (1) 2.20 (1) 2.6086 (7) 102 (1)
N5_3—H5_3⋯O8_3i 1.02 (1) 1.93 (1) 2.9070 (7) 162 (1)
N5_3—H5_3⋯O9_3i 1.02 (1) 2.56 (1) 3.3977 (6) 140 (1)
N12_4—H12_4⋯O18_5 1.016 (5) 1.984 (8) 2.9628 (7) 160.9 (4)
N12_4—H12_4⋯O18_5ii 1.016 (5) 2.659 (9) 3.1515 (8) 110 (2)
N14_4—H14_4⋯O16_4iii 1.03 (1) 2.23 (1) 3.1553 (6) 150 (2)
N14_4—H14_4⋯O16_4iv 1.03 (1) 2.23 (1) 3.1553 (7) 150 (2)
O18_5—H18B_5⋯O16_4v 0.96 (1) 2.58 (1) 3.3013 (8) 133 (2)
O18_5—H18A_5⋯N1_3i 0.97 (1) 1.93 (1) 2.8927 (9) 173 (1)
Symmetry codes: (i) x, y+1, z; (ii) [-x+2, y, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [-x+1, y-1, -z+{\script{1\over 2}}]; (v) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: MoPro (Jelsch et al., 2005[Jelsch, C., Guillot, B., Lagoutte, A. & Lecomte, C. (2005). J. Appl. Cryst. 38, 38-54.]); program(s) used to refine structure: MoPro; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: MoPro.

Supporting information


Comment top

Oxonic acid has antibacterial and antiviral properties (Pancheva, 1977); it is a competitive inhibitor of pyrimidine biosynthesis (Cihak et al., 1968) and occupies an unique biologic position by being the only effective precursor in the biosynthesis. Besides being biologically important, oxonic acid has also been of interest in coordination and supramolecular chemistry. Despite its importance in biochemistry, physical chemistry studies of oxonic acid are rare, probably due to its low solubility and, particularly, to the instability of oxonic acid solutions which easily decarboxylate into 5-azauracil. The study of the kinetics of metal-oxonic acid decarboxylation has been conducted some time ago (Lalart et al., 1981).

In recent years, much attention has been paid for crystal engineering of metal-organic coordination compounds (Yaghi et al., 2003). This arises not only from fundamental properties of these materials, such as their intriguing topological frameworks, but also from their unexpected potential applications in various fields such as engineering, device manufacturing or materials science (Janiak, 2003; Mori et al., 2005, 2006; Dybtsev et al., 2004).

As a contribution to the investigation of the above materials, we report here the crystal structure of the hydrated potassium salt of oxonic acid, K3(C4H2N3O4)3.2H2O, (I).

The asymmetric unit of the structure of (I) contains two potassium cations (one in general position, one located on a twofold rotation axis), one water molecule and one and a half molecules of the oxonic acid anion (1,4,5,6-tetrahydro-4,6-dioxo-1,3,5-triazine-2-carboxylate), the second half completed by a twofold rotation axis (Fig. 1). Due to symmetry, one hydrogen atom (H12_4) of this anion is equally disordered between two equivalent sites. The two potassium cations are octa-coordinated to oxygen atoms in the form of distorted cubic antiprisms. The coordination environment of K1_1 is defined by three oxygen atoms of carboxylate groups, four oxygen atoms of carbonyl groups and one oxygen atom of the water molecule. K2_2 is surrounded by four oxygen atoms of carbonyl groups, two oxygen atoms of carboxyl groups and two oxygen atoms of water molecules. Each K1_1 potassium atom shares four bridging oxygen atoms (O9_3v, O9_3vi, O10_3iii and O10_3iv) with a symmetry-related cation K1_1i, and two bridging oxygen atoms (O11_3 and O17_4) with the potassium cation K2_2 (for symmetry codes, see Table). The K—O distances, ranging from 2.6893 (6) to 3.1649 (6) Å are similar than in related potassium complexes (Sheldrick & Poonia, 1986).

The K1_1—K1_1i and K1_1—K2_2 distances are 3.7662 (3) and 4.2236 (3) Å respectively, also in good agreement with related structures (Cuesta et al., 2003). The potassium cations are connected by oxygen bridges to form layers parallel to (100) (Fig. 2). Between two adjacent layers, located at x 0, are inserted the aromatic rings and are linked through N—H···O and O—H···N hydrogen bonds into a three-dimensional network (Fig. 3). Among these hydrogen bonds, three are bifurcated: N14_4—H14_4···(O16_4i, O16_4iii), N12_4—H12_4···(O18_5, O18_5v) and N5_3—H5_3···(O8_3ii, O9_3ii) (details and symmetry codes in Table 1).

In the organic anion the N—C distances spread between 1.297 (2) and 1.392 (2) Å, clearly indicating π-electron delocalization over the C3N3 ring. The shortest N1_3-C2_3 distance, involving the deprotonated nitrogen atom, has the strongest double bond character. The N12_4—C13_4 bond involving the half-protonated nitrogen atom has an intermediary length of 1.320 (2) Å compared to N1—C2 (1.297 (2) Å) and N3—C2 (1.356 (2) Å). All in all, the interatomic distances and the bond angles have their usual values (Pike, 1976).

In addition, intermolecular π···π stacking interactions exist between neighboring aromatic rings with a centroid-to-centroid distance of 3.241 (2) Å, which is less than 3.8 Å, the maximum value regarded as relevant for such stacking interactions (Janiak, 2000).

Related literature top

For applications of metal-organic coordination materials, see: Yaghi et al. (2003); Janiak (2003); Lalart et al. (1981); Mori et al. (2005, 2006); Dybtsev et al. (2004). For studies and properties of oxonic acid, see: Lalart et al. (1981); Pancheva (1977); Cihak et al. (1968). For comparable interatomic distances in related structures, see: Sheldrick & Poonia (1986); Cuesta et al. (2003); Pike (1976). For ππ stacking interactions, see: Janiak (2000). For a multipolar atom model transfered from the ELMAM2 electron density database, see: Domagała et al. (2012). For fractal analysis of the residual electron density, see: Meindl & Henn (2008).

Experimental top

Potassium oxonate (4,6-dihydroxy-1,3,5-triazine-2-carboxylic acid potassium salt) was obtained as a commercially available salt (Aldrich, 97%) and was dissolved in a minimum amount of water at 323 K. The solution was slowly cooled in two days in an incubator from 323 K to 277 K. Crystals of the title compound could then be isolated after two days and were subjected to X-ray diffraction analysis.

Refinement top

After initial refinement with SHELXL97, the structure was further refined with the program MoPro (Jelsch et al., 2005) using a multipolar atom model transfered from the ELMAM2 electron density database (Domagała et al., 2012). The R(F) factor improved from 4.3 to 3.4%. The residual difference electron density showed a positive/negative peak when the nitrogen atom N12_4 was modeled as deprotonated or fully protonated, respectively. Due to the twofold symmetry of this anion the hydrogen atom H12_4 was modelled with half-occupancy on the two crystallographically equivalent sites. The other H atom positions were refined using distance restraints; the target values were 1.01 (2) and 0.97 (2) Å for N—H and O—H bond lengths, respectively. In the oxonate moieties, angle similarity restraints (σ = 0.2°) were also applied to the C—N—H triplets. The H atoms were restrained to remain close to the planes of the oxonate moieties (σ = 0.03). The H atoms of the water molecule were refined using two O—H distance and one distance similarity restraints, and the target of the H—O—H angle was set to 105.0 (2)°. The fractal analysis of the residual electron density (Meindl & Henn, 2008) in Fig. 4 shows a more symmetric curve for the multipolar model, with notably a reduced shoulder on the positive side.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: MoPro (Jelsch et al., 2005); program(s) used to refine structure: MoPro (Jelsch et al., 2005); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: MoPro (Jelsch et al., 2005).

Figures top
[Figure 1] Fig. 1. The basic structure units in the structure of (I), showing 50% probability displacement ellipsoids and spheres of arbitrary radius for the H atoms. [Symmetry code: (xii) -x + 1, y, -z + 1/2.]
[Figure 2] Fig. 2. Projection of a layer in the crystal structure of (I) along the a-axis. Hydrogen bonds are shown as broken lines.
[Figure 3] Fig. 3. Projection of the crystal structure of (I) along the b-axis. Hydrogen bonds are shown as broken lines.
[Figure 4] Fig. 4. Fractal analysis of the Fourier residual electron density. Blue: spherical atom model; orange: transferred multipolar atom model.
Poly[diaquatris(µ6-4,6-dioxo-1,4,5,6-tetrahydro-1,3,5-triazine-2-carboxylato)tripotassium] top
Crystal data top
[K3(C4H2N3O4)3(H2O)2]Z = 4
Mr = 310.77F(000) = 628
Monoclinic, P2/cDx = 2.013 Mg m3
Hall symbol: -P 2ycMo Kα radiation, λ = 0.71073 Å
a = 7.0284 (2) Åθ = 2.7–31.0°
b = 7.6736 (2) ŵ = 0.77 mm1
c = 19.2668 (4) ÅT = 110 K
β = 99.355 (2)°Prism, colourless
V = 1025.30 (5) Å30.16 × 0.13 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
2953 independent reflections
Radiation source: fine-focus sealed tube2637 reflections with > 2.0σ(I)
Mirror monochromatorRint = 0.038
ω scansθmax = 30.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 99
Tmin = 0.887, Tmax = 0.948k = 010
34196 measured reflectionsl = 027
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.067Only H-atom coordinates refined
S = 0.93 w = 1/[σ2(Fo2) + (0.04P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
2953 reflections(Δ/σ)max = 0.005
190 parametersΔρmax = 0.50 e Å3
14 restraintsΔρmin = 0.36 e Å3
Crystal data top
[K3(C4H2N3O4)3(H2O)2]V = 1025.30 (5) Å3
Mr = 310.77Z = 4
Monoclinic, P2/cMo Kα radiation
a = 7.0284 (2) ŵ = 0.77 mm1
b = 7.6736 (2) ÅT = 110 K
c = 19.2668 (4) Å0.16 × 0.13 × 0.07 mm
β = 99.355 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2953 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2637 reflections with > 2.0σ(I)
Tmin = 0.887, Tmax = 0.948Rint = 0.038
34196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02714 restraints
wR(F2) = 0.067Only H-atom coordinates refined
S = 0.93Δρmax = 0.50 e Å3
2953 reflectionsΔρmin = 0.36 e Å3
190 parameters
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > σ(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K1_11.08353 (4)0.48766 (4)0.412084 (14)0.01245 (4)
K2_210.11136 (5)0.250000.01989 (6)
O8_31.45467 (13)0.43420 (12)0.40758 (5)0.01477 (13)
O9_31.76362 (13)0.39318 (12)0.45621 (5)0.01479 (13)
O10_31.88936 (13)0.20722 (12)0.47622 (5)0.01638 (13)
O11_31.25768 (13)0.18741 (12)0.37279 (5)0.01419 (13)
N1_31.41234 (15)0.07072 (14)0.40074 (5)0.00943 (13)
N3_31.73874 (15)0.05408 (13)0.45147 (5)0.00987 (14)
N5_31.57096 (15)0.20278 (14)0.42495 (5)0.00984 (14)
C2_31.57561 (17)0.14319 (16)0.42608 (6)0.00913 (16)
C4_31.74401 (17)0.12642 (15)0.45228 (6)0.01027 (16)
C6_31.40543 (17)0.11050 (16)0.39764 (6)0.00935 (15)
C7_31.59851 (17)0.34380 (16)0.43032 (6)0.00942 (16)
H3_31.8583 (19)0.121 (2)0.4729 (8)0.01180*
H5_31.559 (3)0.3346 (13)0.4231 (9)0.01177*
N12_40.66429 (16)0.65016 (15)0.27330 (6)0.01528 (15)
N14_40.500000.3866 (2)0.250000.0163 (2)
C13_40.500000.7302 (2)0.250000.0151 (3)
C15_40.6706 (2)0.46992 (18)0.27535 (7)0.01688 (19)
C5_40.500000.9310 (3)0.250000.0207 (3)
O16_40.34766 (19)1.00230 (15)0.22125 (6)0.0303 (2)
O17_40.81757 (16)0.38998 (15)0.29846 (6)0.03083 (18)
H14_40.500000.253 (2)0.250000.01920*
H12_40.7874 (15)0.7204 (7)0.287 (2)0.01819*0.50
O18_51.05599 (15)0.78304 (15)0.32766 (6)0.02606 (16)
H18A_51.173 (2)0.828 (3)0.3556 (10)0.03898*
H18B_50.953 (2)0.845 (3)0.3439 (10)0.03898*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K1_10.00912 (12)0.01238 (13)0.01537 (13)0.00076 (9)0.00058 (9)0.00085 (9)
K2_20.0193 (2)0.01123 (18)0.0248 (2)00.00922 (16)0
O8_30.0112 (4)0.0094 (4)0.0229 (5)0.0023 (3)0.0001 (3)0.0009 (4)
O9_30.0117 (4)0.0102 (4)0.0209 (4)0.0021 (3)0.0020 (3)0.0011 (3)
O10_30.0091 (4)0.0102 (4)0.0273 (5)0.0019 (3)0.0046 (3)0.0019 (4)
O11_30.0112 (4)0.0110 (4)0.0184 (4)0.0029 (3)0.0034 (3)0.0010 (3)
N1_30.0074 (4)0.0077 (4)0.0124 (4)0.0005 (4)0.0009 (3)0.0000 (4)
N3_30.0073 (4)0.0069 (4)0.0145 (5)0.0002 (3)0.0012 (4)0.0007 (4)
N5_30.0078 (4)0.0076 (5)0.0131 (4)0.0005 (4)0.0014 (4)0.0007 (4)
C2_30.0076 (5)0.0069 (5)0.0122 (5)0.0010 (4)0.0004 (4)0.0007 (4)
C4_30.0079 (5)0.0065 (5)0.0155 (5)0.0002 (4)0.0008 (4)0.0008 (4)
C6_30.0078 (5)0.0087 (5)0.0109 (5)0.0001 (4)0.0005 (4)0.0006 (4)
C7_30.0086 (5)0.0062 (5)0.0132 (5)0.0002 (4)0.0013 (4)0.0002 (4)
N12_40.0117 (5)0.0110 (5)0.0231 (5)0.0020 (4)0.0024 (4)0.0021 (4)
N14_40.0195 (8)0.0079 (7)0.0186 (7)00.0051 (6)0
C13_40.0180 (9)0.0093 (8)0.0198 (8)00.0090 (7)0
C15_40.0156 (6)0.0120 (6)0.0200 (6)0.0032 (5)0.0062 (5)0.0028 (5)
C5_40.0336 (11)0.0083 (8)0.0244 (9)00.0178 (8)0
O16_40.0455 (7)0.0169 (5)0.0337 (6)0.0130 (5)0.0218 (5)0.0081 (4)
O17_40.0267 (6)0.0269 (6)0.0325 (6)0.0161 (5)0.0144 (5)0.0108 (5)
O18_50.0161 (5)0.0236 (5)0.0345 (6)0.0058 (4)0.0076 (4)0.0098 (4)
Geometric parameters (Å, º) top
K1_1—K1_1i3.7662 (3)N1_3—C2_31.297 (2)
K1_1—K2_2ii4.2236 (3)N3_3—C4_31.386 (2)
K1_1—O17_42.7419 (9)N3_3—C2_31.356 (2)
K1_1—O11_32.7714 (7)N3_3—H3_31.015 (19)
K1_1—O18_52.7782 (9)N5_3—C4_31.375 (2)
K1_1—O10_3iii2.9272 (7)N5_3—C6_31.390 (2)
K1_1—O10_3iv3.1649 (6)N5_3—H5_31.015 (19)
K1_1—O9_3v2.6893 (6)C2_3—C7_31.549 (2)
K1_1—O9_3vi2.6893 (6)N12_4—C15_41.384 (2)
K2_2—O17_42.7342 (9)N12_4—C13_41.320 (2)
K2_2—O11_32.7972 (7)N12_4—H12_41.016 (18)
K2_2—O16_4vii2.7236 (9)N14_4—C15_41.376 (2)
K1_1—O8_3viii2.6916 (6)N14_4—C15_4xii1.376 (2)
K2_2—O18_5ix2.9240 (6)N14_4—H14_41.03 (3)
K2_2—O18_5x2.9240 (6)C13_4—N12_4xii1.320 (2)
K2_2—O17_4ii2.7342 (9)C13_4—C5_41.541 (3)
K2_2—O11_3ii2.7972 (6)C15_4—O17_41.222 (3)
O8_3—C7_31.246 (2)C5_4—O16_41.249 (2)
O9_3—C7_31.245 (2)C5_4—O16_4xii1.249 (2)
O10_3—K1_1xi2.9272 (7)O16_4—K2_2xiii2.7236 (9)
O10_3—C4_31.220 (2)O17_4—K1_12.7419 (9)
O11_3—K1_12.7714 (7)O17_4—K2_22.7342 (9)
O11_3—K2_22.7972 (7)O18_5—K1_12.7782 (9)
O11_3—C6_31.222 (2)O18_5—H18B_50.96 (3)
N1_3—C6_31.392 (2)O18_5—H18A_50.97 (3)
O17_4—K1_1—O11_380.13 (3)C6_3—N5_3—H5_3116 (4)
O17_4—K1_1—O18_577.41 (3)C15_4—N12_4—C13_4119.8 (2)
O17_4—K1_1—O10_3iii80.33 (3)C15_4—N12_4—H12_4120 (1)
O11_3—K1_1—O18_5120.67 (3)C13_4—N12_4—H12_4120 (1)
O11_3—K1_1—O10_3iii76.18 (4)C15_4—N14_4—C15_4xii124.6 (5)
O18_5—K1_1—O10_3iii148.7 (2)C15_4—N14_4—H14_4117.7 (2)
O17_4—K2_2—O11_379.81 (4)C15_4xii—N14_4—H14_4117.7 (2)
O17_4—K2_2—O16_4vii71.63 (4)N12_4xii—C13_4—C5_4117.7 (4)
O11_3—K2_2—O16_4vii111.78 (4)O17_4—C15_4—N14_4122.2 (5)
K1_1xi—O10_3—C4_3129.30 (5)O17_4—C15_4—N12_4122.2 (5)
C6_3—N1_3—C2_3117.8 (4)O16_4—C5_4—O16_4xii128.0 (6)
C4_3—N3_3—C2_3121.8 (4)O16_4—C5_4—C13_4115.98 (11)
C4_3—N3_3—H3_3118.9 (9)O16_4xii—C5_4—C13_4116.0 (5)
C2_3—N3_3—H3_3119.2 (9)K2_2xiii—O16_4—C5_4141.0 (2)
C4_3—N5_3—C6_3124.2 (4)H18B_5—O18_5—H18A_5105 (5)
C4_3—N5_3—H5_3120 (4)
K1_1—O17_4—K2_2—O11_35.20 (14)N1_3—C6_3—N5_3—C4_32.8 (3)
K1_1—O17_4—C15_4—N14_4141.9 (5)N1_3—C6_3—N5_3—H5_3178.2 (7)
K1_1—O17_4—C15_4—N12_437.7 (3)N1_3—C2_3—N3_3—C4_30.1 (3)
K1_1—O11_3—K2_2—O17_45.11 (14)N1_3—C2_3—N3_3—H3_3177 (2)
K1_1—O11_3—C6_3—N5_338.9 (3)N3_3—C4_3—N5_3—C6_31.1 (3)
K1_1—O11_3—C6_3—N1_3139.8 (5)N3_3—C4_3—N5_3—H5_3180 (2)
K2_2—O17_4—K1_1—O11_35.25 (14)N3_3—C2_3—N1_3—C6_31.8 (3)
K2_2—O17_4—K1_1—O18_5119.46 (17)N5_3—C4_3—N3_3—C2_30.3 (3)
K2_2—O17_4—C15_4—N14_447.3 (3)N5_3—C4_3—N3_3—H3_3177 (2)
K2_2—O17_4—C15_4—N12_4133.1 (5)N5_3—C6_3—N1_3—C2_33.1 (3)
K2_2—O11_3—K1_1—O17_45.09 (14)C4_3—N3_3—C2_3—C7_3179.5 (3)
K2_2—O11_3—K1_1—O18_563.78 (12)C6_3—O11_3—K1_1—O17_4177.7 (3)
K2_2—O11_3—C6_3—N5_3137.5 (4)C6_3—O11_3—K1_1—O18_5113.4 (4)
K2_2—O11_3—C6_3—N1_343.7 (3)C6_3—O11_3—K2_2—O17_4177.5 (3)
O8_3—C7_3—C2_3—N3_3179.6 (2)C6_3—N1_3—C2_3—C7_3178.8 (2)
O8_3—C7_3—C2_3—N1_30.9 (3)C7_3—C2_3—N3_3—H3_33 (4)
O9_3—C7_3—C2_3—N3_30.2 (4)N12_4—C15_4—N14_4—H14_4179.05 (3)
O9_3—C7_3—C2_3—N1_3179.7 (4)N12_4—C13_4—C5_4—O16_4173.1 (3)
O10_3—C4_3—N5_3—C6_3179.966 (4)N14_4—C15_4—N12_4—C13_41.9 (4)
O10_3—C4_3—N5_3—H5_31 (4)N14_4—C15_4—N12_4—H12_4174 (3)
O10_3—C4_3—N3_3—C2_3178.64 (8)C13_4—N12_4—C15_4—O17_4177.7 (3)
O10_3—C4_3—N3_3—H3_32 (4)C15_4—O17_4—K1_1—O18_553.7 (5)
O11_3—K1_1—O17_4—C15_4178.4 (3)C15_4—N12_4—C13_4—C5_4178.97 (10)
O11_3—K1_1—O18_5—H18B_5159.5 (3)C5_4—C13_4—N12_4—H12_45.2 (7)
O11_3—K1_1—O18_5—H18A_595 (4)O17_4—K1_1—O18_5—H18B_589 (3)
O11_3—K2_2—O17_4—C15_4177.5 (3)O17_4—K1_1—O18_5—H18A_5166 (2)
O11_3—C6_3—N5_3—C4_3178.4 (2)O17_4—C15_4—N14_4—H14_41.3 (3)
O11_3—C6_3—N5_3—H5_31 (4)O17_4—C15_4—N12_4—H12_46.4 (8)
O11_3—C6_3—N1_3—C2_3178.2 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1/2; (iii) x1, y, z; (iv) x+3, y+1, z+1; (v) x+3, y, z+1; (vi) x1, y+1, z; (vii) x+1, y1, z+1/2; (viii) x, y+1, z; (ix) x, y1, z; (x) x+2, y1, z+1/2; (xi) x+1, y, z; (xii) x+1, y, z+1/2; (xiii) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3_3—H3_3···O9_31.02 (1)2.20 (1)2.6086 (7)102 (1)
N5_3—H5_3···O8_3viii1.02 (1)1.93 (1)2.9070 (7)162 (1)
N5_3—H5_3···O9_3viii1.02 (1)2.56 (1)3.3977 (6)140 (1)
N12_4—H12_4···O18_51.016 (5)1.984 (8)2.9628 (7)160.9 (4)
N12_4—H12_4···O18_5ii1.016 (5)2.659 (9)3.1515 (8)110 (2)
N14_4—H14_4···O16_4ix1.03 (1)2.23 (1)3.1553 (6)150 (2)
N14_4—H14_4···O16_4vii1.03 (1)2.23 (1)3.1553 (7)150 (2)
O18_5—H18B_5···O16_4xii0.96 (1)2.58 (1)3.3013 (8)133 (2)
O18_5—H18A_5···N1_3viii0.97 (1)1.93 (1)2.8927 (9)173 (1)
Symmetry codes: (ii) x+2, y, z+1/2; (vii) x+1, y1, z+1/2; (viii) x, y+1, z; (ix) x, y1, z; (xii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3_3—H3_3···O9_31.015 (5)2.198 (8)2.6086 (7)102.(1)
N5_3—H5_3···O8_3i1.015 (5)1.926 (9)2.9070 (7)161.8 (6)
N5_3—H5_3···O9_3i1.015 (5)2.556 (8)3.3977 (6)140.(1)
N12_4—H12_4···O18_51.016 (5)1.984 (8)2.9628 (7)160.9 (4)
N12_4—H12_4···O18_5ii1.016 (5)2.659 (9)3.1515 (8)110.(2)
N14_4—H14_4···O16_4iii1.026 (9)2.227 (8)3.1553 (6)150.(2)
N14_4—H14_4···O16_4iv1.026 (9)2.227 (9)3.1553 (7)150.(2)
O18_5—H18B_5···O16_4v0.956 (9)2.579 (9)3.3013 (8)133.(2)
O18_5—H18A_5···N1_3i0.971 (8)1.926 (8)2.8927 (9)173.3 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z+1/2; (iii) x, y1, z; (iv) x+1, y1, z+1/2; (v) x+1, y, z+1/2.
 

Acknowledgements

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCihak, A., Vesely, J. & Sorm, F. (1968). Collect. Czech. Chem. Commun. 33, 1778–1781.  CAS Google Scholar
First citationCuesta, R., Glidewell, C., López, R. & Low, J. N. (2003). Acta Cryst. C59, m315–m318.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDomagała, S., Fournier, B., Liebschner, D., Guillot, B. & Jelsch, C. (2012). Acta Cryst. A68, 337–351.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc. 126, 32–33.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJaniak, C. (2003). Dalton Trans. pp. 2781–2804.  Web of Science CrossRef Google Scholar
First citationJelsch, C., Guillot, B., Lagoutte, A. & Lecomte, C. (2005). J. Appl. Cryst. 38, 38–54.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLalart, D., Dodin, G. & Dubois, J.-E. (1981). J. Inorg. Nucl. Chem. 43, 2429–2432.  CrossRef CAS Web of Science Google Scholar
First citationMeindl, K. & Henn, J. (2008). Acta Cryst. A64, 404–418.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMori, F., Nyui, T., Ishida, T., Nogami, T., Choi, K.-Y. & Nojiri, H. (2006). J. Am. Chem. Soc. 128, 1440–1441.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMori, W., Sato, T., Ohmura, T., Kato, C. N. & Takei, T. (2005). J. Solid State Chem. 178, 2555–2573.  Web of Science CrossRef CAS Google Scholar
First citationPancheva, S. (1977). Acta Microbiol. Virol. Immunol. (Sofiia), 6, 55–62.  CAS PubMed Google Scholar
First citationPike, R. K. (1976). Magn. Reson. Chem. 6, 224–225.  Google Scholar
First citationSheldrick, W. S. & Poonia, N. S. (1986). J. Incl. Phenom. Macrocyclic Chem. 4, 93–98.  CSD CrossRef CAS Web of Science Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m174-m175
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds